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ABSTRACT

High Frenquency Oscillations (HFOs), with a frequency above 80Hz have been proposed as a potential
biomarker for the identification of epileptogenic zones in the brain. This is necessary to be able to identify
the area that will be resected on medically-refractory patients during surgery. Previous models, such as
Morris-Lecar (ML) simulate neuronal behaviour and HFOs. Nevertheless, the morphology of the neuron
has not yet been included. The project extends the simulation incorporating neuronal morphology in
order to be able to explore its role in neuronal network dynamics. The results are obtained by placing the
gap junctions at the soma, dendrite, or axon respectively, and modifying coupling strength to identify its
effects. Findings indicate that the addition of compartments significantly impacts the long-term behaviour
of the neuronal network.
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1 INTRODUCTION

Epilepsy is a chronic brain disorder that affects around 70 million people globally and it
is characterized by recurrent seizures (Cai et al., 2021). Epileptic seizures are episodes
of involuntary movement involving part or all of the body. Sometimes they come
together with a loss of consciousness and loss of control over bodily functions. These
effects are a clinical manifestation of abnormal electrical discharge in the neurons.
Nowadays, several different treatments exist, with anticonvulsant medication as the
main strategy (NHS, 2020). Unfortunately, these treatments are effective in taking
control of the seizures for around two-thirds of the cases. For patients that are medically
refractory, surgery can be considered. During an epilepsy surgery the area of the brain
involved in the creation of seizures is resected (Cai et al., 2021). Thus, to be able to
conduct surgery, it is necessary to identify the areas of the brain related to seizure
generation, the epileptogenic and the seizure onset areas. High Frequency Oscillations
(HFOs), which are oscillations of a frequency above 80Hz, have been proposed as an
electrophysiological biomarker for these areas of the brain. HFOs can be observed in
electroencephalography (EEG) during the occurrence of spontaneous seizures, where
the electrical impulses of the brain are recorded. Nevertheless, this can only be done
to patients that have already been diagnosed, since intracranial EEG is used. Due
to the invasive nature of the procedures involved it is not ethical for a control group



to undergo this medical experiment. For HFOs, the voltage from action potentials is
recorded.

Action potentials are rapid sequences of changes in the voltage across the neuronal
membrane that allow neurons to transmit electrical signals (van Putten, 2020). The
process the cell undergoes throughout an action potential is the following. First, the
cell is found at a resting state (−70mV). When a stimulus reaches the neuron, the
ion channels open, allowing the flow of Na+ and K+ ions. This causes the membrane
potential to depolarize. If the potential reaches a critical level, then an action potential
is triggered. This usually happens around −55mV. Once this state is reached, more
ion channels open which cause a rapid increase on membrane potential until it returns
to rest.

Figure 1. Schematic of a neuron with
an axon and a dendritic tree (Kandel
et al., 2013).

Neurons are the main component of the
central and peripheral nervous systems.
They are essential for our bodies to be able
to process and transmit information (Caire
et al., 2020). They are composed by the soma
or cell body, that contains the nucleus, the
dendrites, and the axon (see Figure 1). The
dendrites receive the information from other
neurons which is then transported to the
soma. In the soma, the information is pro-
cessed and a response is sent through the
axon to other neurons. Neuronal morphol-
ogy is the most complex out of all the hu-
man cells. Being able to understand neu-
ronal morphology and its impact on neu-
ronal network dynamics is one of the cur-
rent focuses of neuroscience (Gowers and
Schreiber, 2024).

The reason of this captivation towards
neuron morphology emerges from the influ-
ence it has in their function and interaction
within networks. The behaviour of neuronal
networks can be modeled regarding the cell
membrane as an electrical circuit. Hodgkin
and Huxley (1952) provided insights into the
electrical characteristics of neurons. Their
work was a milestone towards understand-
ing how action potentials are generated and
propagated. Nevertheless, it simplifies the
neuron to just a point (soma), excluding other
compartments like the dendrites and axons.

Nowadays, computational scientists aim
to make these models more biophysically re-
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alistic, by including the spatial complexity of
neurons (van Pelt et al., 2001). Another often used 2D model is the Morris-Lecar mode
(Morris and Lecar, 1981), it describes the oscillatory behaviour of neurons, which is
essential for understanding neurological events, such as HFOs.

Figure 2.
Representation of the
stick-and-ball model
of one neuron.

This research integrates biophysically realistic neuronal
structures to the Morris-Lecar model (Morris and Lecar, 1981).
Using the same parameters as Přibylová et al. (2024) to obtain
UFOs. To incorporate the dendrite and axon we use the stick-
and-ball model, which regards the dendrite and axon just as
two sticks (see Figure 2). Then, gap junctions are placed at
the soma, dendrite, and axon. For the results, the effects
of placing the gap junctions at different compartments on
Anti-phase behaviour is researched.

This research could make contributions to both scientific
knowledge and human health, since it connects basic science
and its clinical applications.

2 CONTEXTUAL EXPLORATION

This project focuses on the simulation of High Frequency Oscillations in biophysi-
cally realistic models. Even though this topic is fairly specific, its results could have
greater contributions. Its broader relevance is related to the fields of neuroscience,
computational modelling and health sciences.

As mentioned before, HFOs have been proposed as an electrophysiological biomarker
for the epileptogenic zone (EZ). For epileptic patients that need epilepsy surgery it is
crucial to be able to identify this area, since this is the part of the brain that is resected
during the medical procedure. The resection of the EZ should stop the emergence of
seizures since it is the area where seizures emerge (Cai et al., 2021). This requires open
brain surgery, which is already on itself a challenge. Furthermore, while resecting part
of the brain, it is crucial that none of the areas that control important brain functions
like speech, movement, memory or vision are affected. In most cases, these functions
are performed by different parts of the brain, but the team assessing the case should
take into account. Therefore, it is also important that the surgical team resects as little
of the brain as possible, while, of course, still resecting all the necessary area (Panzica
et al., 2013). Precise identification of the EZ is a challenge every time. Removal of
brain tissue that generates HFOs has been linked to better post-surgical outcomes
than removal of the seizure onset zone (Zijlmans et al., 2012).

HFOs have also been associated with other disorders and diseases. For example, in
Parkinson’s disease, oscillations by stimulation in the range of 250−500Hz in the basal
ganglia may influence the effectiveness of Deep Brain Simulation treatments (DBS)
(Brown, 2003). Furthermore, cognitive decline is associated with abnormal oscillations
in the gamma range (30− 80Hz). And changes on those oscillations have also been
associated with Alzheimer (Tülay et al., 2020).

This project executes the simulation of two neurons communicating with each
other through gap junction coupling. This is relevant to the field of computational
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neuroscience since the simulation includes morphological aspects of the neuron.
The Morris-Lecar model has been used in previous works for the modelling of High
Frequency Oscillations. Přibylová et al. (2024) used gap junctions on the soma to
create higher frequencies. The neuron was regarded as a point-neuron, considering
only the cell body. Adding dendrites and axons to this model, even if it is only using
the stick-and-ball model, could improve the accuracy of the model, and give different
results. This is of course applicable to this specific model, but could also be applied to
other simulations of neuronal networks. It has been proven that neuronal morphology
has an impact on signal propagation dynamics (Ofer et al., 2017). Therefore being able
to have more biophysically realistic models of neurons will help to accurately model
neuronal connections.

