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Abstract 

This study aimed to understand the patterns of cognitive load in cyclists across various events 

by examining when and how changes in activity patterns occur during cycling, identifying 

which route features coincide with changes in cognitive load, and exploring how connectivity 

within the prefrontal cortex (PFC) is affected by different traffic conditions. Using functional 

near-infrared spectroscopy (fNIRS), we monitored haemoglobin oxygenation (HbO) levels in 

15 participants as they navigated eight different traffic events. Our statistical analysis revealed 

significant increases in cognitive load in response to three events: passing over a crosswalk, 

passing by a pedestrian, and avoiding an object in one's path. Dynamic route features, 

particularly those involving interactions with pedestrians and obstacles, had a greater impact 

on cognitive load than static features. Connectivity analysis revealed weak to medium 

connections within the PFC and varying network sizes across different events, with notable 

differences in connectivity patterns between the right and left dorsolateral PFC (DLPFC). 

This indicates that some events involve more brain regions activated together, while others 

involve more specialized networks with fewer activated areas. Interestingly, we observed a 

unique patter in the left-DLPFC during the Pedestrian event, where cognitive load decreased, 

contrary to the increased load in the right-DLPFC. Potential factors influencing these findings 

include the participants’ age and familiarity with the cycling route. Our findings suggest that 

cognitive load in cyclists is significantly affected by dynamic route features, emphasizing the 

need for infrastructure designs that minimize such interactions. Further research should 

explore these cognitive load patterns across different age groups and with more precise brain 

region mapping.  
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Investigating Cognitive Load in Cyclists while Navigating in Traffic through fNIRS 

Cycling is a widely practiced mode of transportation found globally, with varying 

levels of accessibility and infrastructure support in different places (Horton et al., 2016). 

Cyclists tend to prefer routes and cities with cycling-friendly infrastructure, with notable 

examples including Beijing (China), Ferrara (Italy), and Oxford (UK) (Horton et al., 2016). In 

some cities in the Netherlands, cycling culture is well-established, with approximately half of 

urban journeys made by bicycle (Horton et al., 2016). While some cities have dedicated 

cycling paths, many cyclists share the road with motorized traffic. Cycling is increasingly 

appealing due to its cost-effectiveness, environmental benefits, and positive health impacts, 

leading countries like Germany to expand their cycling networks ("Cycling Safety," 2012b). 

Some initiatives taken by cities to make cycling smarter include offering cycling training for 

children, developing public bike hire schemes, and introducing cycle-based tourism (Fraser 

and Lock, 2010; Adam et al., 2018). Other ideas include giving ‘open streets’ events, where 

some roads are closed temporarily for motorized traffic for safe use for cyclists (Adam et al., 

2018). In general, a lot of cities try to segregate cyclists from motor traffic by making 

dedicated cycling routes, or to necessitate low speed of motor vehicles in shared streets 

(Adam et al., 2018).  

Providing safety is an important concern when working towards a well-functioning 

transport system, since accidents still remain a significant public health concern. Cycling 

itself is seen as a rather benign activity, but it is being done in a dangerous environment 

(“Cycling Safety”, 2012b). Motorists are a primary cause of accidents and can lead to severe 

injuries for cyclists (“Cycling Safety”, 2012b). A study by Juhra et al. (2012) found that a 

collision with a motor vehicle is the most prevalent cause for accidents for cyclists aged 

between twenty and twenty-nine years old. The risk of being involved in an accident is also 

influenced by factors like road design and condition (“Cycling Safety”, 2012b). Poor road 

conditions that increase the likelihood of falling or slipping, as well as road designs that raise 
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the risk of collisions among traffic participants, are examples of these factors (“Cycling 

Safety”, 2012b).  

As a result of factors such as participating in motorized traffic and road design and 

condition, increased cognitive load can contribute to road accidents (Foy et al., 2016). 

Cognitive load is defined as the cognitive resources required for a specific task, it represents 

the relation between demands of the environment, human capacities and task performance 

(Causse et al., 2017). Increased cognitive load can hinder perception and attention during 

traffic participation (Engström et al., 2017). The inherent complexity of urban roads place 

substantial demands on the attentional system, making cognitive load especially critical (Foy 

et al., 2016; Broadbent et al., 2023). Route features that elevate cognitive load are often 

associated with pedestrians, parked cars, and higher traffic densities (Foy and Chapman, 

2018). 

Previous studies primarily examined cognitive load in the context of driving, revealing 

increased cognitive load during activities such as overtaking maneuvers (Foy et al., 2016). 

Furthermore, cognitive load rises during driving on demanding urban routes with numerous 

junctions and pedestrians, as compared to driving on straight roads with no pedestrians 

(Broadbent et al., 2023). Increased cognitive load has also been linked to reduced event 

detection performance, as it diverts attention away from the forward scene and narrows the 

field of view, thereby impairing hazard detection (Engström et al., 2005; Lee et al., 2009). 

Drivers under cognitive load found it challenging to recall interactions with roadway 

elements, including other traffic participants and road-related fixtures, following a driving 

session (Lee et al., 2009; Reyes and Lee, 2008). For example, they would be unable to 

remember passing by cyclists on the road or overlook certain traffic signs (Lee et al., 2009; 

Reyes and Lee, 2008). Previous research also demonstrated that drivers experiencing high 

cognitive demand consistently exhibited delayed braking responses, which is critical factor in 

road safety (Reyes and Lee, 2008; Engström et al., 2005). Interestingly, increased cognitive 
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load has been found to enhance driving performance in lane-keeping situations (Engström et 

al., 2017). This highlights that the relation between cognitive load and driving performance is 

not straightforward (Engström et al., 2017). However, the focus of this study is not on the 

relation between cognitive load and performance.  

