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Abstract 

Time series prediction has important implications for psychological research, for instance 

when assessing longitudinal change in outcomes or modelling electroencephalogram (EEG) 

data. One relatively new tool that can be used for this purpose is the Bayesian Covariance 

Structure Model (BCSM), which can model serial dependences within time series through a 

covariance model. The suitability of the BCSM for predicting time series has been 

investigated and in performance compared to the commonly used autoregressive integrated 

moving average (ARIMA) model. For this purpose, three simulation studies were designed, in 

which the sample size and properties of the simulated time series were varied. The results 

show that for time series of shorter lengths, the BCSM provides more accurate predictions 

than the ARIMA model according to which the data was generated. However, the 

autocorrelation function (ACF) of the BCSM’s residuals indicated that there was still 

significant autocorrelation, suggesting that not all available information in the time series is 

used efficiently. The BCSM also failed to describe MA dependences in the data. Nonetheless, 

the BCSM has shown high predictive accuracy, while remaining relatively simple to interpret. 

Keywords: Bayesian Covariance Structure Model (BCSM), Autoregressive Integrated 

Moving Average (ARIMA), time series prediction, serial correlation, prediction-explanation 

fallacy.
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Introduction 

Longitudinal research in psychology can give researchers insight in complex 

psychological processes over time. However, large amounts of time series data can be 

complex to analyse because of serial dependence in the data that violates the assumption of 

independence of linear regression models and can therefore lead to imprecise estimates of 

fixed and random effects and their standard errors (Fieberg et al., 2010; Schielzeth et al., 

2020). Therefore, literature points to different approaches for time series prediction and 

explanation, such as autoregressive integrated moving average (ARIMA) models (Jebb et al., 

2015). However, the ARIMA method requires that the order of the AR, I and MA components 

is set a priori, which can be challenging for complex time series (Koreisha & Pokkila, 1995; 

Liu, 2024). Alternatively, Bayesian Covariance Structure Modelling (BCSM) can be used, 

which has mainly been tested in the context of random effect modelling for testlets (Fox et al., 

2020, 2021; Klotzke & Fox, 2019) and analysis of electroencephalogram (EEG) data (Bazen, 

2023). In BCSM, dependences between time series observations are modelled directly, using 

a covariance matrix, which displays dependences implied by random factor variables and their 

interactions (Fox et al., 2020; Klotzke & Fox, 2019). By directly modelling these 

dependences, problems with the assumption of independence can be overcome. Thus, the 

BCSM might provide an alternative to time series prediction and explanation by reducing the 

model complexity. Next to that, the BCSM is not limited to positive covariances, because they 

can be positive, zero or negative (Fox et al., 2020, 2021; Fox & Smink, 2023). 

The flexibility of the BCSM to describe complex dependences in the data is examined 

by assessing its performance on predicting time series data. Hence, the aim of this thesis is to 

examine whether BCSM is applicable to predict time series data for which the dependence 

structure is unknown in comparison to an ARIMA model. For this purpose, both models are 
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fitted to simulated ARIMA data and different model parameters indicative of prediction 

accuracy and model adequacy are compared to each other.  

Time Series Data and ARIMA  

 Time series data can be described as any kind of data that is successively collected 

over a certain period of time, includes measurements from many time points and is usually 

univariate (Cryer, 1986, chapter 1). Thus, longitudinal data of psychological processes over 

time (Ariens et al., 2020; Jebb et al., 2015) or EEG data (Barlow, 1959; Scott & Schiff, 1995) 

can be considered as time series data relevant to psychological research. Within this kind of 

data, autocorrelation may occur, meaning that the observations are correlated with each other 

based on their temporal distance or lag. This autocorrelation needs to be accounted for by the 

statistical model used to effectively predict a time series, as otherwise the independence 

assumption is violated.  

Time series are frequently predicted using ARIMA models. In a stationary ARIMA 

model, the time series data revolves around a constant mean with roughly equal variance and 

a similar pattern of variation over time (Hyndman & Athanasopoulos, 2018, chapter 8.1; Nau, 

2014). Furthermore, the ARIMA model consists of an autoregressive (AR) component, which 

specifies the order of the lagged correlation between observations, an integrated (I) 

component that keeps the model stationary, and a moving average (MA) component, that 

captures short-term fluctuations in the data (Cryer, 1986, chapter 2; Nau, 2014). ARIMA 

models can be used to describe time series data and are fitted by defining the AR, I and MA 

parameters a priori (Gulnara et al., 2022; See Appendix A for an example). Statistical models 

that can take autocorrelations into account, such as ARIMA, have been shown to be generally 

effective in predicting time series data (Korevaar et al., 2022; Turner et al., 2021). Therefore, 

in this study, ARIMA modelling will be used to compare the efficacy of BCSM in time series 

modelling. 
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Bayesian Covariance Structure Modelling 