Computational neuronal models are a tool to simulate known models, like the Morris-
Lecar model. But they could additionally be a tool to improve our understanding on
the brain’s activity and organisation (Ofer et al., 2017). Furthermore the exploration
of these models could help answer fundamental neuroscience questions and obtain
knowledge for practical uses in medicine, such as for epilepsy surgery, as mentioned
above.

This thesis also dives into the (a)synchronisation of neuronal networks. As men-
tioned before, the morphology can affect signal propagation and impact the spiking
of a neuron. Gowers and Schreiber (2024) demonstrate that dendritic arborization
switches the neuron’s spiking type. Morphology can even impact the network’s be-
haviour to induce either synchronous or asynchronous behaviour. With the model
that has been used for this thesis, both in-phase and anti-phase behaviour can be
observed. Furthermore, the results study how the Anti-Phase behaviour is destroyed
when the gap junctions are added to different compartments.

Limitations

The extent to which HFOs can be used to identify the resected area is however still
unknown, and thus further research still needs to be conducted. Most of this research
needs to be done without a control group, since the medical procedures involved in
observing HFOs, are highly invasive and involve intracranial procedures. For this
reason, it cannot yet be affirmed that HFOs are a biomarker for epilepsy (Zijlmans
et al., 2012). A trial has proved that HFOs to tailor epilepsy surgery is not non-inferior
than spike- guided tailoring (Zweiphenning et al., 2022). They have been recorded in
drug-resistant patients, and the resection of the area producing these oscillation has
demonstrated a better outcome than the resection of the seizure-on-set area, thus
validating the clinical relevance of the HFO area in the individual patient with an
automated procedure (Fedele et al., 2017). Nevertheless, the occurrence of HFOs in
non-epileptic patients is unknown. HFOs can also not be used for the diagnostic
of epilepsy, due to the aforementioned invasive medical procedures. Nowadays, the
identification of HFOs and the area where they are generated is done after an epilepsy
diagnosis. The development of new non-invasive medical procedures could help in
understanding further the presence and effect of HFOs.
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3 LITERATURE REVIEW

3.1 High Frequency Oscillations

High Frequency Oscillations (HFOs) are patterns of electrical activity in the brain
characterized for having an elevated frequency in comparison to typical neuronal
oscillations (1−150Hz). HFOs can be divided into different types, like interictal high
gamma (65−100Hz), ripples (100−250Hz), fast ripples (350−600Hz), very high-frequency
oscillations (VHFOs, 600− 2000Hz), very fast ripples (VFRs, 600− 1000Hz), ultra-fast
ripples (UFRs, 1000− 2000Hz) and ultra-fast oscillations (UFOs, over 2000Hz). HFOs
can either be physiological, present in normal conditions of the brain, or pathological,
which are then associated with disorders (Jefferys et al., 2012).

These oscillations can be generated through several complex mechanisms that
involve both intrinsic properties of the neurons and synaptic interactions in neuronal
networks. It is believed that they can be generated through the synchronization
of neuronal activity in the brain, specially if it is originated in the regions that are
associated to epilepsy (epileptogenic zone, and seizure onset zone) (Engel and da Silva,
2012). Usually, these oscillations are related to abnormal patterns of neuronal spikes,
and are observed in patients with epilepsy, specially in drug-resistant patients (Brázdil
et al., 2023). Přibylová et al. (2024) suggest that weak gap junction coupling in epileptic
regions High Frequency Oscillations could be produced.

3.1.1 HFOs in the Context of Epilepsy

In the context of epilepsy, HFOs have been identified as potential biomarkers for epilep-
togenic zones in the brain, which makes them an area of interest for the investigation
and treatment of this neurological disorder (Cai et al., 2021). The reasoning behind this
is that they may be indicative of areas where seizures are originated. The presence of
HFOs in electroencephalograms (EEGs) has been associated with ictal activity and the
resection of cerebral areas that exhibit HFOs has been shown to improve the results
of surgery in patients with epilepsy. The creation of new simulation models enables
scientists to test hypotheses and to get a better understanding of the workings of these
mechanisms.

3.2 Synchronization of Neuronal Networks

Phase synchronization in neuronal networks has an important function for brain
functions such as memory, learning, and perception (Kazemi and Jamali, 2022). Fur-
thermore, it is considered essential for information processing in the nervous system
(van Wijk et al., 2012)

Neuronal networks coordinate through synchronization and that is how collective
neuronal behaviours arise.

Kazemi and Jamali (2022) propose that neuronal synchronization plays a role in
the pathophysiology1 of epilepsy, which could lead to seizure activity. Studying the
underlying processes of network synchronization could also improve the understanding
of epilepsy. Additionally, with more biophysically realistic neuronal simulations the

1Physiological processes associated with a disease or injury
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results obtained on synchronization could differ from the ones obtained using a point-
neuron.

In epileptic patients, during seizures there is an excessive synchronization of large
neuronal populations. Studies of in vivo and in vitro models of epilepsy and seizures
revealed synchronous firing in microdomains (Jiruska et al., 2013). This was present
during epileptogenesis and ictogenesis, and was manifested in extracellular recordings
as high frequency signals (Bragin et al., 2000).

After the start of a seizure, Cymerblit-Sabba and Schiller (2012) observed the ap-
pearance of desynchronization in local field potentials and neural activity. Additionally,
Jefferys et al. (2012) demonstrated that spatial scale has an impact on synchronization
in the genesis of interictal pathological HFOs. It has been observed how population
of cells can synchronize their action potential firing (Foffani et al., 2007). This is
manifested as HFOs in local field potentials. In a chronic epileptic brain, fast ripples
up to 800Hz have been recorded (Bragin et al., 2000).

Towards the end of a seizure synchronization reaches its peak. It has been observed
how seizures terminate at different areas of the brain at the same time. Thus, disrupting
or enhancing synchronization might be able to promote seizure termination, and
therefore be used as abortive therapy (Foffani et al., 2007).

3.3 Morphology of the Neuron
Neurons, together with glial cells, are the cells that are part of the central and peripheral
nervous systems. Through these systems, animals can communicate to the external
environment, receive signals, processing information, and emitting responses. Neurons
carry out these functions since they are specialized in the reception, processing, and
projection of information through chemical and electrical mechanisms.

The morphology of neurons is the most complex out of all the cells in the human
body. Neurons are divided into the soma, dendrites and axon. The soma or cell body is
the main part of the neuron, and it contains many organelles including the cell nucleus
(Caire et al., 2020). At the soma most of the neurotransmitters are synthesized and
then transported to the end terminals of the axon for synapses. Dendrites are the part
of the neuron that has a receptive function in the physiology of the neuron. They relay
signals that come in from other neurons to the cell body, where they are combined
and then trigger a response. The axon is a cable emerging from the cell that conducts
action potentials (electrical impulses) away from the nerve cell body.