Cognitive load changes observed in drivers manifest as alterations in prefrontal cortex 

activity, a brain region associated with cognitive load (Foy et al., 2016). Brain activity 

increases with difficulty in the prefrontal cortex, but also in the cingulate gyrus, temporal and 

parietal regions, and insula areas on both sides (Arsalidou et al., 2013). Similarly, activity in 

the right thalamus increases linearly with task difficulty (Arsalidou et al., 2013). Conversely, 

areas such as the medial prefrontal cortex, posterior cingulate, and superior temporal gyri 

show decreased activity as cognitive load increases (Arsalidou et al., 2013). It is worth noting 

that cognitive load in adults appears to involve multiple brain regions (Arsalidou et al., 2013).  

 

Figure 1 

Overview of Brain Areas 
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Note. Overview of different brain regions from Dominguez (2019).  

 

Multiple brain regions are also activated together as a network when cognitive load 

increases, which is called functional connectivity (Liu et al., 2017). Examining functional 

connectivity during cognitive processes like cognitive load provides insights into how the 

brain's networks reorganize to handle increased demands (Bastos & Schoffelen, 2016). 

Research shows that the brain adapts its network organization with increasing cognitive load, 

particularly involving the frontoparietal executive control network (FPN) (Dimitrakopoulos et 

al., 2023; Zuo et al., 2019). Analyzing these connectivity patterns not only reveals 

engagement during tasks but also predicts performance under cognitive load, as a more 

responsive network is linked to better outcomes (Zuo et al., 2019; Zanto & Gazzaley, 2013; 

Nagel et al., 2011). An important brain area that is involved in the FPN network is the 

dorsolateral prefrontal cortex (DLPFC), which is part of the prefrontal cortex (PFC) (Fishburn 

et al., 2014). Outside of this network, it was also found that connectivity between areas within 

the PFC as well as between the PFC and the parietal cortex increased with cognitive load 

(Honey et al., 2002; Zanto & Gazzaley, 2013). When applied to driving, connections between 

the PFC, motor-related areas, the parietal cortex, vision-related areas, the thalamus as well as 

the cerebellum can be found, indicating the involvement of various brain regions in cognitive 

load and driving (Liu et al., 2017).  

There are numerous neuroimaging methods that are suitable to detect changes in 

cognitive workload, such as electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) (Causse et al., 2017). However, in ecological contexts, functional 

near-infrared spectroscopy (fNIRS) has demonstrated greater suitability for measuring 

cognitive load when compared to EEG and fMRI (Causse et al., 2017). fNIRS is a functional 

neuroimaging technique that measures changes in brain activation through the concentration 

of oxygenated and deoxygenated hemoglobin in the blood (Foy et al., 2016). The portability 
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and low motion artefact sensitivity of fNIRS sensors, as demonstrated in prior studies, make it 

ideal for investigating the cognitive load in naturalistic settings without participant constraints 

or data quality compromises (Broadbent et al., 2023; Fishburn et al., 2014).  

Studies that explored the relationship between driving and cognitive load using fNIRS 

observed changes in oxygenated and deoxygenated haemoglobin levels in the prefrontal 

cortex with increasing cognitive load (Causse et al., 2017; Foy and Chapman, 2018). 

Specifically, research employing fNIRS to investigate cognitive load found that heightened 

cognitive demands led to oxygenation changes in the left dorsolateral prefrontal cortex and 

increased brain activation in both the right and left prefrontal cortex (Causse et al., 2017).  

Based on previous research, we anticipate cyclists to experience increased cognitive 

load, as indicated by elevated HbO levels, during both static and dynamic route features. This 

increase is expected to be more pronounced in dynamic situations, since higher cognitive load 

has been found to coincide with dynamic route features involving pedestrians, parked cars, 

and other traffic participants such as moving vehicles and cyclists (Broadbent et al., 2023; 

Foy and Chapman, 2018). Furthermore, we expect to discover strong connections between 

various regions within the PFC while cycling during periods of cognitive load, as previous 

studies have shown that connectivity within the PFC increases with load (Honey et al., 2022; 

Zanto & Gazzaley, 2013). 

Understanding the patterns of cognitive load in cyclists across various events can 

provide valuable insights into traffic safety and cyclist behavior, highlighting the critical role 

of cognitive load in potentially hazardous situations. Given the limited research on cognitive 

load in the context of cycling, this study aims to investigate when cyclists undergo cognitive 

load changes and how these changes manifest in brain activity and connectivity. fNIRS data, 

which is sensitive to cognitive load in the prefrontal cortex region, will be employed.  

This research aims to address the following questions: 
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1. When and how do activity patterns fluctuate, as indicated by changes in oxygenated 

and deoxygenated haemoglobin levels, during cycling across various events (dynamic 

vs static route features)? 

2. Which dynamic and static route features encountered during cycling cause the most 

prominent changes in cognitive load patterns? 

3. How does synchronized activation between different regions of the PFC change when 

encountering static and dynamic route features, compared to when no event occurs? 

Methods 

To address our research questions, we utilized brain activity measurements recorded 

with an fNIRS device in conjunction with video footage captured by an action camera. This 

dataset was originally collected as a part of a thesis project at the University of Twente, the 

Netherlands, with the title “Unravelling the mind of cyclists: Exploring the potential of fNIRS 

in capturing subjective cycling experiences” (Chinpongsuwan, 2023). During the study, 

participants’ blood oxygenation level dependent (BOLD) signals were monitored using fNIRS 

while cycling along a predefined route.  