In BCSM, a covariance matrix is used to directly model dependences within data. This 

covariance structure is implied by random factor variables, where the levels of random factors 

are set a priori. For predicting a time series, sequential observations of the time series can be 

clustered, thereby accounting for serial dependence, as their serial correlations are directly 

modelled within the covariance structure. Therefore, one covariance parameter is associated 

with each clustering of observations determined by a random factor variable. For this, the 

number of observations to be clustered can be set a priori, so that several cluster levels are 

defined to account for dependencies between observations of a time series.  

However, not only dependences within the clusters of observations are modelled, but 

also dependences between clusters. Therefore, the clustering of observations determined by an 

interaction of random factors can also be included in the covariance structure. Nevertheless, 

because the BCSM does not require estimates of random effects but directly models 

dependencies through the covariance structure, it is less complex than random effect models 

that would require such estimates (Klotzke & Fox, 2019). Consequently, the BCSM might be 

an efficient alternative for predicting time series with an unknown dependence structure. For 

drawing the Bayesian inference for the BCSM model parameters, the Markov Chain Monte 

Carlo (MCMC) method is applied (Gilks et al., 1995; Klotzke & Fox, 2019).   

Prediction-Explanation Fallacy 

 ARIMA models can be used to make predictions about the course of time series data, 

even in dynamic and complex scenarios. For instance, research has shown a high accuracy of 

ARIMA forecasts of the spread of COVID-19 (Alabdulrazzaq et al., 2021), predicting traffic 

volume (Dong et al., 2009), energy output of wind turbines (Biswas et al., 2021) and network 

traffic (Gulnara et al., 2022). However, ARIMA is also applied in social sciences, for instance 

to analyse and explain longitudinal trends (Jebb et al., 2015; Vasileiadou & Vliegenthart, 
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2015). Therefore, literature points towards making a distinction between predicting and 

explaining when it comes to forecasting models.  

In social sciences like psychology, forecasting methods are rather used to investigate 

causal theories based on data instead of making predictions (Jebb et al., 2015; Shmueli, 2011). 

This distinction is important to avoid the prediction-explanation fallacy, in which a complex 

prediction model is used to explain certain phenomena or a simplistic and biased model is 

used to make predictions (Del Giudice, 2022). Del Giudice (2022) argues that in order to 

prevent this fallacy, researchers must be aware of a trade-off between the predictive accuracy 

and the explanatory value of a model. Models that aim to achieve a high predictive accuracy 

are usually overfitted, which leads to an increased model complexity and makes it difficult to 

interpret which parameters caused an effect. On the other hand, models that aim to have high 

explanatory value deliberately fail to accurately describe the predictions but allow for an 

objective interpretation. BCSM might offer an advantage in this respect, as it is able to make 

accurate predictions, while the way the data is structured within the covariance matrix is set a 

priori and remains relatively simple to interpret. Hence, the BCSM has the potential to 

combine explanatory value and predictive accuracy, thereby circumventing this fallacy. 

The Current Study 

 As there is currently no research on the efficacy of BCSM for modelling time series 

data, the aim of this thesis is to compare the performance of ARIMA and BCSM models in 

describing time series data. For this reason, different time series are simulated according to an 

ARIMA model, and statistical results of the fitted ARIMA and BCSM models are used to 

assess their performance in describing the simulated time series. The efficacy of a model is 

assessed by comparing root-mean-square error (RMSE), mean absolute error (MAE) and 

mean absolute percentage error (MAPE) of fitted values under the model. The RMSE, MAE 

and MAPE indicate to which extent the predictions of a model deviate from the observed data 
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and can therefore provide an estimate on how accurate the model describes a time series 

(Montaño et al., 2013; Willmott & Matsuura, 2005). Furthermore, the autocorrelation function 

(ACF) of the residuals is computed in order to assess the model’s capability to account for 

autocorrelation of the time series. The ACF of residuals is the correlation of residuals over the 

time lags, which need to be non-significant for an appropriate statistical model (Box & Pierce, 

1970; Cryer, 1986, chapter 3.6; Jebb et al., 2015).  

Methods 

Materials 

 Three simulation studies were conducted using R (version 4.2.3), in which different 

stationary time series were generated according to an ARIMA model. To run and fit the 

BCSM on the time series, developed functions for MCMC estimation were used. 

