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Abstract
The first version of the quadratic assignment problem (QAP) was posed by Koop-

mans and Beckmann in 1957. Despite the vast number of publications on the QAP,
many small instances are not yet solved to optimality. Some of the most effective
modern methods for solving the QAP stem from the Kaufman-Broeckx linearization.
In order to advance which QAP instances can be solved, a new method for solving the
QAP is proposed. This method has been derived using disjunctive programming, and
Benders’ decomposition. This method uses mixed integer programming and branch
and cut, and this method is closely related to the Kaufman-Broeckx linearization. A
prototype of the proposed method is evaluated computationally.

Keywords: Benders Decomposition, Conditional, Convex Hull, Disjunctive Program-
ming, Facility Allocation, Mixed Integer Programming, QAP, Quadratic Assignment
Problem

1 Introduction

The linear assignment problem (LAP) is one of the fundamental problems in combinatorial
optimization. The LAP is the problem of assigning n facilities to n locations while min-
imizing a linear function of their locations. The LAP can be solved in polynomial time,
using the Hungarian method [16].

The first version of the quadratic assignment problem (QAP) was posed by Koopmans
and Beckmann in 1957 [15]. They presented the problem as a problem of assigning n
facilities to n locations while minimizing a quadratic function of their flow and distance.
Since then, the quadratic assignment problem has gained a lot of attention with over 75000
articles published1. The QAP has gained much attention due to its many applications and
due to its resilience against solution techniques. As stated by Burkard in 2013 [5] “No exact
algorithm can solve problems of size n > 35 in reasonable computational time nowadays”.
Sahni and Gonzalez have shown that finding an approximate solution within a constant
factor of an optimal solution is NP-hard [24], for more information on computational
complexity, we refer to [5, 23].

In this thesis, we present a new method for solving the quadratic assignment problem.
This method has been derived using disjunctive programming, and Benders’ decomposition.
This method uses mixed integer programming and branch and cut, and this method is
closely related to the Kaufman-Broeckx linearization.

∗Email: david.van.der.linden.nl@gmail.com
1See openalex.org, click the link or type Quadratic Assignment Problem in the search bar.
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1.1 Problem Definition

We present a more general version of the QAP as was introduced by Lawler [17]. Let [n]
denote {1, 2, . . . , n}. Given a cost matrix q ∈ Rn4 , the Quadratic Assignment Problem is:

min
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
l∈[n]

qi,j,k,lxi,jxk,l (1a)

s.t.
∑
i∈[n]

xi,j = 1 ∀j ∈ [n], (1b)

∑
j∈[n]

xi,j = 1 ∀i ∈ [n], (1c)

xi,j ∈ {0, 1} ∀i, j ∈ [n]. (1d)

In this problem, there are n2 many binary variables. These variables can be represented
as an n by n grid of nodes, where each node is either on or off. With this representation,
Constraints (1b) and (1c) enforce that exactly one node is on per row and per column. For
n = 8, this problem is analogous to placing rooks on a chessboard such that no rook can
attack another, as represented in Figure 1.

(a) One rook per row and column (b) A feasible assignment

Figure 1: Visualizations of row and column constraints for the QAP. Figures
have been created using chessboardjs.com [22], the image of the rook was created
by NikNaks [21].

Since we use these constraints a lot, let us define some shorthand for them:

Definition 1.1 (X=
n and X=

R,n). Let n ∈ N. The set X=
n ⊆ {0, 1}n×n is the set of vectors

x satisfying∑
i∈[n]

xi,j = 1 ∀j ∈ [n], (2a)

∑
j∈[n]

xi,j = 1 ∀i ∈ [n], (2b)

xi,j ∈ {0, 1} ∀i, j ∈ [n]. (2c)

Let X=
R,n denote the linear relaxation of X=

n , meaning x satisfies x ≥ 0, (2a), and (2b).
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Now we can write the quadratic assignment problem as follows:

min
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
l∈[n]

qi,j,k,lxi,jxk,l (3a)

s.t. x ∈ X=
n . (3b)

In the objective, we notice parameter qi,j,k,l is multiplied by the product of variables xi,j
and xk,l. Since xi,j and xk,l are binary, the contribution to the objective of this product is
either 0 or qi,j,k,l, the latter only occurs when xi,j = xk,l = 1.

We can visualize this objective as a sum of edge weights of the complete subgraph
induced in Kn2 by node set {(i, j) | xi,j = 1}, see Figure 2.

Note, we may assume that the objective coefficients are non-negative, this is without
loss of generality [28], since if the coefficients qi,j,k,l are negative, we can add a sufficiently
large constant to all qi,j,k,l. This increases the objective function by n2 times the added
constant, and does not change what the optimal permutations are.

Figure 2: Consider the complete graph Kn2 with node set {(i, j) | i, j ∈ [n]}, where
the edge between node (i, j) and (k, l) has edge weight qi,j,k,l for all i, j, k, l ∈ [n].
Then, the objective value of solution x ∈ X=

n is the sum of edge weights of the
subgraph induced in Kn2 by {(i, j) | xi,j = 1}.

1.2 Applications of the QAP

Many applications of the QAP are a specific type of QAP, also called the Koopmans
and Beckmann Problem (KBP). The KBP is the special case of the quadratic assignment
problem. Namely, the coefficients satisfy:

qi,j,k,l = fi,kdj,l ∀i ∈ [n] \ {k}, j ∈ [n] \ {l}, (4a)
qi,j,i,j = fi,idj,j + bi,j ∀i, j ∈ [n], (4b)

where f, d ∈ Rn×n are a flow and distance matrix, and b ∈ Rn2 is a linear cost term. In
many applications fi,i, dj,j and bi,j are zero for all (i, j) ∈ [n]× [n].