3.4 Existing Simulation Models
Existing models have shown promise in generating UFOs in small neuronal networks
with gap junction coupling, but have ignored spatial properties. Gap junctions are
typically placed in a model on the soma rather than axons or dendrites, and all-to-all
coupling is often assumed, neglecting the impact of realistic connectivity patterns.

Previous research has proven that neuronal morphology impacts the synchroniza-
tion state of neuronal networks (Gowers and Schreiber, 2024). Changes in the size of
dendritic trees could alter the behaviour of the networks, going from an anti-phase
behaviour to in-phase. This suggests that neuronal morphology can affect how suscep-
tible neuronal tissue is to synchronization. In-phase activity means that the neurons
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are spiking at the same time, and therefore, their oscillations are in-phase.

3.5 Research Question
To address these limitations, this thesis proposes to create a more biophysically realistic
neuronal network model with gap junction coupling. Specifically, the project focuses
on exploring the effect of adding dendrites and axons to the model, with additional
compartments to capture the spatial complexity of neuronal morphology. After the
creation of the simulation, the objective is to see how gap junctions placed at the soma
or axons would destroy anti-phase behaviour.

4 METHODS AND MODELS

In this section, we describe the models used. First, an explanation of the Hodgkin-
Huxley model is given, followed by an explanation of the Morris-Lecar model. Then we
mention how we add dendrites and axons, as well as gap junctions.

4.1 Hodgkin and Huxley Model
The Hodgkin-Huxley model describes the characteristics of a cell membrane as an
electrical circuit. In this case the semipermeable cell membrane acts as the capacitor.
Therefore, once an input I(t) is injected into the system, it can either add an additional
charge to the capacitor or leak through the channels of the membrane. A channel has
a leak resistance R, RNa for the sodium channel and RK for the potassium one. The
latter two are not fixed values but change with the opening or closing of the ion channel
gates (see the functioning in Figure 3).

The Nernst or Reversal potential is the membrane potential at which an ion is in
equilibrium. An example of a Nernst potential for an ion of potassium (K+) is calculated
the following way:

EK+ =−RT
zF

ln
(

[K+]in
[K+]out

)
, (1)

where R is the gas constant, T the absolute temperature in Kelvin, z the valence, and F

is Faraday’s constant. The Nernst potential is different for each ion, thus, to be able to
calculate the equilibrium we have to compute the weighted average between all ions. In
the Hodgkin-Huxley model, the Nernst potential which is generated by the difference
in ion concentration is represented by a battery (Gernster et al., 2014).

Since we can consider this model to be an electrical circuit, according to the
conservation of electric charge on a membrane segment, the applied current I(t) can
be split into a capacitive current IC, which charges the capacitor C, and additional
components Ii defined by the ion currents.

I(t) = IC(t)+∑
i

Ii(t) (2)

In the original model described by Hodgkin-Huxley, three types of channels were
described: a sodium channel (Na), a potassium (K) and a leak channel. Hence, from
the definition of capacity C = q/u, and the previous equation (2), we obtain:
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Figure 3. Opening and closing of single and double gates for potassium and sodium
ions, n represents the ion gate for potassium, and m and h the ones for sodium (van
Putten, 2020).

C
dV
dt

=−∑
i

Ik(t)+ I(t) (3)

where V stands for the voltage across the membrane and ∑k Ik is the sum of all ionic
currents that go through the cell membrane.

In this case, we are only considering the previously mentioned sodium and potassium
channels. Thus, the membrane voltage V can be calculated using the following equation,
taking into account the current from both ions:

CV̇ = I − INa − IK + ILeak (4)

Each ionic current is equal to the product of their conductance and the voltage
difference. For an unspecified ion i, the equation would look as followings:

Ii = gi(V −Ei) (5)

If we substitute all the ionic currents in the equation we obtain Equation 6. The
conductances involve ion gates in a nonlinear way, since, as seen in Figure 3 the
opening and closing of said gates depends on the membrane potential.
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Figure 4. Cell membrane represented as an electrical circuit described by Hodgkin and
Huxley model.

CV̇ = I −gNa(V −ENa)−gK(V −EK)−gL(V −VL) (6)

4.2 Morris-Lecar Model
The Morris-Lecar (ML) model is a mathematical model created in 1981 (Morris and
Lecar, 1981). It simulates the oscillatory behaviour of neurons in relation to the
conductances of Calcium (Ca2+) and Potassium (K+) ions. Originally, it mimicked the
potential across muscle fibers in a giant barnacle. Later on, its applications were
widespread in modelling neurons (Přibylová et al., 2024; Tsumoto et al., 2006). The
model consists of a system of two differential equations which describe the behaviour
of neuronal networks by modelling membrane potential and gating variable dynamics.

With parameters appropriate to a nerve axon, the model yields prototypical single-
shot firing, with a quasi-threshold, and an abrupt transition to repetitive firing over a
narrow frequency range. Using parameters appropriate to a weak excitation current,
the model displays spike trains emerging from zero frequency and oscillating over a
relatively wide range of frequencies. The model is described as follows:


C

d
dt

V =−gCamin f (V )(V −VCa)−gKw(V −VK)−gL(V −VL)+ Iext

d
dt

w =
(win f (V )−w)

w(V )

, (7)

where V is the membrane potential, w is the activation variable for K+ current, which
is the average fraction of open channels. And C [µF ] is the cell membrane capacitance.
The Ca2+ current is assumed to activate instantly according to:

minf(V ) =
1
2

[
1+ tanh

(
V −β1

β2

)]
, (8)

β1 and β2 are the potential and slope at which the ion’s current is half-activated. The
voltage-dependent steady state winf is described the following way:

winf(V ) =
1
2

[
1+ tanh

(
V −β3

β4

)]
. (9)

Parameters β3 and β4 are comparable to β1 and β2. The timing scale for the variable w

is:
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τw(V ) =
1
2

[
φ cosh

(
V −β3

2β4

)]−1

, (10)

where the temperature constant φ adjusts the relative timescale of V and w.
The Morris-Lecar equations essentially describe "push-pull" relaxation oscillations,

with gCa and gK and the corresponding equilibrium potentials VCa and VK determining
the relative strengths of push to pull. The system can be excitable as the current ICa

provides positive feedback.
By changing parameters ggs,ggd ,gga,gpa,gpd ,gca,gcd, the Morris-Lecar equations de-

scribe the two main classes of nerve oscillations first described by Hodgkin and Huxley
(1952) as well as other types of behaviour. The distinct oscillation classes are seen in
Figure 5

Figure 5. The three types of excitability of neurons described by Hodgkin and Huxley
(1952), pictured obtained from Ratté et al. (2013).

4.3 Simulation details
Previously, the morphology of the neuron was described with the intention of making
this simulation biophysically more realistic. Nevertheless, it is important to note that
some liberties were taken when building the simulation. A neuron can have different
shapes depending on its functionality. Therefore, the sizes of the added compartment
would differ from one type to another.

In this study, we employ a simplified neuronal geometry, the so-called stick-and-ball
model. This simplifies the cell morphology into two ’sticks’ (the axon and dendrite) and
a ball (the soma).
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Figure 6. Example of different dendritic trees, picture obtained from Kandel et al.
(2013).