Simulation Study Design  

Simulation Study 1 

For the first simulation study, three conditions were considered in which the length of 

the time series was varied. In the three conditions the AR components of the simulated time 

series were fixed and set to .4, .2, .1 and -.1 for lags 1, 2, 3 and 4, respectively. The ARIMA 

for this study design had the following expression   

 1 1 2 2 3 3 4 4 , t t t t t tY Y Y Y Y e            

where t  are the AR coefficients and et the normally distributed errors (Jebb et al., 2015; 

Nau, 2014). In the first condition, the simulated time series were 128 observations long, in the 

second condition 512 observations long and in the third condition 1,024 observations long. 

The length of the time series was varied in these conditions to test how well the BCSM was 

able to predict time series of different lengths.  



Assessing Bayesian Covariance Structure Modelling for Time Series Data                       8 

 

Simulation Study 2 

In the second study design, another time series consisting of 128 observations was 

specified, in which the AR coefficients were equal to the ones in the first study. Additionally, 

an MA component was included and set to 1 in order to assess the capability of a BCSM to 

model the MA component of a time series. Therefore, this specified ARIMA was expressed as  

 1 1 2 2 3 3 4 4 1 , t t t t t t t tY Y Y Y Y e e               

where t  represent the AR coefficients, θ the MA coefficient and et the normally distributed 

errors (Jebb et al., 2015; Nau, 2014).  

Simulation Study 3 

 In the first two simulation study designs, the AR and MA components of the 

simulated time series were fixed. Hence, in this study design, the AR coefficients of the time 

series were varied across replications. For this purpose, AR components of the time series 

were randomly drawn from a uniform distribution between -.5 and .5 for a fifth order AR time 

series, consisting of 5,120 observations, with the restriction that a stationary time series was 

generated. Therefore, the ARIMA for this simulation study had the expression  

 1 1 2 2 3 3 4 4 5 5 , t t t t t t tY Y Y Y Y Y e               

 For all conditions and every study design, 1,000 data sets were generated. In the first 

two simulation studies, two BCSM models with different components and an ARIMA model 

were fitted to the generated time series. In the third simulation study, however, only one 

BCSM model with three components was compared to the ARIMA model due to 

computational constraints. The ARIMA model served as the baseline model to which the 

BCSMs were compared for all conditions.  
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Model Specification 

To predict the simulated time series data in the first simulation study, a fourth order 

AR model was fitted. For the second simulation study, an ARIMA model with a fourth order 

AR and a first order MA component was specified. In the third study design, the fitted 

ARIMA model was specified as a fifth order AR model. Thus, for all generated time series, 

the ARIMA model according to which the data was generated was fitted. To estimate the time 

series coefficients, the maximum likelihood estimation method was used.  

Moreover, two BCSMs were fitted to the time series data in the first two simulation 

studies. The first BCSM consisted of eight factors with three components (m=[2,2,4]), in 

which two observations were clustered on the first level, four on the second level and 16 on 

the third level. Hence, in the BCSM’s covariance matrix, the first level represents a 

correlation between two sequential observations of the time series and thereby accounting for 

the first lag, while the second and third level represent correlations between four and 16 

observations respectively. As the specified covariance matrix structure only clusters 16 

observations, it was replicated eight times for the time series of 128 observations, 32 times for 

the time series of 512 observations and 64 times for the time series with 1,024 observations. 

In the third simulation study, this model was compared to the fitted ARIMA model. As the 

time series consisted of 5,120 observations in this study, the covariance matrix was replicated 

320 times. 

The second BCSM that was fitted to the time series in simulation studies 1 and 2 

consisted of 32 factors with five components (m=[2,2,2,4,4]), so that two, four, eight, 32 and 

128 observations were clustered on the respective levels. For the time series with 128 

observations, this covariance matrix was only replicated once, for the time series of 512 

observations four times and for the time series of 1,024 observations eight times. This model 

was not fitted to the time series in the third study design.  
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The dependences of the time series data are accounted for by the BCSM by activating 

all nested and crossed factor components in the covariance matrix, so that both fitted BCSMs 

had a full factorial design. The number of MCMC iterations for the BCSM models was set to 

5,000 in all conditions. The presented results were averaged over 1,000 simulated time series. 

Data Analysis 

 For data analysis, descriptive statistics of the simulated time series and the residuals of 

each fitted model were computed. After that, estimates of prediction accuracy were calculated 

to assess the efficacy of the BCSM fit compared to the ARIMA fit. To assess the prediction 

accuracy of the different models, their RMSE, MAPE and MAE were compared. The RMSE 

is denoted as √
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|²𝑛
𝑖=1 , in which n are the number of observations, Pi the i-th 

predicted value of the fitted model and Oi the i-th observed value of the simulated time series. 