One application is the plumbing problem with n locations and n machines. One has
to find an appropriate location for each machine as to minimize the total cost of pipes
required. Here, machine i has a fixed flow of liquid that goes to machine k. This flow
corresponds to a certain diameter of pipe, and has a cost fi,k of that pipe per meter. Each
location pair (j, l) has a distance dj,l in meters between them. This yields the cost qi,j,k,l
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of the pipe going from machine i at location j to machine k at location l. The cost qi,j,i,j
is the cost of building machine i at location j.

The plumbing problem was designed for the sake of this article, but is inspired by
Steinberg’s backboard wiring problem [25, 6]. The backboard wiring problem has the
objective to minimize the total wire length. Here dj,l represents the distance from wire j
to wire l, and fi,k = 1 if there is a wire connecting device i to device k, otherwise fi,k = 0.

Real world examples of QAP applications are: typewriter keyboard design [4], place-
ment of electronic components [20], campus building arrangement [8], economic problems
(capturing the largest market share) [11], and many more. For further reading on applica-
tions of the QAP see [18].

1.3 The Kaufman-Broeckx Family of Linearizations

Quadratic problems with integrality constraints are typically quite hard to solve. However,
solving linear problems with integrality constraints can be done for reasonable problem sizes
using modern mixed integer linear solvers. For this reason, we will consider linearizations
of the QAP.

In this section, we look at two linearizations of the QAP: the Kaufman-Broeckx Lin-
earization and the Xia-Yuan Linearization. The Xia-Yuan Linearization uses the Gilmore-
Lawler bound. This bound can also be used to linearize the QAP, however we only intro-
duce the Gilmore-Lawler bound in order to understand the Xia-Yuan Linearization.

1.3.1 Kaufman-Broeckx Linearization

Kaufman and Broeckx [14] introduce a variable w̃i,j = xi,j
∑

k∈[n]
∑

l∈[n] qi,j,k,lxk,l, and use
a big-M constraint to linearize w̃. The Kaufman-Broeckx linearization is

min
∑
i∈[n]

∑
j∈[n]

w̃i,j (5a)

s.t. w̃i,j ≥
∑
k∈[n]

∑
l∈[n]

qi,j,k,lxk,l − M̃i,j(1− xi,j) ∀i, j ∈ [n], (5b)

w̃i,j ≥ 0 ∀i, j ∈ [n], (5c)
x ∈ X=

n , (5d)

where M̃i,j =
∑

k∈[n]
∑

l∈[n] qi,j,k,l. Notice how, since M̃i,j is sufficiently large, constraint
(5b) are essentially deactivated when xi,j = 0.

1.3.2 Gilmore-Lawler Bound

The Gilmore-Lawler bound is a lower bound on the QAP and was found independently by
Gilmore [13] and Lawler [17]; see [28]. The Gilmore-Lawler bound is:

min
∑
i∈[n]

∑
j∈[n]

(Li,j + qi,j,i,j)xi,j (6a)

s.t. x ∈ X=
n , (6b)

where Li,j is the optimal value of the following linear assignment problem:

min
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lxk,l (7a)

s.t. x ∈ X=
n . (7b)
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Finding Li,j requires solving a linear assignment problem per (i, j) pair in [n] × [n].
Solving a linear assignment problem can be done in polynomial time, using the Hungarian
method [16].

1.3.3 Xia-Yuan Linearization

Xia and Yuan have strengthened the Kaufman-Broeckx Linearization [27, 26]; see [28], by
adjusting the big-M term, the 0 term, and excluding qi,j,i,jxi,j from w̄i,j , inspired by the
Gilmore-Lawler bound, creating another formulation for the QAP. The Xia-Yuan lineariza-
tion is

min
∑
i∈[n]

∑
j∈[n]

(w̄i,j + qi,j,i,jxi,j) (8a)

s.t. w̄i,j ≥
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lxk,l − M̄i,j(1− xi,j) ∀i, j ∈ [n], (8b)

w̄i,j ≥ Li,jxi,j ∀i, j ∈ [n], (8c)
x ∈ X=

n , (8d)

where M̄i,j = max(
∑

k∈[n]\{i}
∑

l∈[n]\{j} qi,j,k,lxk,l | x ∈ X=
n ) for i, j ∈ [n], and Li,j the

optimal value of (7).

1.4 Overview of Proposed Method

We consider the QAP where q ∈ Rn4 is the cost matrix. We introduce variables wi,j that
are the sum of costs of all incident edges {(i, j), (k, l)} for all k, l ∈ [n].

wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lxk,l if xi,j = 1, (9a)

wi,j = 0 if xi,j = 0. (9b)

We refer to wi,j as the node contribution of node xi,j . Now that we have introduced these
variables, the objective of the QAP can be rewritten to minimize

∑
i

∑
j(wi,j + qi,j,i,jxi,j).

When looking at a specific wi,j , we can linearize the system by considering two cases
xi,j = 0 or xi,j = 1. These two cases can be described using linear inequalities and will
define polytopes P (0)

i,j and P
(1)
i,j respectively. If we have inequalities defining the convex hull

of P (0)
i,j ∪P (1)

i,j then we might be able to speed up the solving process of the main problem. In
the Kaufman-Broeckx linearization, there is a non-negativity constraint on wi,j and a big-
M constraint. While Fischetti et al. [10] have provided insight into the utility of the convex
hull Pi,j by means of strengthening big-M constraints, they have not proposed a method
of generating the convex hull nor applied a method that utilizes multiple constraints per
wi,j variable. We intend to generate more inequalities in the hope that this will provide a
significant speedup of the solving process. We will use Disjunctive programming to find a
system of inequalities that defines polytope Pi,j , where the projection of Pi,j onto x is the
convex hull of P (0)

i,j and P
(1)
i,j . Since this projection depends on objective coefficients q ∈ Rn4 ,

carrying the projection out by hand using Fourier–Motzkin elimination seems impractical.
Benders’ decomposition can produce inequalities of a projection algorithmically. We will
use Benders’ decomposition in order to generate inequalities that define the projection of
Pi,j onto x.
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2 Method and Derivations

Consider the QAP where q ∈ Rn4 is the cost matrix. Consider variables wi,j that are the
sum of costs of all incident edges ((i, j), (k, l)) for all k, l ∈ [n].

wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lxk,l if xi,j = 1, (10a)

wi,j = 0 if xi,j = 0. (10b)

Then the objective of the QAP can be rewritten to minimize
∑

i

∑
j(wi,j + qi,j,i,jxi,j).