To model the neurons, Brian2, a neuron-simulation environment built in Python
was used. Gap junction coupling was described using the previously mentioned Morris-
Lecar model (Equation 7), based on Přibylová et al. (2024). The parameters used can
be found on Table 1.

To test the impact of adding dendrites and axons to the model, two neurons were
built with the morphology mentioned above. These neurons communicate with each
other through the connections drawn in Figure 7. Additionally, each soma is connected
to the axon and dendrites. The relative size of the cell body compared to the other
compartments was investigated. The model is able to reproduce both in-phase and
anti-phase behaviour of the two neurons. The results are obtained by recording the
potentials at the soma, dendrite and axons.

4.3.1 Fitting of the Model

In the model, we focus on the equations described by the Morris-Lecar Model, which
describe electrical connections between the neurons. Chemical connections were
ignored since for Ultra-Fast Frequency Oscillations it is important that connections
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Figure 7. Sketch of the simplification of a neuron used, representing the stick-and-ball
model of two neurons (right).

Parameter Value
gCa 4mS/cm2

gK 8mS/cm2

gL 2mS/cm2

VCa 120mV

VK −80mV

VL −60mV

φ
1

15.0ms

Parameter Value
β1 −1.2mV

β2 18mV

β3 10mV

β4 17.4mV

β5 −1.2mV

β6 18mV

β7 10mV

β8 17.4mV

Parameter Value
C1 1 µF/cm2

C2 1 µF/cm2

C3 1 µF/cm2

C4 1 µF/cm2

C5 1 µF/cm2

C6 1 µF/cm2

Iapp1 50 µA/cm2

Iapp2 50 µA/cm2

Iapp5 10 µA/cm2

Iapp6 10 µA/cm2

Table 1. Table of Parameters

are fast, and chemical connections happen at a slower pace. In the model there are
three parameters controlling gap junction coupling on the soma, dendrites and axons,
respectively. The dendrites are defined in a passive manner, whereas the somas and
axons are excitable. Therefore, the axons and somas are able to create action potentials
whereas the dendrites can only communicate it. The applied current on the axons is
lower than on the somas.

Equations 7 describe gap junctions. It is important to note since we made a
neuron with three compartments, then we need to add the connections between the
compartments. The equations for the soma, are then described as follows:

12/32



C
d
dt

Vsi =−gCamin f (Vsi)(Vsi −VCa)−gKw(Vsi −VK)−gL(Vsi −VL)+ Iext

+ggs(Vs j −Vsi)+gcd
(Vdi −Vsi)

1− pd
+gca

(Vai −Vsi)

1− pa

(11)

Where ggs is the gap junction coupling on the soma, gc is the coupling for the neuron,
and pd and pa are the so-called geometry parameters, which represent the relative
size of the soma against the dendrite and axon, respectively. Therefore, the soma is
connected to the dendrite and axon of the neuron, and to the soma of the other neuron
through gap junctions.

The axon follows a similar equation, but in this case, it is not connected to the
dendrites, only the soma:

C
d
dt

Vaxoni =−gCamin f (Vaxoni)(Vaxoni −VCa)−gKw(Vaxoni −VK)−gL(Vaxoni −VL)+ Iext

+ggapaxon(Vaxon j −Vaxoni)+gca

(Vsomai −Vaxoni)

pa

(12)

And the dendrites have the following equations, as mentioned before, they are
passive, so they do not create action potentials through ion changes.

C
d
dt

Vdendritei =−gL(Vdendritei −VL)+ Iext +ggapdendrite(Vdendrite j −Vdendritei)+gcd

(Vsomai −Vdendritei)

pd

(13)

For the simulation it is possible to obtain both in-phase and anti-phase behaviour.
This depends on the initial conditions. All values used in the simulation will be stated
in the Appendix together with the code.

4.4 Simulation using Brian2
As seen above, the simulations in this project were done using Brian2. In the neuronal
simulator, we used the built-in class called NeuronGroup to create the group of neurons.
To be able to do that, it is necessary to specify certain parameters:

• The number of neurons in the group, N.

• The model of differential equations defining the group.

• The numerical integration method used for the model.

The differential equations used for the model were the ones mentioned beforehand
(Equations 11, 12, 13). These can be written in Python indicating they are equations
as shown in Listing 1.

1 eqs = ’’’

2 dV1/dt = (-g_Ca*minf1*(V1-V_Ca)-g_K*n1*(V1-V_K)-g_L*(V1-V_L)+Iapp_1

+epsilon*(V2-V1)+g_c_d*(V3-V1)/(1-p_d)+g_c_a*(V5-V1)/(1-p_a))/C1

: volt
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3 dV2/dt = (-g_Ca*minf2*(V2-V_Ca)-g_K*n2*(V2-V_K)-g_L*(V2-V_L)+Iapp_2

+epsilon*(V1-V2)+g_c_d*(V4-V2)/(1-p_d)+g_c_a*(V6-V2)/(1-p_a))/C2

: volt

4 dV3/dt = (-g_L*(V3 - V_L) + g_gap_d*(V4 - V3)+g_c_d*(V1-V3)/p_d)/C3

: volt

5 dV4/dt = (-g_L*(V4 - V_L) + g_gap_d*(V3 - V4)+g_c_d*(V2-V4)/p_d)/C4

: volt

6 dV5/dt = (-g_Ca*minf5*(V5-V_Ca)-g_K*n5*(V5-V_K)-g_L*(V5 - V_L) +

Iapp_5 + g_gap_a*(V6 - V5)+g_c_a*(V1-V5)/p_a)/C5 : volt

7 dV6/dt = (-g_Ca*minf6*(V6-V_Ca)-g_K*n6*(V6-V_K)-g_L*(V6 - V_L) +

Iapp_6 + g_gap_a*(V5 - V6)+g_c_a*(V2-V6)/p_a)/C6 : volt

8 dn1/dt = (ninf1-n1)/taun1 : 1

9 dn2/dt = (ninf2-n2)/taun2 : 1

10 dn5/dt = (ninf5-n5)/taun5 : 1

11 dn6/dt = (ninf6-n6)/taun6 : 1

12 minf1 = 0.5*(1 + tanh((V1 - beta_1)/beta_2)) : 1

13 minf2 = 0.5*(1 + tanh((V2 - beta_1)/beta_2)) : 1

14 minf5 = 0.5*(1 + tanh((V5 - beta_1)/beta_2)) : 1

15 minf6 = 0.5*(1 + tanh((V6 - beta_1)/beta_2)) : 1

16 taun1 = (phi*cosh((V1 - beta_3)/(2*beta_4)))**-1 : second

17 taun2 = (phi*cosh((V2 - beta_3)/(2*beta_4)))**-1 : second

18 taun5 = (phi*cosh((V5 - beta_3)/(2*beta_4)))**-1 : second

19 taun6 = (phi*cosh((V6 - beta_3)/(2*beta_4)))**-1 : second

20 ninf1 = 0.5*(1 + tanh((V1 - beta_3)/beta_4)) : 1

21 ninf2 = 0.5*(1 + tanh((V2 - beta_3)/beta_4)) : 1

22 ninf5 = 0.5*(1 + tanh((V5 - beta_3)/beta_4)) : 1

23 ninf6 = 0.5*(1 + tanh((V6 - beta_3)/beta_4)) : 1

24 ’’’

Listing 1. Model Equations in Brian2

The definition of a NeuronGroup is done in the way indicated in Listing 2. In this
research, we only used two coupled neuron, so N = 2. The equations defined in Listing
1 are used in the model by writing the specified name (in this case ’eqs’) as the second
term in the definition of the NeuronGroup.

