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Introduction 

Growth Models 

Big data is everywhere, and its benefits are numerous and multifaceted. It finds its 

application in various disciplines, such as economics, healthcare, and social sciences (Einav, L., 

& Levin, J., 2014; Batko, K., & Ślęzak, A., 2022; Hesse et al., 2015 ). One way to analyze big 

data is through the use of growth models. Growth models are theoretical frameworks that 

describe the mechanisms and factors driving the increase or decrease of an entity over time. 

Through data-driven insights, growth models can use big data to identify patterns, predict trends, 

and optimize strategies. Furthermore, growth models allow for a more detailed characterization 

of the trajectory in big and regular data compared to more traditional data analytic approaches, 

such as repeated measures analysis of variance (RM-ANOVA) or multiple regression analysis. 

To elaborate, unlike traditional data analysis methods, growth models do not view 

individual variance simply as error variance. Instead, growth models interpret it as reflecting the 

extent of change occurring at the individual level. To elaborate, as each individual has its own 

growth trajectory, any variance can be explained by combining or examining individual growth 

trajectories. This allows for greater insight into the data observed. Also, methods such as RM-

ANOVA, as part of traditional data analytics, work with strong analytic assumptions, such as the 

sphericity assumption. However, growth models do not rely as much on robust analytical 

premises as traditional data analytics. For example, a growth model might employ a Bayesian 

estimation framework to iteratively update probabilities and parameters based on new data and 

prior beliefs, allowing for flexible adaptation to changing conditions without requiring strict 

adherence to assumptions like normality or equal variance. Therefore, growth models can offer 

more flexibility and robustness than conventional data methodology.  
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The Linear Mixed Effect Model 

To analyze intensive longitudinal data, multiple approaches can be used. One of them is 

the linear mixed effect (LME) model. The LME model employs maximum likelihood estimation. 

However, this model does not allow the random factor variance to get close to zero (Klotzke & 

Fox, 2019a). When this happens, a multitude of problems arise, one of them being numerical 

instability. To elaborate, let’s take the example of EEG data. When dealing with this form of 

data, it might be speculated that the relevant (brain) signal has too little variance. When 

analyzing EEG data, researchers typically aim to detect and analyze relevant brain activity 

against a background of noise, such as electrical interference. In this context, the low amplitude 

of the EEG data's relevant brain signal presents a challenge. Due to its insufficient variance, the 

LME model may struggle to accurately capture or account for these minimal variations, 

potentially leading to an overestimation of the relevant signal. As a result, the LME model can 

induce false positives or type I errors (Murphy et al., 2024). 

 Secondly, the fit of the LME model can be hampered by convergence problems in the 

estimation method, which in practice often leads to the conclusion that the random factors with 

small variances are not relevant. To elaborate, convergence problems happen when the algorithm 

of the LME model fails to estimate the model's parameters as the LME model has trouble dealing 

with low variance, as explained before. As a result, when retaking the example of EEG data, the 

LME model is not capable of accurately estimating the appropriate, relevant signal.  

Lastly, growth models often work with random effects to accurately capture individual 

differences in growth trajectories, account for the hierarchical structure of the data, and improve 

the precision and generalizability of the model's estimates by allowing for subject-specific 

variations. However, when dealing with big data, these random effects enlarge the computational 
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demands for fitting the model. To elaborate, random effects add extra parameters to estimate, 

which can prolong the computational duration of the LME model and raise its memory demands, 

especially when dealing with big data. 

Bayesian Covariance Structure Model   

When considering the limitations of the LME model, it becomes imperative to utilize a 

new method, capable of accounting for the shortcomings of the LME model. This model is called 

the Bayesian Covariance Structure Model (BCSM), as it introduces prior distributions on the 

parameters of the covariance matrix (Klotzke & Fox, 2019a). This model has numerous answers 

to the problems discussed in the LME growth model. Firstly, the BCSM can include 

dependences implied by random effects without relying on random effect parameters, as it 

models the covariance structure directly (Klotzke & Fox, 2019b). To elaborate, modeling the 

covariance matrix directly means that instead of modeling individual variables or their means 

separately, the focus is on the relationships and dependencies between the variables as captured 

by the covariance matrix. This makes the approach significantly more efficient in terms of the 

number of parameters and the associated computational demands. Also, modeling the covariance 

structure directly is necessary to capture dependences among variables within and across 

clusters, referred to as clustering. This is important as clustering improves model accuracy and 

enhances interpretability. Clustering refers to grouping data points so that data in the same group 

(or cluster) are more similar than those in other groups or clusters. 