Data collection 

In this data collection section, we reiterate the steps that were taken in the study by 

Chinpongsuwan (2023) for data collection. 

Participants  

The study by Chinpongsuwan (2023) involved 17 participants, consisting of 6 females 

and 11 males, aged between 19 and 35 years (M = 23, SD = 4.1). Participants were selected 

based on absence of psychoactive drug use, absence of brain-related disorders, and 

competence in cycling, such as being able to remove one hand from the steering while 

cycling. Informed consent was obtained from all participants (Chinpongsuwan, 2023). 

Experimental Setup 
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The fNIRS data for the study by Chinpongsuwan (2023) was collected using the 

Artinis Brite MKII, a two-wavelength continuous wave system (Artinis Medical Systems, the 

Netherlands). The device captured blood oxygenation changes over the prefrontal cortex. The 

setup included 18 optodes, comprising 10 transmitters and 8 receivers, resulting in 27 

measurement channels. The fNIRS data was recorded at a rate of 50Hz and transmitted to a 

laptop running OxySoft via Bluetooth. The OxySoft software (version 3.5.15.4., Artinis 

Medical Systems, the Netherlands) was developed by Artinis and allows real-time monitoring 

as well as offline recording of the measurements.  

Route and Video Recording 

Participants cycled a 7.5km route through diverse environments (Chinpongsuwan, 

2023). A portion of the route exposed participants to motorized traffic, with cycling lanes 

running parallel to the road, sometimes without physical barriers. This section included 

frequent traffic stops, intersections, and interactions with other cyclists (Figure 3). Another 

segment of the route involved dedicated bicycle pathways away from the main road, leading 

through natural surroundings (Figure 4). Simultaneously, a GoPro HERO 9 action camera was 

used to record the cycling route from a forward-facing perspective (Chinpongsuwan, 2023). 

 

Figure 2 

Picture of Cycling Route 
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Note. This photo was taken from the thesis by Chinpongsuwan (2023). The photo shows an 

overview of the cycling route in Enschede, the Netherlands. 

 

Figure 3 

Picture of Motorized Traffic Route 
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Note. This photo was taken from the thesis by Chinpongsuwan (2023). The photo shows a 

part of the route through motorized traffic, located at Hengelosestraat, Enschede. 

 

Figure 4 

Picture of Bicycle Pathways 

 

Note. This photo was taken from the thesis by Chinpongsuwan (2023). The photo shows a 

part of the route on a designated bicycle pathway, located at bicycle highway F35, Enschede. 

 

Procedure and Task 

For the study by Chinpongsuwan (2023), participants were instructed to abstain from 

alcohol and psychoactive drugs at least 24 hours before their trial, for safety reasons and to 

avoid potential confounding factors such as unnatural neural responses. Additionally, 

participants were instructed to bring their own pedal-powered bicycle; electric bicycles were 

not permitted for use during the trial (Chinpongsuwan, 2023). At the start of the trial, the 

fNIRS device was placed on the participant’s head and connected via Bluetooth to a laptop 

running OxySoft. Optodes were carefully inspected for proper functioning, ensuring that all 

channels received adequate light. Subsequently, the fNIRS device was disconnected from 
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OxySoft in preparation for offline measurement. Participants were then escorted outside to 

their bicycles, where the action camera and a mobile phone (Apple iPhone XR) were mounted 

on their bicycle. The mobile phone was equipped with the PIEL Survey experience sampling 

app (pielsurvey.org), which had been preprogrammed for the experiment. After camera 

recording and fNIRS measurement had begun, participants were instructed to remain still for 

approximately two minutes to establish a baseline measurement before starting to cycle 

(Chinpongsuwan, 2023). Throughout the trial, the PIEL Survey app prompted participants 

every three minutes to rate their current feelings. Upon completion of the trial, participants 

engaged in a brief interview lasting approximately 10 minutes (Chinpongsuwan, 2023). 

During this interview, video footage captured during the ride, specifically the moments when 

participants received prompts form the app, was shown to the participants. They were then 

asked to rate their emotions during those instances. This served as a backup in case of any 

malfunction with the PIEL Survey app during the ride or in the event that participants failed to 

respond to the prompts. Additionally, participants were encouraged to provide detailed 

elaborations on their emotions to provide contextual information for interpreting the results 

(Chinpongsuwan, 2023). 

Data Preprocessing 

From this data preprocessing section onwards, we describe the steps we took for the 

present study.  

The video recordings captured with the action camera were reviewed, and events 

observed during the participants’ trials were documented. From this list of events, those that 

occurred frequently across multiple participants were grouped together based on similarity 

(e.g., the Motorized Vehicle event encompassed both cars and motorcycles), where applicable, 

and selected as the final event codes. Additionally, the event codes were categorized into 

static and dynamic road features. Static features encompassed road infrastructure elements, 

while dynamic features included moving elements. 
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Table 1 

Events Classified by Static or Dynamic Route Features 

Static route feature Dynamic route feature 

Traffic Light Motorized Vehicles 

Intersection Cyclist 

Roundabout Pedestrian 

Crosswalk Avoiding Object 

Note. The Avoiding Object event indicates instances where participants encountered an object 

blocking their path, requiring them to move around it. 

 

The video recordings were transcribed according to these event codes. For every 

participant, a .xlsx sheet was generated containing columns for the start and end timestamps 

of each event, along with a description of the event and a brief explanation of the situation. 

This process was carried out for all events captured during the video recording of the trail, for 

all participants. Intervals during which participants cycled without encountering any road 

infrastructure or moving objects were labeled as Baseline. 