1 neurons = NeuronGroup(N, eqs, method=’exponential_euler’)

Listing 2. Creation of a NeuronGroup using Brian2

Brian2 has some built in monitors that help with recording the necessary data. In
this case, the function StateMonitor was used. This allows to record all the variables
in the system of differential equations.

1 V1_monitor = StateMonitor(neurons, ’V1’, record=True)

Listing 3. Creation of StateMonitor’s in Brian2 example for variable V1
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Once all this is set, the simulation can just be run with the ’run’ function (Listing
4).

1 run(time*ms)

Listing 4. Command to run the simulation in Brian2

With Brian2 it is also possible to create spatial neurons with the class SpatialNeu-
ron. However, if one wants to create connections between those neurons, it is much
more efficient to use a NeuronGroup, since SpatialNeuron treats each neuron as an
independent unit. For using SpatialNeuron we need to compile N amount of C++ files.
In this case, we are only using two neurons, but in case this number increases, then we
would have to compile many files representing the computations updating the neurons.
Furthermore, for using SpatialNeuron, every pair of neurons needs to be connected
through Synapses.

5 RESULTS AND DISCUSSION

In the previous section the Morris-Lecar model was considered (Morris and Lecar,
1981). The neuronal connections between neurons composed of a dendrite, an axon,
and a soma were described (Equations 11, 12, 13). In this section the impact on
synchronization of adding the aforementioned compartments to the neuron will be
studied systematically by the progressive change of several parameters.

To get a better understanding of the model, the focus was on the smallest possible
network, composed by only two neurons. The initial goal was to be able to reproduce
both In-Phase and Anti-Phase behaviour. For this, two point-neurons with gap junction
coupling were used. All the parameters for the model also had the same value, the
only differences were they initial conditions used. If one wants to simulate In-Phase
behaviours then the initial values should be X0 = [40,0.04,40,0.074], for Anti-Phase be-
haviour the values should be X0 = [40,0.04,−40,0.074]. The simulation of both behaviours
can be seen in Figure 8.

Figure 8. In and Anti phase behaviours obtained using the initial conditions mentioned
above. The parameters are ε = 0.1, gc = 0.001, gpa = gpd = 0.1. What differs are the initial
conditions, In-Phase: X0 = [40,0.04,40,0.074], Anti-Phase: X0 = [40,0.04,−40,0.074].

For each simulation, six different graphs were plotted. These represented:

• Changes in Soma voltages over time for both neurons.

• Selected interval of the changes in Soma voltages over time for both neurons.

• Changes in Dendrite voltages over time for both neurons.
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• Changes in Axon voltages over time for both neurons.

• Composed signal obtained from the addition of the voltages of both neurons over
time.

• Periodogram.

Then a systematic study was conducted to determine the effect changes in different
parameters have in synchronization over time. The parameters that were:

• Coupling between soma-dendrite (0.001-0.1).

• Coupling between soma-axon (0.001-0.1).

• Gap junction coupling between somas (0.001-0.1).

• Gap junction coupling between dendrites (0.001-0.1).

• Gap junction coupling between axons 0.001-0.1).

• Relative size soma-dendrite and soma-axon (0.01-0.1).

The main goal was to see if, and how adding compartments to the neuron changed
its long time behaviour, and how gap junctions destroy Anti-Phase Synchrony. To study
this behaviour the main graph used was the composed signal one. The reasoning
behind this is that it is easier to study behaviour long term. Here, we see three different
types of behaviours. First of all, for strong enough coupling between the neurons,
the dynamics become mutually synchronized. When we have this case, then at some
point the composed signals grows until reaching 100mV. In case the parameter C,
which corresponds to the cell’s membrane capacitance, is different for both neurons,
sometimes we encounter the behaviour of Figure 9c. Where the neurons become
In-Phase for one spike, then they go back to Anti-Phase behaviour, to then return to
being In-Phase for one spike, and so on. The last case happens when coupling is not
strong enough, and then the neurons do not synchronize. This is seen in the composed
signal graph since the behaviour stays the same and the voltage does not go above
20mV.

For being able to compare the different long term behaviours the value where the
composed signal starts to increase at a fast rate was recorded. The exact value taken
is the start of the last spike where the second peak is smaller than the first one (see
Figure 10).

The gap junctions were placed at the soma, the dendrite, and the axon separately,
and then the long-term behaviour was recorded in a table.
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(a) (b)

(c)

Figure 9. Three different observed long time behaviours of (a)synchronization. Graph a
represents In-Phase synchronization. The values used are gap junction coupling
ε = 0.005. In graph b one can see Anti-Phase behaviour, the values used were a gap
junction coupling on the soma of ε = 0.05 and a coupling of gc = 0.05. For c, gap
junction coupling between axons is gca = 0.01 and coupling gc = 0.001.

(a) (b)

Figure 10. Point recorded for the comparison table (Table 1).

5.1 Gap Junction Coupling placed at the Soma

In this section we dive deeper into the long-term behaviour of the system when the gap
junction coupling is placed at the soma, and how the behaviour varies depending on
the values used.
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gc Gap coupling soma (ε)
0.001 0.005 0.010 0.050 0.100

0.000 3976 779 386 101 8

0.001 4166 835 413 128.5 22

0.005 5090.5 1030 522 A A
0.010 7020 1512.5 848.5 A A
0.050 A A A A 8

0.100 A A A A 5

Table 2. Geometry parameter fixed at gp = 0.1.
gc Gap coupling soma (ε)

0.001 0.005 0.010 0.050 0.100
0.000 3976 779 386 101 8

0.001 4139.5 832.5 413 128.5 22

0.005 4982 1023 522 A A
0.010 6504.5 1377 740.5 A A
0.050 A A A A 8

0.100 A A A A 8

Table 3. Geometry parameter fixed at gp = 0.05.
gc Gap coupling soma (ε)

0.001 0.005 0.010 0.050 0.100
0.000 3976 779 386 101 8

0.001 4139 832.5 413 128.5 22

0.005 4767 969 495 A A
0.010 5448 1106 577 A A
0.050 4767 1819 1124.5 A 69

0.100 4112.5 2070.5 1247.5 A 38

Table 4. Geometry parameter fixed at gp = 0.01.

Table 5. Table obtained by recording the Composed Signal point mentioned in Figure
10 when using different coupling intensities. If the system reaches In-Phase behaviour,
the aforementioned point recorded is the time in ms seen at the table. When the
system maintains Anti-Phase behaviour the value is set to "A". Time in ms and gap
junction coupling in mS/cm2.