Secondly, the BCSM allows for more flexibility compared to the LME model, as it 

allows for negative and close to zero covariances, due to the covariance matrix being modeled 

directly. To elaborate, one critical assumption of the LME models is that observations within 

clusters are positively correlated. However, relationships within clusters can be negatively 
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correlated, meaning that an increase in one observation is associated with a decrease in another 

(Nielsen et al., 2021).  

Thirdly, the BCSM does not rely on normally distributed random factors, as with the 

LME model (Fox et al., 2020). This is especially important since the assumption of normality 

can be problematic when dealing with big data (Ghasemi & Zahediasl, 2011). To elaborate, 

random effects may deviate from normality due to various factors such as heterogeneity, 

skewness, or heavy tailing in the data. Since the BCSM does not incorporate random effects, its 

model parameters remain unaffected by the number of data trials or participants. This feature is 

another advantage of the BCSM compared to the LME model. 

Fourthly, as the BCSM does not rely on random effect parameters, the computational 

demands of running the model are reduced. To elaborate, through the use of Markov Chain 

Monte Carlo (MCMC), the BCSM can allow for parallel computing. This is especially useful for 

big data as it allows for the distribution of the computational load across multiple processors or 

machines. As a result, the BCSM scales well with data size and is better than the LME model 

that does not employ the MCMC. For regular data, the decreased computational demands of the 

BCSM still apply, although to a lesser extent than with bigger data. To elaborate, parallel 

computing, facilitated by MCMC, can still be beneficial for regular-sized data, enabling more 

efficient use of computational resources and model fit. Furthermore, the BCSM does not 

estimate an intercept and slope for each individual data point. Instead, it estimates a single 

intercept and slope for the entire dataset based on the underlying probability distributions and the 

data. 

Lastly, when it comes to big data, the BCSM offers another advantage compared to the 

LME model. The BCSM is capable of handling missing data more naturally by integrating 
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missing values. This is done through the framework of Bayesian statistics. To elaborate, in 

Bayesian analysis, missing data are treated as unobserved variables, and the model estimates 

their distributions along with the parameters of interest based on the observed data and prior 

information. This is important as big data often has missing values, leading to biased analyses 

and compromised decision-making if not handled appropriately (Basiri & Brunsdon, 2022; 

Emmanuel et al., 2021). Therefore, it is important to test the viability of the BCSM on big data, 

considering the advantage the BCSM has when it comes to missing data often present in big 

data. 

Simulated Data 

 One way to compare the BCSM and LME model, is to test them against simulated data 

that includes both an intercept and a slope. The intercept is the value at which the regression line 

crosses the y-axis when all predictor variables are zero. The slope is the rate of change in the 

response variable, for a one-unit increase in the predictor variable. Incorporating a slope and 

intercept enables the measurement of the effects of lower levels of random factor variance, 

thereby allowing the flexibility and performance of both models to be evaluated. By controlling 

and manipulating the variances of these random effects in simulations, one can systematically 

explore how well each model captures this variability. 

The Aim of This Thesis 

The current study aims to test the BCSM against an already existing framework; the LME 

model. It is hypothesized that the BCSM is more capable of handling decreasing levels of 

random factor variance than the LME model, considering all the advantages the BCSM has over 

the LME model as mentioned in this introduction. Therefore, growth modeling applications of 

the BCSM and the LME model are examined in the light of decreasing random factor variance. 
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Furthermore, growth modeling applications of the BCSM on big data are also examined in the 

light of decreased random factor variance. 

 

Methods 

Introduction Linear Mixed Effects Model 

 When referring to the LME model, the following formula is used: Yti = β0 + β1(TIMEti) + 

b0i + b1i(TIMEti) + ·ti with ·ti ∼N(0,Ã²). Furthermore, b0i ~ N(0, Ä0) and b1i ~ N(0,Ä1). To elaborate, 

Yti stands for the response or dependent variable for individual i at time t, β0 stands for the fixed 

intercept, which is the value of the response variable when time is zero, β1 is the fixed slope 

indicative of the change in the response variable per unit change in TIME, TIMEti is the variable 

time for individual i at time t. To elaborate, TIMEti denotes a particular time point or observation 

within the time series t for individual i. It represents a specific measurement in time chosen to 

extract an individual's dependent variable.   