Hence, the RMSE is the square root of the average squared difference of the model’s 

estimates and indicates its deviance from the simulated data (Willmott & Matsuura, 2005). 

The RMSE is frequently used as a measure of deviation and is optimally applied when the 

standard error of the model is normally distributed (Hodson, 2022). 

Additionally, the MAPE was calculated as an indicator of the models’ accuracy. The 

mathematical expression of the MAPE is 
1

𝑛
 ∑ |

𝑃𝑖−𝑂𝑖

𝑂𝑖
|𝑛

𝑖=1 , where n is the number of 

observations in the time series, Oi the i-th observed value of the simulated time series and Pi 

the i-th predicted value of the fitted model (Ji & Gallo, 2006; Montaño et al., 2013). 

Therefore, the MAPE is the average absolute standardized difference between observed and 

predicted values. The MAPE is a percentage deviation of the predicted model from the actual 

time series data, which provides a standardized measure of deviation.  

Similarly, the MAE was calculated, which is expressed as 
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|𝑛
𝑖=1 , where n is 

the number of observations in the time series, Pi the i-th predicted value and Oi the i-th 
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observed value of the time series (Hodson, 2022; Willmott & Matsuura, 2005). The MAE 

indicates the mean of the absolute differences between predicted and observed values, which 

provides a third measure of the models’ accuracy. Willmott and Matsuura (2005) further 

argue that the MAE provides a clearer measure of the models’ error than the RMSE. 

Lastly, the ACF of the different models’ residuals was analysed in order to assess 

whether there was correlation between residuals at different lags. The significance boundary 

of the residual ACF was calculated in order to assess the fit of the model. A significant 

residual ACF indicates that the model fails to capture all residual correlation in the data, as the 

residuals show a correlation where it is assumed that they are independently distributed (Box 

& Pierce, 1970). 

Results 

Descriptive Statistics 

 Descriptive statistics of the partial ACF (PACF) for the first five lags of the simulated 

data of both simulation studies are described in Table 1. Table 2 contains the descriptive 

statistics of the residuals of the fitted models for all three simulation studies. From Table 2, it 

can be inferred that the residuals of all fitted models are centred around a mean and median of 

zero in all conditions of every simulation study.
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Table 2 

Residuals of the fitted BCSM and ARIMA Models in all Simulation Studies 

Time Series Length Statistic ARIMA BCSM 1 BCSM 2 

Simulation Study 1 

n=128 Mean -0.000 0.000 -0.000 

 Median -0.002 0.001 -0.001 

 SD 0.983 0.724 0.713 

n=512 Mean 0.000 0.000 0.000 

 Median -0.000 0.000 0.000 

 SD 0.996 0.721 0.739 

n=1,024 Mean 0.000 0.000 0.000 

 Median -0.000 0.000 -0.000 

 SD 0.997 0.720 0.742 

Simulation Study 2 

n=128 Mean 0.001 0.000 0.000 

 Median -0.001 -0.001 -0.000 

 SD 0.966 0.933 0.842 

Simulation Study 3 

n=5,120 Mean 0.000 -0.008 - a 

 Median 0.000 -0.006 - 

 SD 1.000 2.036 - 

Note. BCSM 1 has a structure of m=(2,2,4). BCSM 2 has a structure of m=(2,2,2,4,4). 

Results are averaged over 1,000 replications and rounded to the third decimal. 
a In the third simulation study, only one BCSM was fitted. 

  

 

Table 1 

PACF of Lags 1–5 of the Simulated Time Series Data for all Conditions  

Lag Statistic Sim. Study 1 Sim. Study 2 Sim. Study 3 

   n=128 n=512 n=1,024 n=128 n=5,120 

1 Mean .542 .578 .581 .829 .010 

 SD .102 .047 .034 .043 .366 

2 Mean .274 .290 .292 -.256 -.086 

 SD .076 .038 .026 .079 .358 

3 Mean .046 .058 .058 .157 -.002 

 SD .087 .044 .033 .079 .324 

4 Mean -.109 -.105 -.101 -.224 -.023 

 SD .086 .043 .031 .077 .297 

5 Mean -.008 -.000 -.002 .153 .011 

 SD .080 .044 .031 .080 .269 

Note. Results are averaged over 1,000 replications and rounded to the third decimal. 
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Performative Statistics 

Next to the descriptive statistics, performative analyses were conducted to compare the 

models' efficacy in predicting a time series. Table 3 shows the average RMSE, MAE and 

MAPE of each fitted model for each simulation study. In the first simulation study, both 

BCSMs show a higher accuracy than the ARIMA model as indicated by lower scores of 

RMSE, MAE and MAPE. Varying the length of the time series did not greatly influence the 

measures of accuracy for the fitted models. In the second simulation study, the BCSM slightly 

outperformed the ARIMA model as well. However, introducing an MA component to the 

time series led to overall worse accuracy when compared to the results of the first simulation 

study. In the third simulation study with varying AR components, the BCSM shows greater 

deviations from the simulated time series than the ARIMA model, indicating worse 

predictions.  