5.1.1 Point vs Multi-Compartment Neuron

For this thesis, a simulation including dendrites and axons was set up. In Tables 2,
3, and 4 the results can be seen. First of all, it is important to note the difference
between the first row of results (row 3) and the rest. The first row has coupling gc = 0.0,
which means that there is no coupling between the soma and the axon, and the soma
and the dendrites. Therefore, the simulation treats the system as a point-neuron,
only considering the cell body. These values are the same in each table, which is
a confirmation that the simulation works. If the morphology would not affect the
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behaviour of the system, then these values would remain constant for the rest of the
rows. Nevertheless, that is not the case, which confirms that neuronal morphology
does have an impact on the network synchronization.

To further analyse the results the tables were looked at in two different directions.
First, one could fix a value for coupling (first column) and analyse how the long term
behaviour of the system varies with increasing gap junction values on the soma, axon,
and dendrites, respectively. It can also be done the other way around, by fixing the
value of the gap junction coupling, and varying the coupling between the same neuron,
and seeing the effects of this. This is what is done in the following sections.

5.1.2 Fixed Neuron Coupling

In this section we will analyse the behaviour when there is fixed coupling between
soma, dendrite, or axon of the same neuron. The results are analysed looking at the
gap junctions separately.

With a fixed coupling value, by increasing gap junction coupling at the soma, one
can observe how the neuron starts to reach In-Phase synchrony faster. Therefore,
the neuron takes less time to reach synchrony. The evolution can also be plotted. In
that case we obtain Figure 11. In this figure, the plotted lines are descending, which
represents how the network reaches In-Phase behaviour faster with an increase of the
coupling strength.

(a) (b)

(c)

Figure 11. Plotting of the values from Tables 2, 3, and 4 with a fixed gc, and different
values for the geometry parameter gc mentioned in the Title of each graph.

The behaviour when the geometry parameter is gp = 0.1 resembles the one of gp = 0.05.
When the geometry parameter is smaller, gp = 0.01, then we observe a slightly different
behaviour. In this case the system still reaches In-Phase behaviour when the coupling
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is gc = 0.05 or gc = 0.1, which does not happen for the other values. This is represented
with the plotted lines gc = 0.05 and gc = 0.1 (green and purple). Aside from those two lines,
the network would still resemble the behaviours with the other geometry parameter
(gp = 0.1 or gp = 0.05).

Additionally, as the gap junction coupling increases, the system takes less time
to reach In-Phase synchrony. The start of the synchronization process keeps getting
closer to 0, until the system stops reaching synchrony altogether.

When the geometry parameter is smaller, the network takes less time to synchronize.
This is more noticeable with stronger coupling, since with weak coupling the results
obtained are extremely similar, with little to no noticeable change at all.

5.1.3 Fixed Gap Junction Coupling

In this case, the fixed value is the Gap Junction Coupling at the soma.

(a) (b)

(c)

Figure 12. Plotting of the values from Tables 2, 3, and 4 with a fixed ε, and different
values for the geometry parameter gc mentioned in the Title of each graph.

Again, one can see how the graphs for which the geometry parameter is gp = 0.1 and
gp = 0.05 resemble each other. In this case, the system takes the longest to synchronise
when the coupling is gc = 0.01. For stronger coupling, the system fails to reach In-Phase
synchrony in most cases. It still seems to perform its best at synchronising when
the geometry parameter is smaller (gp = 0.01). With this, it is meant that it reaches
synchrony at more instances, and in most cases faster. Another thing that can be
observed is how the long-term behaviour varies less when the gap junction coupling
on the soma is ε = 0.005 or ε = 0.010. This can be observed in Figure 12 represented by
flatter lines.
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5.2 Gap Junction Coupling placed at the Axon
Axons are also excitatory compartments, like somas. Therefore, every time the soma
spikes, the axon will generate an action potential. Axons generating action potentials
can lead to synchronized firing of neurons. Additionally, axonal gap junctions can
generate VFOs and play a role in generating ripple oscillations (Traub et al., 2002).

Comparing the amount of times the network reaches synchrony when we place the
gap junction coupling at the axons, with when we place it at the soma, we see that the
system is more unstable in this case. For most of the simulations runs, the system
fails to synchronise. We can only observe synchrony when gap junction coupling is
strong enough (ggapa ≥ 0.05).

When comparing the three tables (Table 6, 7, and 8) with each other, one can observe
how again, the system synchronises the most when the geometry parameter is the
smallest.

In this case, in Table 8, when the parameters taken are gc = 0.010 and ggapa = 0.100
respectively, we obtained a different type of long-term behaviour. In this case, there is
a phase-shift. The system starts in Anti-Phase synchrony, and then the phases shift
so that the spikes happen.

Furthermore, when the coupling is sufficiently strong (gc = 0.1) then the system
maintains the Anti-Phase behaviour if the geometry parameter is gp = 0.1 or gp = 0.05,
and it case it does not synchronise. This is represented in Table 9 by an "A". In the
other cases, there is no Anti-Phase behaviour, instead, there seems to be an slight
phase shift. There is one case, marked with a "*", where there seems to be transient
phase-locking (Figure 13).

Figure 13. Phase shift when gc = 0.010 and ggapa = 0.100. On the left is represented the
initial state, and on the right the state after the shift.
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gc Gap coupling axon (ggapa )
0.001 0.005 0.010 0.050 0.100

0.000 X X X X X
0.001 X X X X X
0.005 X X X X X
0.010 X X X X X
0.050 X X 18315.5 3874 4831,1

0.100 A A A A A

Table 6. Geometry parameter fixed at gp = 0.1.
gc Gap coupling axon (ggapa )

0.001 0.005 0.010 0.050 0.100
0.000 X X X X X
0.001 X X X X X
0.005 X X X X X
0.010 X X X X X
0.050 X X X 14348.5 8466

0.100 A A A A A

Table 7. Geometry parameter fixed at gp = 0.05.
gc Gap coupling axon (ggapa )

0.001 0.005 0.010 0.050 0.100
0.000 X X X X X
0.001 X X X X X
0.005 X X X 14736.5 ∗
0.010 X X X 16328 8437.5

0.050 X X X 13830 6932

0.100 X X X 13207.5 6694.5

Table 8. Geometry parameter fixed at gp = 0.01.

Table 9. Table obtained by recording the Composed Signal point mentioned in Figure
10 when using different coupling intensities. If the system did not synchronise then it
is filled with an "X", and if the system did not synchronize but it exhibited Anti-Phase
behaviour then it is filled with an "A". Time in ms and gap junction coupling in
mS/cm2.