 When looking at the random effects, b0i is the random intercept for individual i, and b1i is 

the random slope for individual i. It allows each individual to have their own change in the 

response variable while considering TIMEti. For the random effect b0i, assumed is a normal 

distribution with a mean of zero and a random factor variance denoted as Ä0. The random effect 

b1i is also assumed as a normal distribution with a mean of zero and a random factor variance 

denoted as Ä1. Lastly, ·ti is the residual error for individual i at time t. It is assumed to be normally 

distributed with a mean of zero and variance Ã². The variance of the residuals represents the 

individual-specific random errors. 

The Bayesian Covariance Structure Model 
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Unlike the LME model, the key difference and core idea of the BCSM is to model the 

covariance matrix directly, thereby excluding the need to include random effects in the mean part 

of the model. However, although random effects are not part of the model’s framework, these 

effects can still be incorporated through the covariance matrix. Without random effects, an 

increase in the level of participants does not increase the model’s complexity in the BCSM, 

thereby reducing the risk of overfitting. 

Simulation Study Design 

First Simulation Study 

 The simulation study design consisted of two parts: simulation study one and simulation 

study two. In the first simulation study, the BCSM was compared to the LME model through a 

simulated dataset consisting of n = 1,000, number of data clusters, and k = 10, number of 

responses per subject. The number of data replications was set to 1,000 for both simulation 

studies. In both simulation studies, Ä0 represented the random intercept variance and Ä1 

represented the random slope variance. The Ã² in both simulation studies was equal to 1, Ä0 to 

0.5, and Ä1 to 0.2. Summary statistics extracted from the first data simulation study included the 

mean, the bias, and the root-mean-square error (RMSE). The bias refers to the systematic error in 

parameter estimation, indicating the average difference between estimated and true values. 

Furthermore, the RMSE is a measure of the average deviation between estimated and true values, 

calculated by taking the square root of the average of squared differences between estimated and 

true values. For the BCSM, the posterior mean was also extracted, just as the bias and the 

RMSE. For the bias and the RMSE, the lower the value, the better the parameter estimate. 

Second Simulation Study 
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 The sole performance of the BCSM was evaluated on a larger sample size. The dataset 

had n = 1,000 clusters with cluster size k = 1,000. The covariance parameters were estimated by 

the posterior mean. Furthermore, the RMSE and bias were also used to evaluate the parameter 

estimate. As with the first simulation study, for both the RMSE and bias, the lower the value, the 

better the estimates. Next to random effect variances, fixed effects were also estimated for both 

the β0 and β1 coefficients. The bias and RMSE were examined for each fixed effect coefficient 

and corresponding Ä value. 

Simulation Procedure 

 For both the first and second data simulations, values of Ä0 were reduced starting from 0.5 

to 0.2, 0.1, 0.05, and 0.01. When doing so, Ä1 was set to 0.2. For Ä1, also in both data simulations, 

values were reduced starting from 0.2 to 0.1, 0.05 and 0.01. When doing so, Ä0 was set to 0.5  

Then, the estimates of Ä0 and Ä1 were reported for each simulation study and each Ä value. Lastly, 

for the big data simulation study, fixed effects estimates were also reported. The software used to 

analyze both simulated datasets was R version 4.3.31. 

    

Results 

 For the first simulation study, the LME approach and the BCSM were applied. For the 

second simulation study, solely the BCSM was applied to analyze the dataset. The estimation 

method for the LME model was maximum likelihood estimation and for the BCSM it was a 

Bayesian estimation. 

First Simulation Study 

                                                
1 The R code used originated from numerous R libraries and was part of the BCSM code developed by G.J.A. Fox   
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 To start, the results of the LME model and the BCSM of the first data simulation study 

are depicted in Table 1. 