The Kaufman-Broeckx linearization works by using big-M constraints in order to impose
the condition wi,j =

∑
k∈[n]\{i}

∑
l∈[n]\{j} qi,j,k,lxk,l if xi,j = 1. We will use this node

contribution variable wi,j with a different approach. Namely, by applying disjunctive
programming, which at its core is using the following theorem:

Theorem 1 (Balas [2]; see [7]). Let A ∈ Rn×m1 , B ∈ Rn×m2, n,m1,m2 ∈ Z>0, and
b, d ∈ Rn. Given two polytopes

P (0) = {x(0) : Ax(0) ≤ b} ⊆ Rn, (11a)

P (1) = {x(1) : Bx(1) ≤ d} ⊆ Rn. (11b)

Then conv(P (0) ∪ P (1)) is the projection of the polytope

{(x(0), x(1), α, β, x) ∈ Rn × Rn × R× R× Rn (12a)

such that Ax(0) ≤ αb (12b)

Bx(1) ≤ βd (12c)
α+ β = 1 (12d)
α, β ≥ 0 (12e)

x = x(0) + x(1)} (12f)

onto x, where conv(·) denotes the convex hull.

Now, consider (x,wij), where x ∈ X=
R,n. Specifically, let us look at:

P
(0)
i,j = {(x, 0) | xij = 0 and x ∈ X=

R,n}, (13a)

P
(1)
i,j = {(x,wij) | xij = 1, x ∈ X=

R,n, and (10a) holds}. (13b)

Now we will use disjunctive programming to describe Pi,j = conv(P (0)
i,j ∪ P

(1)
i,j ).

Theorem 2. The polytope Pi,j is described by projection of (14) onto (x,wi,j).

xi,j ≤ 1, (14a)
xi,j ≥ 0, (14b)

xk,l − x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (14c)∑

k∈[n]\{i}

x
(1)
k,l = xi,j ∀l ∈ [n] \ {j}, (14d)

∑
l∈[n]\{j}

x
(1)
k,l = xi,j ∀k ∈ [n] \ {i}, (14e)

x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (14f)

wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l . (14g)
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Proof. The polytope P
(0)
i,j ⊂ R× Rn×n is defined by the following constraints:

x
(0)
i,j = 0, (15a)

w
(0)
i,j = 0, (15b)∑

k∈[n]

x
(0)
k,l = 1 ∀l ∈ [n], (15c)

∑
l∈[n]

x
(0)
k,l = 1 ∀k ∈ [n], (15d)

x
(0)
k,l ≥ 0 ∀k, l ∈ [n]. (15e)

Polytope P
(1)
i,j ⊂ R× Rn×n is defined by the following constraints:

x
(1)
i,j = 1, (16a)

x
(1)
k,j = 0 ∀k ∈ [n] \ {i}, (16b)

x
(1)
i,l = 0 ∀l ∈ [n] \ {j}, (16c)

w
(1)
i,j −

∑
k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l = 0, (16d)

∑
k∈[n]\{i}

x
(1)
k,l = 1 ∀l ∈ [n] \ {j}, (16e)

∑
l∈[n]\{j}

x
(1)
k,l = 1 ∀k ∈ [n] \ {i}, (16f)

x
(1)
k,l ≥ 0 ∀k, l ∈ [n]. (16g)

Now we want to apply disjunctive programming, Theorem 1, to these two polytopes in
order get their convex hull. Since β = 1 − α we can bound α from below and above and
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leave out β. Applying Theorem 1 yields the following system for Pi,j :

0 ≤ α ≤ 1, (17a)

x
(0)
i,j = 0, (17b)

w
(0)
i,j = 0, (17c)∑

k∈[n]

x
(0)
k,l = α ∀l ∈ [n], (17d)

∑
l∈[n]

x
(0)
k,l = α ∀k ∈ [n], (17e)

x
(0)
k,l ≥ 0 ∀k, l ∈ [n], (17f)

x
(1)
i,j = 1− α, (17g)

x
(1)
k,j = 0 ∀k ∈ [n] \ {i}, (17h)

x
(1)
i,l = 0 ∀l ∈ [n] \ {j}, (17i)

w
(1)
i,j −

∑
k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l = 0, (17j)

∑
k∈[n]\{i}

x
(1)
k,l = 1− α ∀l ∈ [n] \ {j}, (17k)

∑
l∈[n]\{j}

x
(1)
k,l = 1− α ∀k ∈ [n] \ {i}, (17l)

x
(1)
k,l ≥ 0 ∀k, l ∈ [n], (17m)

xk,l = x
(0)
k,l + x

(1)
k,l ∀k, l ∈ [n], (17n)

wi,j = w
(0)
i,j + w

(1)
i,j . (17o)

Combining (17o), (17c) and (17j) yields wi,j =
∑

k∈[n]\{i}
∑

l∈[n]\{j} qi,j,k,lx
(1)
k,l . Com-

bining (17n) for k = i, l = j with (17b) and (17g) yields xi,j = 1 − α. We can substitute
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x
(0)
i,j by xi,j − x