The fNIRS data recorded during cycling sessions were converted to .snirf files (Shared 

Near InfraRed File Format) using OxySoft. The .snirf files were then loaded into Homer3 

(Huppert et al., 2009), a MATLAB application designed to analyze fNIRS data. In Homer3, 

all channels were inspected for every participants and channels with poor signal quality were 

removed manually. Two participants were excluded from further analysis due to poor data 

quality or missing data.  

The data were converted from intensity to optical density (OD). To remove motion 

artifacts, a wavelet-based motion correction was applied to the data. A low-pass filter with a 

cutoff frequency of 0.5 Hz was used to reduce high-frequency instrument noise and 

physiological noise, such as fast cardiac oscillations. This filter has been used in previous 
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fNIRS research (Foy et al., 2016). Subsequently, OD data were then converted to 

concentration data. The conversion from data to optical density and subsequently to 

concentration data are standard preprocessing steps for fNIRS data (Pinti et al., 2019). 

The concentration data were divided into epochs, each corresponding to the 

timestamps of the eight events and Baseline, which were determined based on the video 

recordings. Following epoching, block averaging was performed over a five-second interval, 

spanning one second before event onset to four seconds after event onset. This five-second 

window was chosen because it captures the trend of the BOLD signal, which peaks between 3 

and 7 seconds after stimulus onset, ensuring a comprehensive view of the hemodynamic 

response despite varying event durations (Yeşilyurt et al., 2008; Hillman, 2014; Wilcox & 

Biondi, 2015). Although the hemodynamic response begins within 1-2 seconds, observing the 

full response from onset to peak (2*2 seconds = 4 seconds) and accounting for event length 

variability makes the five-second window optimal (Wilcox & Biondi, 2015). A hemodynamic 

response function (HRF) model was fitted over the block averages. Fitting an HRF model is a 

common preprocessing step in analyzing fNIRS data, which helps to interpret the neural 

correlates of cognitive processes more accurately (Dans et al., 2021). The resulting HRF 

values were exported from Homer3 as a .txt file. 

In our analyses, we focused on oxygenated hemoglobin (HbO) values, as they have 

demonstrated a stronger correlation with blood flow compared to deoxygenated hemoglobin, 

thus serving as a more reliable marker of hemodynamic activation (Fishburn et al., 2014). 

HbO HRF values from channels positioned over the dorsolateral prefrontal cortex 

(DLPFC) were extracted from the exported .txt file and organized into a separate file. The 

DLPFC was chosen as the region of interest due to its frequent association with cognitive 

load. Previous studies have consistently linked cognitive load with HbO levels in the DLPFC 

(Peck et al., 2014; Unni et al., 2015; Bunce et al., 2011), with significantly higher blood 

oxygenation levels observed during tasks involving increased cognitive load (Bishop et al., 
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2021). Each hemisphere of the DLPFC appears to be more dominant for different types of 

cognitive workload; for instance, the left-DLPFC is more implicated in tasks requiring 

memory load, while the right-DLPFC is dominant during vigilance-related tasks (Causse et 

al., 2017). Data from optodes positioned over both sides of the DLPFC were analyzed, as 

cognitive workload affects both hemispheres (Lim et al., 2020). 

Each hemisphere was represented by two channels corresponding to the DLPFC. For 

the right-DLPFC, channels between optodes Tx2, Rx1 and Rx3 (channels 2,1 and 2,3) were 

analyzed. Likewise, for the left-DLPFC, channels between optodes Tx10, Rx7 and Rx8 were 

examined (channels 10,7 and 10,8). 

 

Figure 5 

Artinis Optode Template Guide 

 

Note. This optode template guide was taken from the website of Artinis (Artinis Medical 

Systems, 2024). 
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Statistical Analysis 

Statistical analyses were conducted using the R programming language within RStudio 

(RStudio Team, 2024). To address the first and second research question, which pertain to 

changes in activity patterns during cycling across various events and the relationship between 

route features and changes in cognitive load, t-tests were performed. 

Analyses were differentiated based on hemisphere, focusing separately on the right 

and left-DLPFC. For each event type, t-tests were conducted for all time points of the block 

averages of five seconds, comparing the event’s HbO HRF values to those of the Baseline. 

For each comparison, graphs were generated to visualize the fluctuation of HbO HRF values 

for both the event and Baseline. Significance thresholds were marked on the graphs to 

indicate moments where HbO HRF values differed significantly between the event and 

Baseline conditions.  

Connectivity Analysis 

For the connectivity analysis, the block-averaged concentration data, which are the 

averages of the preprocessed data, were utilized instead of the HRF-fitted data. This 

concentration data were obtained by accessing the .mat files generated during the 

preprocessing of the data in Homer3. Each participant’s preprocessing result is stored in 

these .mat files. Subsequently, the .mat files were converted to a .txt format using MATLAB, 

then imported into Excel and saved as .xlsx files. The data were organized by extracting the 

HbO values from each participant’s file for a specific event and channel, and aggregating 

them into new files. This resulted in a file structure comprising nine folders, each 

corresponding to one of the eight events and Baseline. Within each event and Baseline folder, 

there are 27 .xlsx files, with each file representing one channel and containing the HbO values 

of all 15 participants for that event and channel (i.e., each file contains 15 columns, one for 

each participant).  
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Functional connectivity is estimated by calculating the correlations between nodal 

activities based on BOLD signals collected during a certain task (Liu et al., 2017). For each 

event and Baseline, correlations between all possible channel pairs were calculated using 

Python (Python Software Foundation, 2021). The resulting correlation matrices were saved 

as .xlsx files (see Appendix). Additionally, two different plots were generated for each event 

and Baseline to illustrate the results of the connectivity analysis. The two plots were merged 

into one figure for each event and Baseline. To visualize the connectivity between the 

different channels, the MNI coordinates of the channels were extracted from OxySoft by 

digitizing the optodes and creating a topograph. The right plot in the figures shows medium or 

strong correlations on a topographic map, generated in Python using the NetPlotBrain 

package (Fanton & Thompson, 2023). The left plot in the figures was created using the 

Matplotlib library (Hunter, 2007), illustrating the varying strengths of correlations between 

channels and indicating the location of each channel within the PFC. 