Moreover, when comparing both BCSMs to each other of simulation study 1 and 2 

there is only a marginal difference between their prediction accuracy. In the first simulation 

study, the MAPE of the three component BCSM is lower than that of the five component 

BCSM for the two conditions with sample sizes 128 and 512, but not for the largest sample 

size of 1,024. The RMSE on the other hand is lower for the largest sample size for the three 

component BCSM. The MAE is consistently lower across all three conditions for the BCSM 

with three components. In the second simulation study, the five components BCSM shows 

slightly better performance for all computed statistics than the three component BCSM.
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Table 3 

Performative Statistics of the fitted BCSM and ARIMA Models for all Conditions 
Time Series Length and Statistic ARIMA BCSM 1 BCSM 2 

Simulation Study 1  

n=128    

RMSE 0.983 [0.979, 0.987] 0.721 [0.709, 0.734] 0.710 [0.689, 0.731] 

MAPE 3.488 [2.975, 4.001] 2.658 [2.347, 2.969] 3.139 [2.562, 3.716] 

MAE 0.787 [0.784, 0.790] 0.577 [0.568, 0.587] 0.569 [0.552, 0.586] 

n=512    

RMSE 0.996 [0.994, 0.998] 0.720 [0.714, 0.726] 0.738 [0.728, 0.748] 

MAPE 6.924 [2.612, 11.236] 4.481 [2.519, 6.443] 4.551 [2.829, 6.273] 

MAE 0.795 [0.793, 0.796] 0.575 [0.570, 0.579] 0.589 [0.581, 0.597] 

n=1,024    

RMSE 0.997 [0.996, 0.999] 0.719 [0.715, 0.724] 0.742 [0.734, 0.749] 

MAPE 4.987 [3.484, 6.490] 4.409 [1.754, 7.063] 4.033 [2.546, 5.519] 

MAE 0.796 [0.794, 0.797] 0.574 [0.570, 0.577] 0.592 [0.586, 0.598] 

Simulation Study 2  

n=128    

RMSE 0.983 [0.980, 0.987] 0.929 [0.912, 0.947] 0.838 [0.812, 0.864] 

MAPE 3.102 [2.563, 3.642] 2.750 [2.296, 3.205] 2.462 [2.020, 2.904] 

MAE 0.787 [0.784, 0.790] 0.738 [0.724, 0.751] 0.668 [0.648, 0.689] 

Simulation Study 3  

n=5,120    

RMSE 1.000 [0.999, 1.000] 2.037 [1.672, 2.402] - a 

MAPE 4.801 [4.155, 5.447] 7.005 [5.907, 8.103] - 

MAE 0.797 [0.797, 0.798] 1.622 [1.332, 1.912] - 

Note. BCSM 1 has a structure of m=(2,2,4). BCSM 2 has a structure of m=(2,2,2,4,4). Results 

are averaged over 1,000 replications and rounded to the third decimal. 
a In the third simulation study, only one BCSM was fitted. 

 

Model Adequacy 

Lastly, the adequacy of the models for predicting time series data was assessed by 

analysing the ACF of the models’ residuals over the 1,000 replications for the first five lags 

for all simulation studies. The residual ACF of the ARIMA model was consistently closer to 

zero over lags than the BCSM in each study and across all conditions, indicating that the 

ARIMA model generally provides a better model fit than the BCSM for the time series (Table 

4; For a graphical representation, see Figures B1 - B3).  

Regarding the BCSM, two main findings appeared. Firstly, it became apparent that the 

longer the time series were, the more often the residual ACF of the first five lags were 

significant in simulation study 1. For the first lag of the longest time series condition in the 
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first simulation study (1,024 observations) this was the case for all 1,000 generated time series 

for both fitted BCSMs. The residual ACF value of the fitted BCSMs, however, did not differ 

greatly across conditions in simulation study 1.  