(1)
i,j . Rewriting yields us the following system for Pi,j :

xi,j ≤ 1, (18a)
xi,j ≥ 0, (18b)∑

l

(xk,l − x
(1)
k,l ) = 1− xi,j ∀k, (18c)∑

k

(xk,l − x
(1)
k,l ) = 1− xi,j ∀l, (18d)

xk,l − x
(1)
k,l ≥ 0 ∀k, l, (18e)

x
(1)
i,j = xi,j , (18f)

x
(1)
k,j = 0 ∀k ∈ [n] \ {i}, (18g)

x
(1)
i,l = 0 ∀l ∈ [n] \ {j}, (18h)∑

k∈[n]\{i}

x
(1)
k,l = xi,j ∀l ∈ [n] \ {j}, (18i)

∑
l∈[n]\{j}

x
(1)
k,l = xi,j ∀k ∈ [n] \ {i}, (18j)

x
(1)
k,l ≥ 0 ∀k, l, (18k)

wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l . (18l)

Since the sum of a row or column is 1, (18c) and (18d) simplify to (18i) and (18j)
respectively. Moreover, for (k, l) = (i, j), (18e) and (18k) is implied by (18f), (18g) and
(18h). This means the system be simplified to:

xi,j ≤ 1, (19a)
xi,j ≥ 0, (19b)

xk,l − x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (19c)

x
(1)
i,j = xi,j , (19d)

x
(1)
k,j = 0 ∀k ∈ [n] \ {i}, (19e)

x
(1)
i,l = 0 ∀l ∈ [n] \ {j}, (19f)∑

k∈[n]\{i}

x
(1)
k,l = xi,j ∀l ∈ [n] \ {j}, (19g)

∑
l∈[n]\{j}

x
(1)
k,l = xi,j ∀k ∈ [n] \ {i}, (19h)

x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (19i)

wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l . (19j)

Since variables x
(1)
k,l for which k = i or l = j only occur in constraints where a single

variable is set to xi,j or 0, and do not occur in the objective, equations (19d), (19e) and
(19f) can be dropped. This yields the system for Pi,j .
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System (14) together with the appropriate objective can be reduced to a Minimum
Constrained Flow Problem. More on this in Section 3.

2.1 Applying Benders’ Decomposition

In this subsection, we apply Benders’ decomposition [3] in order to carry out the projection
of Pi,j onto (x,wi,j) as described by Theorem 2.

Common terminology Let us start by introducing some common terminology. When
adding inequality to a system of equations, the region of feasible solutions can become
smaller. Such an inequality is called a cutting plane or cut for short. A linear program
(LP) with integrality constraints is referred to as a mixed integer linear program (MILP).
The linear relaxation or LP relaxation of a MILP is the MILP without its integrality
constraints. A separation algorithm is an algorithm that separates feasible from infeasible
solutions, by means of generating a cutting plane when an infeasible solution is presented.

Branch and bound Branch and bound is a method for solving MILPs. Branch and
bound works by solving the linear relaxation, this yields a solution. This solution together
with its problem is called a branch and bound node. If a branch and bound node does not
satisfy all integrality constraints, we can branch on this node by using rounding to create
sub-problems.

We now present an example of rounding to create sub-problems. Suppose, we have a
branch and bound node with solution x̂ and entry x̂i = 0.5 while the MILP has constraint,
x̂i ∈ Z then we know that any feasible MILP solution satisfies the constraint: xi ≤ ⌊0.5⌋ =
0 or the constraint: xi ≥ ⌈0.5⌉ = 1. These constraints each correspond to a new sub-
problem in the branch and bound tree.

When a branch and bound node solution satisfies all the integrality constraints, it is
a MILP solution. The objective value of MILP solutions and LP relaxation solutions at
nodes, can be used to navigate the branch and bound tree efficiently and find the optimum
solution of the MILP. For more information on branch and bound, we refer to [7]. When
branch and bound is used in combination with cutting planes, the procedure is called
branch and cut. Cutting planes are generated in order to speed up the branch and bound
process.

Types of problems While solving a specific QAP instance, we deal with three types of
problems:

1. The QAP, with a quadratic objective and mixed integer linear constraints,

2.1. The main MILP, solving a MILP requires solving its LP relaxation,

2.2. the main MILP relaxation, often referred to as the main LP,

3. and many sub-problems, also referred to as lifting LPs.

Callback In this thesis, calling the separation algorithm means applying Theorem 4 to
prove a solution satisfies the conditions we want to impose on w or provide one or several
cuts that separate this solution from the feasible solutions. The separation algorithm is
called within a callback. A callback is a customizable function within a MILP solver. We
can customize the callback by:
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1. setting the callback to call the separation algorithm at each node of the MILP branch
and cut tree, or by

2. setting the callback to call the separation algorithm at each MILP solution. These
MILP solutions can be attained from branch and cut nodes, or from heuristic at-
tempts at an optimal solution.

Figure 3: High Level Process

High Level Process see Figure 3. First, we
initialize the main MILP. Secondly, we solve
the main MILP while using a set callback.
If the separation algorithm is called, the cur-
rent main MILP or main LP solution (x̂, ŵ)
is available. This solution (x̂, ŵ) is then used
to create and solve one sub-problem per (i, j)
pair. From the solutions of the sub-problems
we conclude that we found a feasible and opti-
mal solution to the QAP, or use the solutions
of the sub-problems to adjust the main MILP
by adding cuts. When branch and cut solves
the main MILP, assisted by the cutting planes
from the callback, we have an optimal solution
to the QAP.

Main MILP

min
∑
i∈[n]

∑
j∈[n]

(wi,j + qi,j,i,jxi,j) (20a)

s.t. A

(
x
w

)
≥ b, (20b)

x ∈ X=
n , (20c)

w ∈ Rn2
, (20d)

where matrix A and vector b ensure (20b) captures all constraints on w. We initialize A
and b as to consist of only the inequality w ≥ 0, and update A and b when the separation
algorithm provides a cutting plane. As explained in Section 1.1, we may assume that q is
non-negative, justifying the constraint w ≥ 0. Additional initialization could be adding all
Kaufman-Broeckx constraints or all Xia-Yuan constraints.