5.3 Gap Junction place at the dendrites
The network is the most unstable when the gap junctions are placed at the dendrites.
But the behaviour is similar to the one obtained for the axons.
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gc Gap coupling dendrite (ggapd )
0.001 0.005 0.010 0.050 0.100

0.000 X X X X X
0.001 X X X X X
0.005 X X X X X
0.010 X X X X 110293

0.050 X X X X 22765

0.100 A A A A A

Table 10. Geometry parameter fixed at gp = 0.1.
gc Gap coupling dendrite (ggapd )

0.001 0.005 0.010 0.050 0.100
0.000 X X X X X
0.001 X X X X X
0.005 X X X X X
0.010 X X X X X
0.050 X X X X 12067.5

0.100 A A A A A

Table 11. Geometry parameter fixed at gp = 0.05.
gc Gap coupling dendrite (ggapd )

0.001 0.005 0.010 0.050 0.100
0.000 X X X X X
0.001 X X X X X
0.005 X X X X X
0.010 X X X 48738.5 25250.5

0.050 X X X 16415 8324

0.100 X X X 14497.5 7312.5

Table 12. Geometry parameter fixed at gP = 0.01.

Table 13. Table obtained by recording the Composed Signal point mentioned in Figure
10 when using different coupling intensities. If the system did not synchronise then it
is filled with an "X", and if the system did not synchronize but it exhibited Anti-Phase
behaviour then it is filled with an "A". Time in ms and gap junction coupling in
mS/cm2.

Additionally, differently to when the gap junctions were only placed at the soma,
when the gap junctions are placed at the dendrites there is only Anti-Phase behaviour
when the coupling is strong enough gc = 0.1. For all the other cases, the spikes are not
in synchrony. Except for the cases indicated in Table 13 (when gc = 0.05 and gcd = 0.1,
which reaches IPS). The behaviour when the system does not synchronise and is also
not Anti-Phase can be seen in Figure 14.
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Figure 14. In this image the potentials of the soma are plotted when there is a gap
junction placed at the dendrite of gcd = 0.001, coupling gc = 0.001, and geometry
parameter gp = 0.1.

5.4 Relation to epilepsy
The previous sections have analysed the long-term behaviour of the system. Mainly if
the network was able to reach synchronization or not. If a neuronal network bursts
highly synchronized action potentials there could be depolarizing phase shifts. These
are associated with the initiation of seizures (Jiruska et al., 2013). Furthermore,
electrical coupling, like the one used for the simulation, can also facilitate synchronous
firing.

Aside from the synchronization to be dangerous for the initiation of seizures, it
can also propagate them. This happens when additional networks are recruited by
the synchronized network (Přibylová et al., 2024). If this happens, the seizure could
expand to other parts of the brain.

5.5 Discussion of Results
Several articles (Caire et al., 2020; Gernster et al., 2014) affirmed that the synchro-
nization behaviour of a system is altered by biophysically realistic modelling of the
morphology of a neuron. This can be seen mainly when the gap junctions are placed
at the soma. From Table 5 and Figure 12 one can see how the time it takes for the
system to reach In-Phase synchrony varies depending on the strength of gc. Otherwise,
the system maintains Anti-Phase behaviour.

When the gap junctions were placed at the axons or dendrites, in most cases the
Anti-Phase behaviour was destroyed. With strong coupling the simulation was able to
maintain the Anti-Phase synchrony, and in some cases it reached In-Phase synchrony.
Previous research has affirmed that neuronal morphology has an impact on neuronal
synchronization. Gowers and Schreiber (2024) constructed a model with an excitatory
soma and a passive dendrite. It was observed how adding the dendrite can switch the
behaviour from synchronous to asynchronous. Which corresponds to the observations
made in this thesis.

Zeng et al. (2007) showed how axonal synchronizations is more present with in-
creased coupling strength, which is also supported by our findings.
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6 CONCLUSION

This project used the Morris-Lecar model to analyse the synchronization of a multi-
compartment neuronal network. The network was connected through gap junction
coupling, with gap junctions placed at the soma, axon, and dendrites. Overall, the
research examined how neuronal morphology and coupling parameters can influence
the overall synchronization of a neuronal network.

The findings revealed that the system reaches IPS at different velocities when the
compartments are added to the simulation. Which reinforces previous research stating
the influence of adding neuronal morphology to the simulation. In the cases where
the network reached synchrony, stronger coupling parameters were found to be more
effective. In these cases, the system reached synchrony faster.

When the gap junctions were placed at the soma, the simulation always either
maintained the APS or switched to IPS. When the gap junctions were placed at the
axon or the dendrite, synchronous behaviour was only found for strong coupling.
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8 APPENDIX

8.1 Full code

1
2
3 from brian2 import *

4
5 # -------------------------------------------------------------

Parameters

------------------------------------------------------------

6 g_Ca = 4*mS/cm**2

7 g_K = 8*mS/cm**2

8 g_L = 2*mS/cm**2

9 V_Ca = 120*mV

10 V_K = -80*mV

11 V_L = -60*mV

12 phi = 1/(15.0*ms)

13 beta_1 = -1.2*mV

14 beta_2 = 18*mV

15 beta_3 = 10*mV

16 beta_4 = 17.4*mV

17 beta_5 = -1.2*mV

18 beta_6 = 18*mV

19 beta_7 = 10*mV

20 beta_8 = 17.4*mV

21 C1 = 1*uF/cm**2

22 C2 = 1*uF/cm**2

23 C3 = 1*uF/cm**2

24 C4 = 1*uF/cm**2

25 C5 = 1*uF/cm**2

26 C6 = 1*uF/cm**2

27 Iapp_1 = 50*uA/cm**2

28 Iapp_2 = 50*uA/cm**2

29 Iapp_5 = 10*uA/cm**2

30 Iapp_6 = 10*uA/cm**2

31 epsilon = 0.01 * mS/cm**2 # This is gap-junction coupling on the soma

32 g_gap_a = 0.0*mS/cm**2

33 g_gap_d = 0.0*mS/cm**2

34 g_c_d = 0.001*mS/cm**2 # Coupling Soma-Dendrite

35 g_c_a = g_c_d # Coupling Soma-Axon rn set to the same as dendrite

36 p_d = 0.05 # geometry parameter (relative size of soma vs dendrite)

37 p_a = p_d # geometry parameter (relative size of soma vs axon)

38
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39 # -------------------------------------------------------------

Morphology

------------------------------------------------------------

40
41 # Same morphology for both neurons

42 #morpho = Soma(30*um)

43 #morpho.axon = Cylinder(diameter=1*um, length=300*um, n=1)

44 #morpho.dendrite = Cylinder(diameter=1*um, length=100*um, n=1)

45
46 gL = 0.002*siemens/cm**2

47 EL = -60*mV

48
49 # ----------------------------------------------------------------

Model

---------------------------------------------------------------

50
51 eqs = ’’’