Secondly, it was found that the BCSM is better able to capture AR dependencies than 

MA dependencies in time series. When an MA component was included in the time series, the 

BCSM had higher residual ACF values and showed significant autocorrelations of residuals 

more than 90 percent of the time for the first lag. Comparing the residual ACF of Table 4 to 

the time series PACF in Table 1, it can be inferred that the ARIMA fit captured most of the 

autocorrelation in the data, so that the residual ACF was approximately zero. The BCSM fit, 

on the other hand, only marginally captured the autocorrelation of the time series.  
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Table 4 
Residual ACF of the fitted BCSM and ARIMA Models for all conditions averaged over all replications 

Model Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 

 M (SE) Significant M (SE) Significant M (SE) Significant M (SE) Significant M (SE) Significant 

Simulation Study 1 

n=128           

ARIMA -.007 (.015) 0.0% -.007 (.019) 0.0% -.008 (.032) 0.0% -.007 (.053) 0.2% -.002 (.076) 2.0% 

BCSM1 -.156 (.081) 41.5% -.065 (.104) 15.1% -.001 (.088) 5.1% -.025 (.104) 10.1% -.017 (.084) 4.9% 

BCSM2 -.163 (.102) 46.5% .085 (.122) 23.8% -.020 (.102) 8.5% .001 (.126) 13.8% -.029 (.099) 9.3% 

n=512           

ARIMA -.002 (.006) 0.0% -.002 (.006) 0.0% -.002 (.014) 0.0% -.002 (.028) 0.1% -.000 (.040) 2.5% 

BCSM1 -.163 (.038) 97.6% -.059 (.048) 29.0% -.000 (.041) 3.3% -.002 (.049) 7.8% -.019 (.042) 5.9% 

BCSM2 -.162 (0.41) 96.8% -.076 (.055) 42.2% -.023 (.043) 7.6% .016 (.052) 10.1% -.044 (.045) 17.0% 

n=1,024           

ARIMA -.001 (.004) 0.0% -.000 (.004) 0.0% -.000 (.010) 0.0% -.000 (.019) 0.1% -.001 (.028) 2.7% 

BCSM1 -.164 (.027) 100% -.058 (.035) 47.3% -.000 (.029) 3.1% .000 (.037) 10.6% -.019 (.030) 7.6% 

BCSM2 -.160 (.028) 100% -.075 (.037) 65.5% -.024 (.031) 10.0% .017 (.036) 12.1% -.046 (.031) 30.6% 

Simulation Study 2 

n=128           

ARIMA -.006 (.018) 0.0% -.010 (.206) 0.0% -.010 (.032) 0.0% -.012 (.055) 0.3% .011 (.074) 2.1% 

BCSM1 -.327 (.112) 94.2% .099 (.152) 30.4% -.148 (.122) 36.9% .013 (.152) 23.4% -.061 (.114) 16.0% 

BCSM2 -.328 (.116) 93.8% .074 (.170) 31.7% -.142 (.131) 35.5% .041 (.154) 24.7% -.037 (.120) 12.2% 

Simulation Study 3 

n=5,120           

ARIMA -.000 (.004) 0.0% -.000 (.006) 0.1% -.000 (.006) 0.0% .000 (.008) 0.3% -.000 (.008) 0.4% 

BCSM1 -.002 (.122) 82.9% .007 (.094) 76.2% -.005 (.145) 85.7% .043 (.096) 72.3% .004 (.151) 87.4% 

Note. BCSM 1 is a three component BCSM with the structure m=(2,2,4). BCSM 2 is a five component BCSM with the structure 

m=(2,2,2,4,4). Results are averaged over 1,000 replications and rounded to the third decimal. The significance values indicate how many 

times the residual ACF was significant out of the 1,000 replications. 
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Discussion 

Summary and Explanation of Findings 

 The aim of this study was to assess whether BCSM is an effective approach for 

predicting time series. It was investigated whether the BCSM is able to describe dependences 

in time series through a clustering method, thereby accounting for serial correlations. For this 

reason, three simulation studies were conducted in which the performance to predict 

simulated time series of the BCSM was compared to an ARIMA model. In the first simulation 

study, the effectiveness of the BCSM was assessed for predicting time series of varying 

lengths with fixed AR components. In the second simulation study, an additional MA 

component was added to the time series and in the third simulation study, the AR components 

of the time series were varied across replications.  

When the AR and MA components of the predicted time series were fixed in the first 

two simulation studies, the BCSM outperformed the ARIMA model in terms of prediction 

accuracy. Contrarily, in the third simulation study, the BCSM showed a lower prediction 

accuracy than the ARIMA model. Thus, when the AR and MA components were fixed, the 

BCSM made more accurate predictions than ARIMA but not when the AR components were 

varied. Nevertheless, according to Montaño et al. (2013), the fitted BCSM and ARIMA 

models in all conditions and in every study design were highly accurate, as their MAPE was 

consistently lower than 10. This indicates that the BCSM is generally capable of making 

accurate predictions. Moreover, when comparing the predictive performance of the two 

BCSMs with different covariance matrix structures, there was only a marginal difference. 