2.1.1 Lifting LP Derivations

At the core of the Benders’ decomposition approach, we are given some x̂ ∈ Rn×n and
ŵ ∈ Rn×n, obtained by solving the main LP (20). We want to check per combination of
(i, j) if (x̂, ŵi,j) are in the convex hull of P (1)

i,j ∪ P
(0)
i,j , otherwise, generate a cutting plane

in order to generate a cutting plane, we have to solve a sub-problem.
Solving the main LP (20) yields some solution x = x̂, w = ŵ. Applying the the-

orem by Balas as in the previous section yields (14), as described in Theorem 2. Due
to the constraints on the main problem, constraints (14a) and (14b) are satisfied. Get-
ting the sub-problem for Benders’ decomposition of (i, j) in this iteration works by fix-
ing the xk,l variables to x̂k,l for all k ∈ [n] \ {i}, l ∈ [n] \ {j}, and minimizing for

11



wi,j =
∑

k∈[n]\{i}
∑

l∈[n]\{j} qi,j,k,lx
(1)
k,l . This yields the following sub-problem:

min wi,j =
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l (21a)

s.t. x
(1)
k,l ≤ x̂k,l ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (21b)∑

k∈[n]\{i}

x
(1)
k,l = x̂i,j ∀l ∈ [n] \ {j}, (21c)

∑
l∈[n]\{j}

x
(1)
k,l = x̂i,j ∀k ∈ [n] \ {i}, (21d)

x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}. (21e)

We also refer to this sub-problem as the lifting LP. The lifting LP has the following
dual LP:

max
∑

k∈[n]\{i}

∑
l∈[n]\{j}

x̂k,lλk,l + xi,j
∑

k∈[n]\{i}

ϕk + xi,j
∑

l∈[n]\{j}

θl (22a)

s.t. λk,l ≤ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (22b)
λk,l + ϕk + θl ≤ qi,j,k,l ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}. (22c)

For literature on duality, see [19].
Suppose the resulting optimal value of the lifting LP (21) is w̄i,j ∈ R. If ŵi,j < w̄i,j <

∞, then the main LP is still missing constraints and yields an unrealistically low objective
value. We use Farkas’ Lemma to find a constraint that sharpens the conditions on the
objective variables. This type of constraint is called an optimality cut.

Theorem 3 (Farkas’ Lemma [9]; see [12]). Let A ∈ Rm×n and b ∈ Rm. Then exactly one
of the following two assertions is true:

1. There exists an x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists a y ∈ Rm such that A⊺y ≥ 0 and b⊺y < 0.

So either there exists a feasible solution to the primal problem or an unbounded im-
proving direction in the dual that is also called a Farkas’ ray. Applying Farkas’ Lemma,
Theorem 3, allows us to prove Theorem 4.

Theorem 4. Let the linear relaxation of the main MILP have solution (x̂, ŵ), let the lifting
LP (21) have minimum value w̄i,j, and dual multipliers λ̄, θ̄, and ϕ̄ for constraints (21b),
(21c), and (21d) respectively. If ŵi,j < w̄i,j, then

wi,j ≥ (
∑

l∈[n]\{j}

θ̄l +
∑

k∈[n]\{i}

ϕ̄k)xi,j +
∑

k∈[n]\{i}

∑
l∈[n]\{j}

λ̄k,lxk,l, (23)

is a valid inequality for the IP formulation of the main MILP, and cuts off the current
solution of the linear relaxation of the main MILP.

Otherwise ŵi,j ≥ w̄i,j, and then (x̂, ŵi,j) belongs to Pi,j.

Proof. Consider the situation as described by the theorem and let (x̂, ŵ), λ̄, θ̄, and ϕ̄ be
defined as in the theorem. We start by proving the latter statement. Suppose ŵi,j ≥ w̄i,j .
Then there exists a vector x̂(1) ∈ Rn×n such that the vector (x̂, ŵ, x̂(1)) satisfies (14).
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By the Balas’ theorem, Theorem 1, the projection of (x̂, ŵ, x̂(1)) onto (x,wi,j), which is
(x̂, ŵi,j), belongs to Pi,j .

Now, suppose ŵi,j < w̄i,j . We create a system from the constraints of (21) and add
one constraint to it, resulting in the following system:∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l ≤ ŵi,j (24a)

x
(1)
k,l ≤ x̂k,l ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (24b)∑

k∈[n]\{i}

x
(1)
k,l = x̂i,j ∀l ∈ [n] \ {j}, (24c)

∑
l∈[n]\{j}

x
(1)
k,l = x̂i,j ∀k ∈ [n] \ {i}, (24d)

x
(1)
k,l ≥ 0 ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}. (24e)

Rewriting (24) to standard form and negating some equations yields:∑
k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lx
(1)
k,l + T = ŵi,j (25a)

−x
(1)
k,l − Si,j = −x̂k,l ∀k ∈ [n] \ {i}, l ∈ [n] \ {j}, (25b)

−
∑

k∈[n]\{i}

x
(1)
k,l = −x̂i,j ∀l ∈ [n] \ {j}, (25c)

−
∑

l∈[n]\{j}

x
(1)
k,l = −x̂i,j ∀k ∈ [n] \ {i}, (25d)

x(1) ≥ 0, (25e)
T ≥ 0, (25f)
S ≥ 0, (25g)

where T ∈ R and S ∈ R(n−1)2 are slack variables. We now apply Farkas’ Lemma to
system (25). Since ŵi,j < w̄i,j , and w̄ was already the minimum of (21), we know that
constraint (24a) can not be satisfied while satisfying the other constraints of (24). Proving
system (24) is infeasible. Therefore, system (25) is not feasible either. Consequently, by
Farkas’ Lemma there exists a Farkas’ ray. Looking at our system, we can see this means
there exist λ ∈ Rn×n, θ ∈ Rn, ϕ ∈ Rn, and α ∈ R such that:

ŵi,jα−
∑

k∈[n]\{i}

∑
l∈[n]\{j}

x̂k,lλk,l − x̂i,j
∑

l∈[n]\{j}

θl − x̂i,j
∑

k∈[n]\{i}

ϕk < 0, (26a)

qi,j,k,lα− λk,l − θl − ϕk ≥ 0 ∀k, l ∈ [n],
(26b)

λ ≤ 0, (26c)
α ≥ 0. (26d)

Since all constraints of system (26) can still be scaled, we normalize the system by
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setting α = 1. This yields:

ŵi,j −
∑

k∈[n]\{i}

∑
l∈[n]\{j}

x̂k,lλk,l − x̂i,j
∑

l∈[n]\{j}

θl − x̂i,j
∑

k∈[n]\{i}

ϕk < 0, (27a)

qi,j,k,l − λk,l − θl − ϕk ≥ 0 ∀k, l ∈ [n],
(27b)

λ ≤ 0. (27c)

Let us now consider the following inequality:

wi,j − (
∑

l∈[n]\{j}

θ̄l +
∑

k∈[n]\{i}

ϕ̄k)xi,j −
∑

k∈[n]\{i}

∑
l∈[n]\{j}

λ̄k,lxk,l ≥ 0. (28)

If we minimize the left hand side of (27a) subject to (27b) and (27c), then we get the
coefficients for the cut with maximal cut violation. We claim without proof that solving
the dual of the lifting LP (22) yields the same coefficients (λ̄, θ̄, and ϕ̄) and therefore yields
the maximum violated cut.

We now prove that (28) is valid for Pi,j by using Farkas’ Lemma. Suppose we have
a solution (x̃, w̃i,j) ∈ Pi,j . This implies system (25) has a feasible solution. By Farkas’
Lemma there does not exist a Farkas’ ray, i.e., System (27) is feasible. Since λ̄, θ̄, and ϕ̄ are
obtained from the dual they satisfy the latter constraints of (27) implying the in-feasibility
must follow from (27a) further implying (28) is a valid inequality for Pi,j .

As for proving that this cuts off the current solution: Since (x̃, w̃i,j) satisfied (27a)
adding (28) cuts off (x̂, ŵ).

Looking Back at the High Level Process The aim of this paragraph is to support
Figure 3 and summarize the findings of in this section. If the separation algorithm is
called, the current main MILP or main LP solution (x̂, ŵ) is available. This solution (x̂, ŵ)
is then used to create and solve one sub-problem per (i, j) pair. Let w̄i,j be the solution
of sub-problem (i, j).

If ŵi,j ≥ w̄i,j for all (i, j) ∈ [n] × [n], then (x̂, ŵi,j) ∈ Pi,j for all (i, j) ∈ [n] × [n],
by Theorem 4. Meaning, our current solution (x̂, ŵ) has the property that all wi,j are
some convex combination of other values w′

i,j , . . . satisfying integrality of x and the node
contribution relation of w and x as defined by (9).

If ŵi,j < w̄i,j for some (i, j) ∈ [n]× [n], then constraint (23) can be added to the main
MILP cutting of the current solution (x̂, ŵ), see Theorem 4. If the solution (x̂, ŵ) was from
a callback at a branch and cut node, then this cut might speed up the solving process. If
the solution (x̂, ŵ) was from a callback at a MILP solution, this cut is required for ensuring
the MILP solution objective of (x̂, ŵ) is the same as the QAP objective of x̂.

3 Speeding Up the Lifting LP

We claim without proof that the lifting LP (21) can be reduced to a minimum cost flow
problem. There are several combinatorial algorithms that solve the minimum cost flow
problem. Combinatorial algorithms are typically much faster at solving problems than
solving the same problem using an LP formulation. Since we aim to extract dual informa-
tion from the lifting LP, we recommend solving the LP using a primal-dual algorithm as
described in [1].
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4 Experiments

4.1 Experimental Setup

Experiments have been implemented in Python using Gurobipy. Gurobipy is the Python
interface for the optimization software called Gurobi, which uses branch and cut to optimize
MILPs.

KBL The implementation of the Kaufman-Broeckx linearization, further referred to as
KBL, is done by first specifying the variables, constraints, and objective as described in
Section 1.3.1; Secondly, adjusting some Gurobi optimization parameters, more on these
parameters later; And finally, solving the problem using Gurobi.

DP The implementation of the method proposed in this article, further referred to as
DP, is less trivial. The main MILP is implemented as described in by System (20), where
A and b are initialized to contain the following constraints:

wi,j ≥
∑

k∈[n]\{i}

∑
l∈[n]\{j}

qi,j,k,lxk,l −Mi,j(1− xi,j) ∀i, j ∈ [n], (29a)

where Mi,j = M̃i,j =
∑

k∈[n]
∑

l∈[n] qi,j,k,l, these are Kaufman-Broeckx constraints with
a minor adjustment. The adjustment is to account for the altered objective function, w
is without the qi,j,i,jxi,j term while w̃i,j is with the qi,j,i,jxi,j term, see Section 1.3.1 and
Equation (10a). Note Mi,j could have been, but is not set to:

∑
k∈[n]\{i}

∑
l∈[n]\{j} qi,j,k,l

which would strengthen the constraint whenever qi,j,i,j ̸= 0. Strengthening the constraint
would have led to making the DP versus KBL comparison less fair, and most of all: If
we are interested in initializing with tighter constraints, we should initialize using the
Xia-Yuan linearization constraints.

When running an experiment, the user can set the following the settings for DP: the
setting callback_at can be set to DPS.ALL_MIPSOLS or DPS.ALL_MIPNODES, the setting
bd_constr_type can be set to USER_CUT or DPS.LAZY_CONSTR, and the setting
minimum_w_difference can be set to any non-negative floating point number.