 

Table 1 

The Ä0 Estimation Under the LME and BCSM of the First Simulation Study 

Ä0 Linear Mixed Effects Model  Bayesian Covariance Structure Model 

 Mean Bias RMSE  Mean Bias RMSE 

0.5 0.500 0.000 0.029  0.503 0.003 0.038 

0.2 0.200 0.000 0.016  0.202 0.002 0.025 

0.1 0.101 0.001 0.012  0.102 0.002 0.021 

0.05 0.051 0.001 0.009  0.051 0.001 0.018 

0.01 0.011 0.001 0.007  0.011 0.001 0.017 

Note. n = 1,000, k = 10, Ä1 = 0.2 

 

When examining the LME results in Table 1, when Ä0 decreased, the bias remained more 

or less the same. Furthermore, for LME, the RMSE decreased when the Ä0 parameter value also 

decreased. Unlike LME, reducing Ä0 in BCSM led to more accurate estimations of the true Ä0 

value through the posterior mean. Consequently, for BCSM, the bias decreased. Furthermore, for 

BCSM, the RMSE also decreased when lowering the Ä0 parameter value. However, the RMSE of 

BCSM decreased less rapidly than the RMSE of the LME.  

Lastly, it is also important to take a look at the absolute numbers. For LME, lower 

absolute values in RMSE were observed compared to BCSM. Furthermore, posterior mean 
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estimates of BCSM were at Ä0 = 0.05 and onward just as capable of estimating Ä0 as the maximum 

likelihood estimate of LME. 

 

Table 2 

The Ä1 Estimation Under the LME and BCSM of the First Simulation Study 

Ä1 Linear Mixed Effects Model  Bayesian Covariance Structure Model 

 Mean Bias RMSE  Mean Bias RMSE 

0.2 0.196 -0.004 0.046  0.202 0.002 0.064 

0.1 0.097 -0.003 0.042  0.102 0.002 0.060 

0.05 0.050 -0.001 0.037  0.052 0.002 0.058 

0.01 0.020 0.010 0.027  0.012 0.002 0.057 

Note. n = 1.000, k = 10, Ä0 = 0.5 

 

 Looking at the LME results in Table 2, when Ä1 was reduced, the more likely the 

maximum likelihood estimate could estimate Ä1 up to Ä1 = 0.01. There, for the LME, the bias was 

five times higher than for the BCSM. When decreasing Ä1, for BCSM, the bias was more 

consistent than for LME. As a result, the posterior mean was more consistently capable of 

estimating lowering levels of Ä1. Lastly, for both LME and BCSM, RMSE decreased when Ä1 also 

decreased.  

When looking at absolute numbers, the posterior mean estimate of Ä1 was more accurate 

than the maximum likelihood estimate of LME, especially noticeable for Ä1 = 0.01. However, for 

LME, absolute RMSE values were lower than for BCSM. 

Second Simulation Study 



11 

 Now we look at the estimates of the second simulation study as provided in Tables 3 and 

4. 

 

Table 3 

The Ä0 and β0 Estimation Under the BCSM of the Second Simulation Study 

Ä0 BCSM    β0 Coefficient 

 Mean Bias RMSE  Bias RMSE 

0.5 0.499 -0.001 0.023  -0.001 0.023 

0.2 0.200 0.000 0.010  -0.001 0.015 

0.1 0.099 0.000 0.005  0.000 0.011 

0.05 0.050 0.000 0.003  0.000 0.008 

0.01 0.010 0.000 0.001  0.000 0.004 

Note. n = 1,000, k = 1,000, Ä1 = 0.2 

 

When looking at the estimates in Table 3, the posterior mean estimates were close to the 

true Ä0 parameter values. Moreover, as Ä0 decreased, the RMSE also decreased, resulting in the 

posterior mean becoming more accurate in estimating Ä0. When looking at the β0 coefficient, as 

with Ä0, β0 estimates were also close to the true β0 values. Furthermore, for β0, when Ä0 decreased, 

the RMSE and bias decreased also. 

 

Table 4 

The Ä1 and β1 Estimation Under the BCSM of the Second Simulation Study 
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Ä1 BCSM    β1 Coefficient 

 Mean Bias RMSE  Bias RMSE 

0.2 0.200 0.000 0.020  0.000 0.014 

0.1 0.100 0.000 0.014  0.000 0.010 

0.05 0.050 0.000 0.010  0.000 0.008 

0.01 0.010 0.000 0.006  0.000 0.005 

Note. n = 1,000, k = 1,000, Ä1 = 0.5 

 

Looking at Table 4, the posterior mean estimated the differing Ä1 values extremely 

accurately. No bias was observed regarding the different Ä1 estimates in BCSM when rounding 

off to three decimals. Also, as the variance of the Ä1 parameter decreased, the RMSE also 

decreased. Lastly, the BCSM showed no difficulty estimating the fixed effect of the β1 

coefficient. 