52 dV1/dt = (-g_Ca*minf1*(V1-V_Ca)-g_K*n1*(V1-V_K)-g_L*(V1-V_L)+Iapp_1

+epsilon*(V2-V1)+g_c_d*(V3-V1)/(1-p_d)+g_c_a*(V5-V1)/(1-p_a))/C1

: volt

53 dV2/dt = (-g_Ca*minf2*(V2-V_Ca)-g_K*n2*(V2-V_K)-g_L*(V2-V_L)+Iapp_2

+epsilon*(V1-V2)+g_c_d*(V4-V2)/(1-p_d)+g_c_a*(V6-V2)/(1-p_a))/C2

: volt

54 dV3/dt = (-g_L*(V3 - V_L) + g_gap_d*(V4 - V3)+g_c_d*(V1-V3)/p_d)/C3

: volt

55 dV4/dt = (-g_L*(V4 - V_L) + g_gap_d*(V3 - V4)+g_c_d*(V2-V4)/p_d)/C4

: volt

56 dV5/dt = (-g_Ca*minf5*(V5-V_Ca)-g_K*n5*(V5-V_K)-g_L*(V5 - V_L) +

Iapp_5 + g_gap_a*(V6 - V5)+g_c_a*(V1-V5)/p_a)/C5 : volt

57 dV6/dt = (-g_Ca*minf6*(V6-V_Ca)-g_K*n6*(V6-V_K)-g_L*(V6 - V_L) +

Iapp_6 + g_gap_a*(V5 - V6)+g_c_a*(V2-V6)/p_a)/C6 : volt

58 dn1/dt = (ninf1-n1)/taun1 : 1

59 dn2/dt = (ninf2-n2)/taun2 : 1

60 dn5/dt = (ninf5-n5)/taun5 : 1

61 dn6/dt = (ninf6-n6)/taun6 : 1

62 minf1 = 0.5*(1 + tanh((V1 - beta_1)/beta_2)) : 1

63 minf2 = 0.5*(1 + tanh((V2 - beta_1)/beta_2)) : 1

64 minf5 = 0.5*(1 + tanh((V5 - beta_1)/beta_2)) : 1

65 minf6 = 0.5*(1 + tanh((V6 - beta_1)/beta_2)) : 1

66 taun1 = (phi*cosh((V1 - beta_3)/(2*beta_4)))**-1 : second

67 taun2 = (phi*cosh((V2 - beta_3)/(2*beta_4)))**-1 : second

68 taun5 = (phi*cosh((V5 - beta_3)/(2*beta_4)))**-1 : second

69 taun6 = (phi*cosh((V6 - beta_3)/(2*beta_4)))**-1 : second

70 ninf1 = 0.5*(1 + tanh((V1 - beta_3)/beta_4)) : 1
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71 ninf2 = 0.5*(1 + tanh((V2 - beta_3)/beta_4)) : 1

72 ninf5 = 0.5*(1 + tanh((V5 - beta_3)/beta_4)) : 1

73 ninf6 = 0.5*(1 + tanh((V6 - beta_3)/beta_4)) : 1

74 ’’’

75
76 # ----------------------------------------------------------

Creation neurons

----------------------------------------------------------

77
78 # Neuron Group

79 N = 1

80 neurons = NeuronGroup(N, eqs, method=’exponential_euler’)

81
82 # Somas

83 neurons.V1 = 40*mV

84 neurons.n1 = 0.04

85 neurons.V2 = -40*mV

86 neurons.n2 = 0.074

87
88 # Dendrites

89 neurons.V3 = -60*mV

90 neurons.V4 = -60*mV

91
92 # Axons

93 neurons.V5 = 60*mV

94 neurons.n5 = 0.06

95 neurons.V6 = -60*mV

96 neurons.n6 = 0.06

97
98
99 # ----------------------------------------------------------

Monitors

----------------------------------------------------------

100 V1_monitor = StateMonitor(neurons, ’V1’, record=True)

101 V2_monitor = StateMonitor(neurons, ’V2’, record=True)

102 V3_monitor = StateMonitor(neurons, ’V3’, record=True)

103 V4_monitor = StateMonitor(neurons, ’V4’, record=True)

104 V5_monitor = StateMonitor(neurons, ’V5’, record=True)

105 V6_monitor = StateMonitor(neurons, ’V6’, record=True)

106 n1_monitor = StateMonitor(neurons, ’n1’, record=True)

107 n2_monitor = StateMonitor(neurons, ’n2’, record=True)

108
109 # ----------------------------------------------------------

Simulation
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----------------------------------------------------------

110
111 run(840 * ms)

112
113 print("SIM DONE")

114
115 # ----------------------------------------------------------

Plotting

----------------------------------------------------------

116 fig, axs = plt.subplots(3, 2, figsize=(15, 10))

117 axs[0, 0].plot(V1_monitor.t/ms, V1_monitor.V1[0]/mV,label=’V1’)

118 axs[0, 0].plot(V2_monitor.t/ms, V2_monitor.V2[0]/mV, label=’V2’)

119 axs[0, 0].set(xlabel=’Time (ms)’, ylabel=’Voltage (mV)’, title=’Soma

Voltages’)

120 axs[0, 0].legend()

121
122 axs[0, 1].plot(V3_monitor.t/ms, V3_monitor.V3[0]/mV, label=’V3’)

123 axs[0, 1].plot(V4_monitor.t/ms, V4_monitor.V4[0]/mV, label=’V4’)

124 axs[0, 1].set(ylim=(-70,-50), xlabel=’Time (ms)’, ylabel=’Voltage

(mV)’, title=’Dendrite Voltages’)

125 axs[0, 1].legend()

126
127 axs[1, 0].plot(V1_monitor.t/ms, V1_monitor.V1[0]/mV, label=’V1’)

128 axs[1, 0].plot(V2_monitor.t/ms, V2_monitor.V2[0]/mV, label=’V2’)

129 axs[1, 0].set(xlabel=’Time (ms)’, ylabel=’Voltage (mV)’,

title=’Selected Interval Voltages’)

130 axs[1, 0].set_xlim([100, 200])

131 axs[1, 0].legend()

132
133 axs[1, 1].plot(V5_monitor.t/ms, V5_monitor.V5[0]/mV, label=’V5’)

134 axs[1, 1].plot(V6_monitor.t/ms, V6_monitor.V6[0]/mV, label=’V6’)

135 axs[1, 1].set(xlabel=’Time (ms)’, ylabel=’Voltage (mV)’, title=’Axon

Voltages’)

136 axs[1, 1].legend()

137
138 composed_signal = V1_monitor.V1[0] + V2_monitor.V2[0]

139 axs[2, 0].plot(V1_monitor.t/ms, composed_signal/mV, label=’Composed

Signal’)

140 axs[2, 0].set(xlabel=’Time (ms)’, ylabel=’Voltage (mV)’,

title=’Composed Signal’)

141 axs[2, 0].legend()

142
143 # Compute periodograms

144 from scipy.signal import periodogram
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145
146 def compute_periodogram(signal, dt):

147 f, Pxx = periodogram(signal, 1/dt)

148 return f, Pxx

149
150 f1, Pxx1 = compute_periodogram(V1_monitor.V1[0], defaultclock.dt)

151 f2, Pxx2 = compute_periodogram(V2_monitor.V2[0], defaultclock.dt)

152
153 axs[2, 1].plot(f1, Pxx1, label=’V1 Periodogram’)

154 axs[2, 1].plot(f2, Pxx2, label=’V2 Periodogram’)

155 axs[2, 1].set(xlabel=’Frequency (Hz)’, ylabel=’Power’,

title=’Periodograms’)

156 axs[2, 1].legend()

157
158 plt.tight_layout()

159 plt.show()

Listing 5. Model Equations in Brian2
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