Results 

Static Route Features: Comparison between Baseline and Events 

As a result of the t-tests for the static route features, one of the four events of this 

category showed a significant difference in haemoglobin oxygenation levels with Baseline. 

The overview in Table 2 shows all results for the static route features, including the 

insignificant results. The blue graph lines represent Baseline, the red graph lines represent the 

respective event. Grey shaded areas in a figure show where a significant difference in HbO 

levels was found. Bigger versions of the figures for insignificant results can be found in 

Appendix A. 

 

Table 2 

Overview of Static Route Features Results 

 Right-DLPFC Left-DLPFC 
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From the trend overview in Table 2, we see how the HRF HbO levels, and therefore 

cognitive load, during different events compared to cognitive load during Baseline, when no 

event happened. When the HRF HbO values for an event were higher than Baseline, it 

indicated more activity in either the right or left DLPFC, suggesting increased cognitive load 

during that event. When the HRF HbO values for an event were lower than Baseline, it 
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suggested lower activity and therefore decreased cognitive load during that event. A similar 

overview for the dynamic route features is provided in Table 4. 

Static Route Features: Right-DLPFC 

The comparison between the Crosswalk event and Baseline revealed a statistically 

significant difference (p < 0.05) in hemodynamic responses within the right-DLPFC between 

time points 3840 and 3900, as indicated by the shaded area in the graph (Figure 6). Figure 6 

depicts the comparison of HbO HRF values, representing the concentration of HbO in units of 

Molar per millimeter (M/mm), between the Crosswalk event and Baseline. 

 

Figure 6 

Comparing Event Crosswalk with Baseline at the Right-DLPFC 

 

Note. The x-axis represents time in milliseconds (ms), with time point 0 indicating the onset 

of the event. Shaded areas represent time intervals where significant differences (p < 0.05) 

between Baseline and Crosswalk event were detected based on t-tests. Error bars indicate the 

standard error of the averaged signal. 
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The corresponding t-test results for this interval are summarized in Table 3. The table 

only shows the t-test results for the time points where there was a significant difference 

between the Crosswalk event and Baseline. During the interval where we found a significant 

difference, the HbO HRF values for the Crosswalk event were higher than those for Baseline. 

This means there was more activity, and therefore more cognitive load, in the right-DLPFC 

during the Crosswalk event compared to when no event was happening. 

 

Table 3 

Results from T-tests Comparing Event Crosswalk with Baseline for the Right-DLPFC 

Time Point (ms) Mean Crosswalk 

(M/mm) 

Mean Baseline 

(M/mm) 

t-value p-value 

3840 8,869 2,079 17,537 0,036 

3860 8,985 2,099 67,500 0,009 

3880 9,099 2,119 37,718 0,016 

3900 9,211 2,139 14,929 0,042 

 

For the static route features, no other significant differences in haemoglobin 

oxygenation levels between Baseline and any of the other events were found. 

Dynamic Route Features: Comparison between Baseline and Events 

The t-tests for the dynamic route features revealed significant differences in 

hemoglobin oxygenation levels with Baseline for two events. For the Pedestrian event, 

significant results were found for both sides of the DLPFC. The overview in Table 4 shows all 

results for the dynamic route features, including the insignificant results. The blue graph lines 

represent Baseline, the red graph lines represent the respective event. Grey shaded areas in a 

figure show where a significant difference in HbO levels was found. Bigger versions of the 

figures for insignificant results can be found in Appendix A.  
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Table 4 

Overview of Dynamic Route Features Results 

 Right-DLPFC Left-DLPFC 
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Dynamic Route Features: Right-DLPFC 

During the Pedestrian event at the right-DLPFC, significant differences in hemoglobin 

oxygenation levels were detected compared to Baseline as well between time points 2760 and 
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3100. The HbO HRF means in M/mm for Baseline and Pedestrian that differed significantly 

(p < 0.05) are indicated by the shaded area in Figure 7. 

 

Figure 7 

Comparing Event Pedestrian with Baseline at the Right-DLPFC 

 

Note. The x-axis represents time in milliseconds (ms), with time point 0 indicating the onset 

of the event. Shaded areas represent time intervals where significant differences (p < 0.05) 

between Baseline and Pedestrian event were detected based on t-tests. Error bars indicate the 

standard error of the averaged signal. 

 

For this time interval, the corresponding t-test results are detailed in Table 5. The table 

only shows the t-test results for the time points where there was a significant difference 

between the Pedestrian event and Baseline. During the interval where we found a significant 

difference, the HbO HRF values for the Pedestrian event were higher than those for Baseline. 