Hence, because of their similar covariance matrix structure, the predictive performance of 

both BCSMs was approximately equal to each other in the first two simulation studies.  
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When looking at the residual ACF, however, it was found that the specified BCSMs 

were unable to account for all the remaining autocorrelation of the residuals. Thus, the 

residuals of the fitted model displayed a systematic relationship, indicating that they are not 

independent of each other (Hyndman & Athanasopoulos, 2018, chapter 3.3). That means that 

the assumption of independently distributed residuals is violated, which causes problems for 

further methods that can be applied (e.g. Kenny & Judd, 1986). The dependence of the 

residuals might be explained by the specified structure of the BCSM. For all fitted BCSMs in 

every study, a full factorial design was applied so that the dependence structure was based on 

all crossed and nested factor components. This, however, might have led to overfitting of the 

model so that random noise within the data was modelled too closely (Montesinos-López et 

al., 2022). Thereby, the serial correlation within the data might not have been accurately 

accounted for. Moreover, the residual ACF became more often significant with increasing 

observations of the time series, even though the residual ACF did not greatly change across 

conditions in the first simulation study. This might have happened because the significance 

criterion of the ACF decreases with increasing time series length, leading to more significant 

results (Box & Pierce, 1970; Cryer, 1986, chapter 3.6).  

Furthermore, it was found that the residual ACF of the BCSMs greatly increased when 

an MA component was included in the time series. This can be explained by the fact that the 

serial correlation of a time series can be modelled by using the covariances of lagged 

variables, which were directly modelled in the covariance matrix. An MA component, 

however, consists of lagged errors (Hyndman & Athanasopoulos, 2018, chapter 8.4; Nau, 

2014), which cannot be predicted directly by covariances between clustered observations. 

Hence, when an MA component is included in the time series, the BCSM fails to account for 

the MA process, resulting in remaining autocorrelation between residuals. 
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Relation to Previous Work 

 Previous research on the BCSM made comparisons to mixed or random effect models 

in the contexts of analysing testlet data (Fox et al., 2020, 2021; Klotzke & Fox, 2019) and 

EEG data (Bazen, 2023). In those studies, the BCSM has shown that dependences within the 

data can directly be modelled with a covariance structure. Moreover, the BCSM has been 

shown to be an efficient alternative to mixed and random effect models as it is applicable to 

small sample sizes, not limited to positive covariances and less complex than models that 

need to include many random effect variables. The current study has further shown that the 

BCSM is not limited to random and mixed effect modelling, but that it can also be applied to 

time series. This is done by clustering sequential observations and directly modelling their 

dependence structure within a covariance matrix.  

Limitations and Suggestions for Future Research 

 The generated time series in each simulation study consisted of multiple AR 

components and in one case an MA component. However, the BCSM has not been tested for 

time series with a trend or seasonality. Nonetheless, time series with a trend also commonly 

occur and are relevant in research. Examples for this in the field of psychology might be EEG 

data that varies as a function of a certain treatment or stimulation (Hinrichs et al., 1996; Vayá 

Abad, 2023) or longitudinal research in how psychological processes change over time 

(Ariens et al., 2020). Hence, the presented results are limited to time series that are stationary, 

which have an equal variance and mean over time (Nau, 2014). For this reason, future 

research should also address whether the BCSM is applicable to non-stationary time series. 

Furthermore, only two BCSMs with relatively similar component structure have been 

compared to each other in the first two simulation studies. In every case, a full factorial design 

was applied so that all nested and crossed covariances were modelled. The results of both 

fitted BCSMs only marginally differed from each other in terms of accuracy and their 
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capability to account for the autocorrelation of the data. Hence, both specified BCSMs might 

have been too similar to make a meaningful comparison between each other. For this reason, 

it was not expected that in the third simulation study, the inclusion of the second BCSM 

would have resulted in a great difference compared to the BCSM that was fitted. For a better 

understanding of how the specification of the covariance matrix and the factorial design of the 

BCSM models influences the accuracy of time series prediction, more diverse testing is 

needed. Therefore, in future research the factorial structure of the BCSM could be adjusted, so 

that not all crossed and nested terms are activated to prevent overfitting. If a design is applied 

that is capable of taking all the remaining serial correlations of the residuals into account, this 

could increase the prediction error as fewer components are used to model the data. However, 

this might also improve the model fit since the residuals might be less correlated. 