The callback function was customized to trigger the separation algorithm at all MILP
solutions when callback_at == DPS.ALL_MIPSOLS, and to trigger the separation algo-
rithm at branch and cut nodes when callback_at == DPS.ALL_MIPNODES. If the sepa-
ration algorithm is triggered for solution (x̂, ŵ), then for each (i, j) pair in [n] × [n] a
sub-problem is created. The sub-problem is modeled as an LP, as defined by System (21).
Gurobi is used to solve the LP and provide the objective value w̄i,j and the dual multi-
pliers of the sub-problem. If ŵi,j < w̄i,j− minimum_w_difference, then constraint (23)
is added to the main MILP. This constraint is added in the form of a lazy constraint,
using the Gurobipy function cbLazy(), if bd_constr_type == DPS.LAZY_CONSTR. This
constraint is added in the form of a user cut, using the Gurobipy function cbCut(), if
bd_constr_type == DPS.USER_CUT.

Before optimizing, some Gurobi optimization parameters are set. This includes setting
the parameter LazyConstraints to 1 if bd_constr_type == DPS.LAZY_CONSTR, which is
required when using lazy constraints. More on the other settings in the next paragraph.
Lastly, The main MILP was solved using Gurobi while providing the callback function.

Settings Both KBL and DP have the settings: pre_crush, time_limit, threads, and
soft_mem_limit. When pre_crush is set to True the Gurobi parameter PreCrush is set
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to 1. When PreCrush is set to 1 Gurobi will allow presolve (Gurobi’s solving preparation
procedure) to transform any constraint on the original model into an equivalent constraint
on the presolved model. This is recommended when using callbacks. For the sake of fair
comparison, we set pre_crush to True for both KBL and DP, when doing experiments.
For more information on PreCrush see the PreCrush web page. Settings time_limit,
threads, and soft_mem_limit are used to set the Gurobi parameters TimeLimit, Threads,
and SoftMemLimit respectively.

Measurements Many of the measurements are taken using the Gurobi model attribute.
One can for instance call the model attribute Runtime after optimizing in order to retrieve
the runtime until termination. This runtime excludes the time it took Gurobi to load the
model and prepare (presolve) the model. There is no built-in model attribute to retrieve
the time spent in the callback. Therefore, we implemented this ourselves inside of DP. We
refer to the time spent inside callback as time inside CB. The model attribute Runtime
includes the time spent in callbacks. In order to be able to compare the time spent outside
the callback when using DP, against the runtime when using KBL, we define time outside
CB to be the model attribute Runtime minus the time inside CB.

The model attribute Work is a deterministic unit provided by Gurobi. Work quantifies
how much time the solving process takes. As mentioned on the Work web page: “Work
is deterministic, meaning that you will get exactly the same result every time provided
you solve the same model on the same hardware with the same parameter and attribute
settings.” The model attribute Work does not include the Work from inside the callback.

Code For more details on the implementation of the method, the experiments and the
source code, see github.com/david-van-der-linden/qap-thesis.

4.2 Instances

All instances were taken from the QAPLIB, a Quadratic Assignment Problem Library by
R.E. Burkard, S.E. Karisch and F. Rendl. The library consists of 136 different instances,
with instance sizes ranging from n = 10 till n = 256. Some instances are yet to be solved
to optimality, while others come with a provided solution. Some instances come from real
world applications, while other instances are user generated. All data is provided to fit
the Koopmans and Beckmann Problem (KBP) formulation as described in the beginning
of Section 1.2. For further reading on the applications of the instances, structure of the
data, best known solutions and bounds of instances, we refer to the QAPLIB web page.

4.3 Preliminary Insights

In this subsection, we discuss some preliminary insights that influenced the setup of the
main experiment.

Preliminary testing was done on a Lenovo ThinkPad P1, with Processor Intel(R)
Core(TM) i7-9750H CPU @ 2.60GH with 16,0 GB of installed RAM. The system type
is A windows 64-bit operating system, with a x64-based processor. With Gurobi Opti-
mizer version 9.5.0 build v9.5.0rc5 (win64) installed.

Most preliminary testing was done on the chr18b instance, since this instance is one
of the smallest instances that has a solution file available. When running with the set-
tings callback_at set to DPS.ALL_MIPSOLS, bd_constr_type set to DPS.LAZY_CONSTR
and minimum_w_difference set to 0. We noticed that the Work of DP (6.08) was less than
that of KBL (22.00). See Figure 4 for the results of a recreation of an initial experiment.
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Figure 4: Pre-
liminary insights

Considering that the time inside CB could be reduced a lot, see
Section 3, comparing time outside CB of DP against runtime
of KBL is interesting. These initial experiments indicate that
DP has the potential to be faster than KBL. This begged the
question whether the time outside CB of DP also smaller than
the runtime of KBL for other instances. These results, with even
more information, are available on the github page.

Note that initializing the main MILP with the Kaufman-
Broeckx constraints and setting callback_at to DPS.ALL_MIPSOLS
is a slightly strange combination. Since the Kaufman-Broeckx
constraints theoretically ensure that w satisfies (9) for all MILP
solutions. However, due to numerical in-precision, the differ-
ence between ŵ and w̄ is sometimes slightly more than zero.
This will cause the separation algorithm to get called when
minimum_w_difference set to 0. Since the Benders’ cuts were
being added and the cuts seemed to be beneficial, we decided to
set up the main experiment with this slightly strange combina-
tion of initial constraints and callback_at setting anyway.

4.4 Main Experiment

In this subsection, we present the results from the main experi-
ment.

Set Up The main experiment was run on a university owned server named MORDOR.
The server has the following specifications: CPU model: Intel(R) Xeon(R) Gold 5217
CPU @3.00GHz, 16 physical cores, 32 logical processors, 64 GB Memory. With Gurobi
optimizer version 10.0.1 build v10.0.1rc0 (linux64) installed. Gurobi settings specified one
thread was allowed to be used for optimization, the experiments were run with a time
limit of 1 hour per instance, and a soft memory limit of 3.6 GB. DP was run with the
settings callback_at set to DPS.ALL_MIPSOLS, bd_constr_type, set to DPS.LAZY_CONSTR
and minimum_w_difference set to 0. Experiments were run with up to 10 instances
running in parallel.