This means there was more activity, and therefore more cognitive load, in the right-DLPFC 

during the Pedestrian event compared to when no event was happening. 
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Table 5 

Results from T-tests Comparing Event Pedestrian with Baseline for the Right-DLPFC 

Time Point (ms) Mean Pedestrian 

(M/mm) 

Mean Baseline 

(M/mm) 

t-value p-value 

2760 4,375 1,200 14,432 0,044 

2780 4,467 1,213 20,288 0,031 

2800 4,551 1,226 30,884 0,020 

2820 4,629 1,239 54,635 0,011 

2840 4,700 1,252 145,803 0,004 

2860 4,763 1,265 472,097 0,001 

2880 4,819 1,279 114,124 0,005 

2900 4,867 1,292 75,922 0,008 

2920 4,908 1,305 64,862 0,009 

2940 4,940 1,318 64,346 0,009 

2960 4,965 1,331 73,753 0,008 

2980 4,981 1,345 105,609 0,006 

3000 4,990 1,358 309,332 0,002 

3020 4,989 1,372 192,031 0,003 

3040 4,981 1,385 62,736 0,010 

3060 4,964 1,399 34,377 0,018 

3080 4,939 1,413 22,316 0,028 

3100 4,905 1,427 15,797 0,040 

 

Dynamic Route Features: Left-DLPFC 
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Significant differences (p < 0.05) in hemoglobin oxygenation levels were also found 

for the Pedestrian event with Baseline at the left-DLPFC, but for two time intervals. As shown 

in Figure 8, the significant difference in HbO HRF values appeared between time points 2600 

and 2640, and between time points 3320 and 3360. These two intervals are marked with 

shaded areas in Figure 8. 

 

Figure 8 

Comparing Event Pedestrian with Baseline at the Left-DLPFC 

 

Note. The x-axis represents time in milliseconds (ms), with time point 0 indicating the onset 

of the event. Shaded areas represent time intervals where significant differences (p < 0.05) 

between Baseline and Pedestrian event were detected based on t-tests. Error bars indicate the 

standard error of the averaged signal. 

 

The corresponding t-test results for these intervals are summarized in Table 6. The 

table only shows the t-test results for the time points where there was a significant difference 

between the Pedestrian event and Baseline. During both time intervals where we found a 
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significant difference, the HbO HRF values for the Pedestrian event were lower than those for 

Baseline. This means there was less activity, and therefore less cognitive load, in the left-

DLPFC during the Pedestrian event compared to when no event was happening. 

 

Table 6 

Results from T-tests Comparing Event Pedestrian with Baseline for the Left-DLPFC 

Time Point (ms) Mean Pedestrian 

(M/mm) 

Mean Baseline 

(M/mm) 

t-value p-value 

2600 -1,260 0,738 -29,719 0,021 

2620 -1,237 0,733 -88,349 0,007 

2640 -1,215 0,728 -17,907 0,035 

3320 -0,863 0,584 -16,198 0,039 

3340 -0,872 0,584 -146,477 0,004 

3360 -0,882 0,585 -12,794 0,049 

 

For the Avoiding Object event at the left-DLPFC, a significant difference (p < 0.05) in 

HbO HRF means with Baseline in M/mm was found for time points 2820 to 3160, as 

indicated by the shaded area in Figure 9. 

 

Figure 9 

Comparing Event Avoiding Object with Baseline at the Left-DLPFC 
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Note. The x-axis represents time in milliseconds (ms), with time point 0 indicating the onset 

of the event. Shaded areas represent time intervals where significant differences (p < 0.05) 

between Baseline and Avoiding Object event were detected based on t-tests. Error bars 

indicate the standard error of the averaged signal. 

 

The corresponding t-test results are presented in Table 7. The table only shows the t-

test results for the time points where there was a significant difference between the Avoiding 

Object event and Baseline. During the interval where we found a significant difference, the 

HbO HRF values for the Avoiding Object event were higher than those for Baseline. This 

means there was more activity, and therefore more cognitive load, in the left-DLPFC during 

the Avoiding Object event compared to when no event was happening. 

 

Table 7 

Results from T-tests Comparing Event Avoiding Object with Baseline for the Left-DLPFC 
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Time Point (ms) Mean Avoiding Object 

(M/mm) 

Mean Baseline 

(M/mm) 

t-value p-value 

2820 5,166 0,678 12,739 0,049 

2840 5,217 0,672 14,322 0,044 

2860 5,263 0,666 16,321 0,038 

2880 5,302 0,660 18,934 0,033 

2900 5,336 0,655 22,508 0,028 

2920 5,363 0,649 27,714 0,022 

2940 5,384 0,644 36,032 0,017 

2960 5,399 0,638 51,517 0,012 

2980 5,407 0,633 90,666 0,007 

3000 5,408 0,628 386,922 0,001 

3020 5,404 0,624 167,934 0,003 

3040 5,392 0,619 68,414 0,009 

3060 5,374 0,615 42,680 0,014 

3080 5,349 0,611 30,835 0,020 

3100 5,318 0,607 24,009 0,026 

3120 5,280 0,603 19,558 0,032 

3140 5,236 0,600 16,419 0,038 

3160 5,185 0,597 14,080 0,045 

 

For the dynamic route features, no other significant differences in hemoglobin 

oxygenation levels between Baseline and any of the other events were found. 

Connectivity Analysis Results 
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The connectivity analysis results, represented by correlation matrices between all 

channels for each event and Baseline, are provided in Appendix C. For each event and 

Baseline, two plots visualize the connectivity between channels. The left plot shows the 

connectivity between channels from a top-down (axial) view. Light grey lines signify 

correlations with a coefficient up to 0.3. Grey lines signify correlations with a coefficient of 

0.3 to 0.8. Black lines signify correlations with a coefficient of 0.8 or higher. The colors of the 

nodes indicate different regions of the PFC: dorsolateral PFC (DLPFC), dorsomedial PFC 

(DMPFC), ventromedial PFC (VMPFC), and orbitofrontal cortex (OFC). The right plot shows 

the connectivity from an anterior view on a topographical map. Only correlations with a 

coefficient of 0.3 or higher are shown. 