An additional suggestion for future research that could give insights into the benefits 

and shortcomings of the BCSM is to compare the fitted covariance matrix to the sample 

correlation matrix of the time series. In the current study, only the properties of the fitted 

models’ residuals were analysed. The correlation matrix of a time series contains further 

information about the underlying dynamics of a time series (Easaw et al., 2023) and has, for 

instance, been used in research to model and explain EEG data (Schindler et al., 2007). 

Therefore, comparing the sample correlation matrix of a time series to the fitted covariance 

matrix of the BCSM might provide further information on how well the BCSM is able to 

model time series processes and has implications for psychological research.  

Finally, next to the residual ACF, the PACF could be investigated. The residual PACF 

shows correlations of the residuals over lags, while removing the influence of earlier lags, and 

can therefore be used to examine whether AR components in the data are correctly modelled 

(Weiß et al., 2023). Thus, in future research, the PACF can also be assessed next to the ACF. 
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Practical Application of Findings 

In the future, BCSM might provide a powerful tool for predicting time series. 

Especially in social sciences like psychology, BCSM might offer advantages as it does not 

make a large trade-off between interpretability and predictive accuracy, which has the 

potential to diminish problems associated with the prediction-explanation fallacy (Del 

Giudice, 2022). The way how observations are clustered is set a priori and easily 

interpretable, so that the BCSM can be used for explanatory modelling. On the other hand, it 

has been shown that the predictive performance of the BCSM was in most cases better than 

the ARIMA model, so that a high predictive accuracy is given as well.  

Furthermore, in practice, the time series data is not simulated according to an ARIMA 

model. For this reason, it can be more challenging to find the appropriate order of the ARIMA 

components for real-world applications (e.g. Liu, 2024). Because of this, it is also likely that 

the models would perform differently in a real setting. Thus, comparing the BCSM to an 

optimally fitted ARIMA model on real data would yield a more realistic comparison between 

both models. Nevertheless, in any case, diagnostics, such as the residual ACF and PACF 

should be examined, to ensure that the model is able to adequately account for dependences 

within the data (Box & Pierce, 1970; Jebb et al., 2015). If the fitted model does not accurately 

account for remaining residual autocorrelation or underlying dependence structures, the 

factorial structure of the BCSM should be refined to avoid over- or underfitting. 

Conclusion 

 In this thesis, the ability of the BCSM to make predictions about the trajectory of a 

time series has been assessed in three simulation studies. The results indicate that the accuracy 

of the method is high compared to an ARIMA model, especially for shorter time series. 

However, there are also some drawbacks to the BCSM, as it does not account for all the 

correlation between the residuals, which could indicate a structural bias. Therefore, future 
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research needs to address how the BCSM can account for serial correlation within the 

residuals of the predicted time series, which will allow making more adequate predictions. 

This could, for instance, be done by testing and refining the factorial structure of the BCSM, 

as in the current study only a full factorial design was applied. When the problem regarding 

the significant autocorrelation of the model's residuals can be resolved, the BCSM could 

become a powerful and effective tool for predicting time series in the future. Next to that, the 

BCSM offers benefits in terms of explanatory and predictive value, without making large 

trade-offs between them. Therefore, the BCSM might offer an alternative to overly complex 

machine learning tools, which are often not easily interpretable. 
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Appendix A 

Example Figure of a Time Series and a fitted ARIMA Model 

 
Note. Example plot of an autoregressive moving average time series (n = 128; AR 

components = .4, .3, .1, -.1; MA component = 1) and fitted values of an ARIMA (4,0,1) 

model. 
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Appendix B 

Figures of the residual ACF of all fitted Models in Simulation Studies 1 to 3 

Figure B1 

Average residual ACF over 1,000 replication for Simulation Study 1 

 
 

Note. The first, second, and third row respectively represent the residual ACF of the three 

fitted models in the first condition (n=128), the second condition (n=512) and the third 

condition (n=1,024). BCSM 1 has a structure of m=(2,2,4), BCSM 2 has a structure of 

m=(2,2,2,4,4). The figures represent the average ACF over 1,000 data sets, with an error bar 

indicating a 95% confidence interval.
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Figure B2 

Average residual ACF over 1,000 replications for Simulation Study 2 

 
Note. BCSM 1 has a structure of m=(2,2,4), BCSM 2 has a structure of m=(2,2,2,4,4). The 

figures represent the average ACF over 1,000 data sets with an error bar indicating a 95% 

confidence interval.
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Figure B3 

Average residual ACF over 1,000 replications for Simulation Study 3 

 
Note. The BCSM has a structure of m=(2,2,4). The figures represent the average ACF over 

1,000 data sets, with an error bar indicating a 95% confidence interval. 