When comparing the second simulation study to the first simulation study, the next 

notable differences were found. First of all, the posterior mean of BCSM in simulation study two 

was better capable of estimating the parameter values of Ä0 and Ä1 than the posterior mean was in 

the first simulation study. The same result was observed for RMSE between the different 

simulation studies and Ä estimations. 

 

Discussion 

Thesis Conclusion 



13 

This study examined the performance of the BCSM and LME model in light of decreased 

random factor variances, including fixed effects and big data. It was proposed that the BCSM 

performs better than the LME model when random factor variance is decreased. When looking at 

the results, the following conclusions are drawn. The LME model is less effective at estimating 

the random slope when the variance of the random factor is minimal, compared to the BCSM. 

Furthermore, the BCSM is more consistent in the estimation of the random slope than the LME 

model. Additionally, the RMSE of the BCSM decreases more slowly than the RMSE of the LME 

model. However, the magnitude of the errors generated by the LME model is smaller than those 

of the BCSM when random factor variance is decreased. Looking at big longitudinal data, the 

bias and RMSE of the BCSM decreases compared to conventional data. However, the limitations 

of this study must be considered when interpreting these results. 

As expected, the LME model and BCSM perform better with reduced random factor 

variance, as both models are less sensitive to the variability introduced by random effects. 

However, for the LME model, compared to the BCSM, the estimation of the random slope 

variance was less accurate due to convergence problems when the random factor variance was 

minimal. Lastly, the BCSM also performs adequately when it comes to big data and lower levels 

of random factor variance. 

Limitations of the Study 

 When looking at the limitations, numerous constraints arise. First of all, for the BCSM, 

only random factor variances of lower-order polynomial terms were examined. One could 

wonder how the model is capable of estimating random factor variances in cubic and quadratic 

polynomial terms (Lim & Ziegler, 2023). This is important as especially growth models tend to 

include higher-order polynomial terms. A second limitation is that the random factor variance is 
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only lowered to 0.01 due to the number of data replications performed in this study. A higher 

number of data replications will allow the BCSM to be examined against a random factor 

variance lower than 0.01. As a result, the performance of the BCSM to estimate even lower 

random factor variances can be examined, which can be useful for EEG data (Murphy et al., 

2024). Lastly, although the BCSM performs better on big data than on regular data, it is 

important to understand that more data on itself already leads to better estimation of the random 

factor variance. 

  Both the LME model and the BCSM perform well, showing acceptable levels of bias and 

RMSE. The lower RMSE observed in the LME model as random factor variance decreases could 

be misleading due to convergence issues. To elaborate, negative random factor variances are 

assumed to be zero leading to the underestimation of the RMSE in the LME model. The BCSM, 

on the other hand, shows higher RMSE because it accounts for these negative random factor 

variances, thereby assuming more variance in the data. This explains the overall performance 

differences between the two models when it comes to the RMSE. 

When looking at the BCSM. when random factor variance decreases, the probability of 

incorrectly rejecting the null hypothesis when it is true is reduced (Murphy et al., 2024). This is 

because when random factor variance decreases, less variability in the random effects is captured 

by the model leading to a more reliable estimation of the fixed and random effects. The BCSM 

does not suffer from the same convergence problems as the LME model. Therefore, in the 

BCSM, the estimations of the random factor variance become both more accurate and consistent 

when the random factor variance is lowered. Lastly, when looking at fixed effects, the decrease 

in RMSE can be explained by the fact that uncorrelated data is more informative than correlated 
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data. Therefore, as random factor variance decreases, data becomes more informative, resulting 

in smaller RMSE for the fixed coefficients. 

Suggestions for Future Research 

 When looking at future studies, the BCSM needs to be tested against higher-order 

polynomial terms and see how well these polynomial terms can be estimated in the light of 

decreasing random factor variance. Furthermore, a higher number of data replications can 

generate a higher precision, thereby extending the accuracy of random factor variance 

estimations to third decimals, and if necessary, even further than that. By doing this, data 

characterized by even lower random factor variance can still be accurately examined, as can also 

be the case with EEG data (Murphy et al., 2024).  

In the end, this report states that the BCSM is more capable than the LME model when 

dealing with lowering degrees of random factor variance. Moreover, one can also say that the 

BCSM is a capable model for estimating fixed and lowering degrees of random factor variance 

when dealing with intensive longitudinal data. 
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