As illustrated in Figure 10, the connectivity of Baseline showed weak correlations of 

up to 0.3 and medium correlations from 0.3 to 0.8. No strong correlations were observed. 

Medium-strength correlations were clustered around the frontal area of the PFC but showed a 

broad network throughout the PFC. This suggested that multiple areas of the PFC were 

activated together when no event was happening during cycling. The strongest correlation 

coefficient in Baseline was r = 0.578.  

 

Figure 10 

Connectivity Plots of Baseline  
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For the Avoiding Objects event, many weak correlations were observed, with few 

correlations of medium strength and no strong correlations, as depicted in Figure 11. Only the 

channels located at the left-DLPFC exhibited medium connectivity with a channel located at 

the right orbitofrontal cortex (OFC). Correlations of medium strength were focused on the 

dorsomedial prefrontal cortex (DMPFC). During this event, a more specific network seemed 

to be activated, with not all areas of the PFC being involved. The highest correlation 

coefficient for Avoiding Objects was r = 0.462. 

 

Figure 11 

Connectivity Plots of Avoiding Object Event 
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Similar patterns were observed for the Cyclist event, with predominantly weak or 

medium correlations and no strong correlations. The strongest correlation observed was r = 

0.587. As shown in Figure 12, only the channels of the left-DLPFC had medium connectivity 

with channels from other areas, whereas the right-DLPFC had weak connections. The 

network for the Cycling event included all measured areas of the PFC, except for the right 

DLPFC, but had overall few connections of medium strength. This pointed towards a broad 

but less interactive network during this event. 

 

Figure 12 

Connectivity Plots of Cyclist Event 
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For the Crosswalk event condition, no strong correlations with a coefficient of 0.8 or 

higher were found. Mostly weak correlations up to 0.3 and fewer correlations with medium 

strength from 0.3 to 0.8 were observed. This can be seen in the right plot in Figure 13, which 

displays only medium or strong correlations. Most measured regions of the PFC were 

activated together, but there were few connections between the areas, indicating a less 

interactive network. The strongest correlation found for the Crosswalk event was r = 0.582. 

 

Figure 13 

Connectivity Plots of Crosswalk Event 
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For the Intersection event, both weak and medium strength correlations were 

observed. All channels except for the two channels located at the right-DLPFC exhibited 

medium correlations with another channel, as shown in Figure 14. We observed a broad and 

relatively dense network for this event, with most measured PFC regions being activated 

together and interacting frequently. No strong correlation with a coefficient of 0.8 or higher 

was found, with the highest correlation coefficient for the Intersection event being r = 0.627. 

 

Figure 14 

Connectivity Plots for Intersection Event 
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Similar to other events, weak and medium connections were observed for the 

Motorized Vehicle event, with no strong correlations. The plots in Figure 15 illustrate that 

connections of medium strength appeared to be focused on the left side of the PFC. The nodes 

located at the left-DLPFC had more medium correlations with other nodes than the nodes 

located at the right-DLPFC. This indicated that more regions in the left hemisphere were 

activated together during this event. The strongest correlation coefficient found for this event 

was r = 0.653. 

 

Figure 15 

Connectivity Plots for Motorized Vehicle Event 
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In the Pedestrian event condition, numerous weak and medium correlations were 

observed, but no strong correlations. This is evident in the plots of Figure 16, as the right plot 

shows many connectivity lines. The left plot illustrates that the medium connections were 

clustered in the frontal area of the PFC, in the frontal regions of the DMPFC and the 

ventromedial prefrontal cortex (VMPFC). The left-DLPFC had more medium correlations 

than the right-DLPFC. During the Pedestrian event, these above mentioned regions were 

activated simultaneously, and due to the dense network, they also showed frequent 

interactions. The strongest correlation coefficient of the Pedestrian event was r = 0.635. 

 

Figure 16 

Connectivity Plots for Pedestrian Event 
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The Roundabout event mostly exhibited weak correlations of up to 0.3, few medium 

correlations from 0.3 to 0.8, and no strong correlations of 0.8 or higher, as depicted in Figure 

17. The strongest connections for this event were located in the frontal regions of the PFC. 

For this event, we observed a specialized network where few regions of the PFC were 

activated, with minimal interactions between them. The strongest correlation coefficient for 

the Roundabout event was r = 0.426.  

 

Figure 17 

Connectivity Plots for Roundabout Event 



36 
 

 

 

Similar to other events, the Traffic Light event exhibited weak and medium-strength 

connections with no strong connections, as depicted in Figure 18. The medium correlations 

appeared to be focused on the frontal area of the PFC, with no medium connections observed 

for the nodes located over the right-DLPFC. For the Traffic Light event, the network was 

overall broad, with most measured areas of the PFC being activated together, but the network 

was less dense, indicating less frequent interaction between the different regions. The 

strongest correlation coefficient found for the Traffic Light event was r = 0.502. 

 

Figure 18 

Connectivity Maps for Traffic Light Event 
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Discussion 

The present study aimed to understand the patterns of cognitive load in cyclists across 

various events by examining when and how changes in activity patterns occur during cycling, 

identifying which route features coincide with changes in cognitive load, and exploring how 

connectivity within the PFC is affected by different traffic conditions. 