Results When running the main experiment on 19 of the instances, the program halted
with the error: Unable to retrieve attribute ‘X’. We suspect that this error occurred since
we try to read off the best known solution, while no solution is found. To be precise this
occurred on when running instances: sko100d, lipa90a, sko100e, lipa90b, sko100f, sko100a,
sko100b, sko100c, tai100a, tho150, tho30, tho40, wil100, tai150b, tai256c, tai25a, tai25b,
tai30a, tai30b.

From here on out, we will only consider the results of the remaining 117 instances.
As expected, not all instances were solved to optimality, see Table 1 and Figure 5. See
Figure 6 for a more detailed comparison. Unsurprisingly, on most instances the time limit
was reached, and some instances triggered the memory limit. From Figure 6 we conclude:
no instance that was solved with DP that did not get solved with KBL. This can be
explained by the long time outside CB.

When considering the instances that were solved to optimality using both methods,
plotting the time yields Figure 7. The KBL Runtime is smaller than the time outside CB
for DP on most instances. Therefore, the figure does not indicate DP has potential to be
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Model Status DP KBL

Optimal 19 26
Timeout 86 70

MemLimit 12 21

Table 1: Main experiment: Number of instances per model status.

Figure 5: Main experiment: Number of instances per model status.

Figure 6: Main experiment: Solved to optimality with both methods, neither
method, only DP, or only KBL
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Figure 7: Main experiment: Time per instance for all instances that both methods
solved to optimality. Note that the time axis is logarithmic. For Instance esc16f.dat
the runtime (KBL) and time outside CB (DP) are less than one micro second, while
the time inside CB is a matter of seconds.

faster than KBL. However, upon closer inspection, we notice that when running DP on
chr18b the time limit is reached, while when running KBL on chr18b an optimal solution
is found within a runtime of 20.3 seconds. This is unexpected since we expect runtimes to
be lower, or at least similar, when running on MORDOR than when running on a Lenovo
ThinkPad P1, however that does not seem to be the case for DP.

4.5 Later Results

Later trails with the Gurobi version of MORDOR set to Gurobi Optimizer version 9.5.1
build v9.5.1rc2 (linux64), again resulted in the time-out limit being reached when running
the DP solving technique on instance chr18b.

5 Discussion and Conclusion

Investigating the discrepancy between results when running DP on chr18b on the Lenovo
ThinkPad P1 and MORDOR requires more time. This should however be considered, as
currently no conclusions on the utility of the DP method over the KBL method can be
drawn from the computational experiments.

5.1 Recommendations Further Experiments and Development of DP

User Cuts at MILP Nodes For further experiments, we recommend researching call-
backs at MILP nodes. However, as mentioned by in the Gurobi documentation, user cuts
should be added sparingly, since they increase the size of the relaxation model that is
solved at each node and can significantly degrade node processing speed. We recommend
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initially investigating the increase in strength of the model if all cuts were added in order
to identify the potential. If the bound improvement is significant, we recommend investi-
gating heuristics to identify which cuts are best to add and which cuts are best to be left
out, and investigate whether it’s beneficial to add cuts more sparingly.

Numerical Focus Parameter During the main experiment, Gurobi gave the following
two warnings and advice when running on some of the instances:

“Warning: Model contains large matrix coefficients

Warning: Model contains large rhs

Consider reformulating model or setting the NumericalFocus parameter to
avoid numerical issues”

When inspecting the data, we noticed some of the instances do contain large coefficients.
Note that one of the instances has a flow entry of over 5000, which if it matches with a
distance entry of similar size yields a q entry of over 50002, while the model will also have
constraints which coefficients of 1, making scaling a nontrivial task. We recommend testing
out various settings for the Numerical Focus parameter, and look into reformulating the
model using auxiliary variables that are scaled versions of the original variables.

Different Server The server MORDOR is a general purpose Linux server. It has no job
scheduling or any other features to ensure accurate and reliable performance testing. When
doing future experiments that require accurate runtime measurements, we recommend
using a server dedicated for performance testing.

Xia-Yuan Linearization Since the Xia-Yuan linearization (XY), see Section 1.3.3,
seems to be similar to and stronger than the Kaufman-Broeckx linearization, compar-
ing the performance of DP versus an Xia-Yuan linearization implementation is a logical
next step if the DP compares well against KBL.

Initial constraints The computational experiments in this thesis were performed while
the DP model was initialized using the KBL constraints. One could investigate the effect
of initializing the DP model with the XY constraints. And one could investigate what the
constraints are that are added when not initializing KBL nor XY. This would make it that
there are no initial constraints that ensure that w and x relate as desired for integer points.
This could result in the callback adding other constraints.

Investigate Bounds RLT The Reformulation Linearization Technique (RLT) is a tech-
nique that can be applied to some linearization of the QAP. A rough draft of such
a linearization has been implemented and can be found on github.com/david-van-der-
linden/qap-thesis. We are interested in seeing how the bounds of RLT model compare to
that of the KBL and the DP model. This could be used to judge the strength of the DP
model.

Speeding up Lifting LP As before mentioned in Section 3: If the Disjunctive Program-
ming method seems promising based on other results, we recommend proving the reduction
to minimum cost flow problem and implementing primal-dual algorithm in a programming
language that has low runtime, for example Rust, C, or C++.
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Symmetry For further improvement of the proposed method, we recommend making
use of symmetry. The use of symmetry, as mentioned by Fischetti et al. [10], plays a large
role in solving some instances. The symmetry qi,j,k,l = qk,l,i,j and other symmetries are
underutilized in the current implementation of DP.
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