Summary of Results 

The results of the statistical analysis indicate that three of the eight events elicited 

increased cognitive load in participants. At the right-DLPFC, we find higher HbO levels for 

the crossing a crosswalk and viewing a pedestrian compared to Baseline, while at the left-

DLPFC, HbO levels are higher for avoiding an object but lower for viewing a pedestrian 

compared to Baseline. Since viewing a pedestrian and avoiding an object are dynamic route 

features and crossing over a crosswalk is a static route feature, mostly dynamic route features 

coincide with a significant change in cognitive load. For all events that have a significant 

difference from Baseline, the interval where the difference was found occurs from almost 

three seconds to almost four seconds after the event onset, indicating that the increase or 

decrease in cognitive load occurs three to four seconds after encountering an event. We 
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anticipated this timing of change in HbO levels, as it aligns with the expected dynamics of the 

BOLD signal as observed in previous fMRI and fNIRS studies (Yeşilyurt et al., 2008; 

Hillman, 2014). 

The results of the connectivity analysis indicate that for all events as well as Baseline, 

weak and medium connections are found, but no strong connections between the different 

areas of the PFC. The medium connections between the DLPFC, DMPFC, VMPFC, and OFC 

are quite evenly distributed for Baseline; however, a trend towards the frontal area of the 

DMPFC and the VMPFC can be observed (Figure 10). The same trend is observed across all 

of the eight events. Channels located in the frontal area of the DMPFC and the VMPFC have 

at least a few medium connections with other channels, even if there are few medium 

connections for a certain event. Another observation for all events except the Crosswalk event 

is that the right-DLPFC channels have no or fewer medium connections to other channels 

compared to the left-DLPFC channels. This cannot be observed for Baseline, where both sides 

of the DLPFC have medium connections with other channels. No difference in connectivity 

patterns between dynamic and static route features is detected, as all events exhibit similar 

trends. 

When examining the networks of the strongest connections for each event and 

Baseline, Baseline shows a broad network involving all PFC regions (Figure 10). Passing 

through a roundabout has the smallest and least dense network, focused on the frontal 

DMPFC and VMPFC (Figure 17). Avoiding an object also targets these areas but with 

slightly more connections (Figure 11). Crossing a crosswalk engages more PFC areas than the 

previous events but has a less dense network than passing a cyclist or a traffic light (Figure 

13). Passing a cyclist has a broader network than passing a traffic light, which is denser and 

focuses on the frontal DMPFC, VMPFC, and left-DLPFC (Figures 12, 18). Passing a 

motorized vehicle involves more PFC areas than the previous events but is less dense than 

going through an intersection and viewing a pedestrian (Figure 15). Going through an 
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intersection shows a broad and dense network, especially in the frontal DMPFC, VMPFC, and 

left-DLPFC (Figure 14). Viewing a pedestrian results in a less broad network than Baseline 

but has the densest network for the frontal DMPFC, VMPFC, and left-DLPFC among all 

events (Figure 16). 

Interpretation of Statistical Analysis Results 

As expected, and found in literature, we observe increased cognitive load for both 

static and dynamic route features, with a greater increase for dynamic route features (Foy and 

Chapman, 2018). Dynamic route features that elevate cognitive load in driving studies are 

associated with pedestrians, parked cars, and encountering cars or other cyclists (Foy and 

Chapman, 2018). Especially encountering pedestrians seems to be a factor coinciding with 

elevated load for car drivers, and in our study, we observe that it also elevates cognitive load 

for cyclists (Broadbent et al., 2023). Parked cars can be categorized similarly to the Avoiding 

Objects event, as both involve moving around an object obstructing one’s path. We observe a 

significant increase in cognitive load, indicated by elevated HbO levels, for the Avoiding 

Object event. However, for the other dynamic route features (Motorized Vehicle and Cyclist), 

we do not observe a significant increase in cognitive load, despite previous research 

suggesting these features elevate cognitive load (Foy and Chapman, 2018). 

 When it comes to the static route features, we only find a significant increase in 

cognitive load when participants passed over a crosswalk (Figure 6), and not for other features 

such as traffic lights, intersections, and roundabouts. This is contradictory to previous 

research findings, as those features are part of urban road design, which is also thought to 

elicit an increase in cognitive load (Broadbent et al., 2023). 

A unique activity pattern we find occurs for the Pedestrian event measured at the left-

DLPFC. Here, instead of finding higher HbO levels for the Pedestrian event compared to 

Baseline, indicating increased cognitive load, we observe lower HbO levels for the Pedestrian 

event, meaning that cognitive load decreases. This is a unique activation pattern and an 
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unusual amplitude order compared to the significant increase in cognitive load found for the 

Pedestrian event at the right-DLPFC. 

The study by Foy and Chapman (2018) found that prefrontal HbO levels increased 

when participants were driving on routes that included pedestrians. However, the effect of 

pedestrians on drivers is not well researched yet, since most driving studies do not include 

pedestrians (Oba et al., 2022). In driving studies involving pedestrians, researchers discovered 

that pedestrians act as external distractors, drawing the driver's attention. This is because 

viewing another person constitutes social information, triggering task-irrelevant processing 

that can impact cognitive load during driving (Oba et al., 2022). In another driving study, the 

highest increase in mental activity was observed in an anterior part of the PFC when 

participants faced the risk scenario of a pedestrian crossing the road, compared to other risk 

scenarios (Wang et al., 2023). Given that seeing a pedestrian leads to increased activity, it 

should correspond to a rise in cognitive load, as we observe in the right-DLPFC, rather than a 

decrease, as we see in the left-DLPFC. Another approach to explain this unique pattern is to 

look into the different roles of the two sides of the DLPFC. The left-DLPFC is primarily 

engaged in tasks demanding top-down cognitive control, such as planning and problem-

solving (Allaert et al., 2019; Y. Wang et al., 2020). In contrast, the right-DLPFC is more 

associated with regulating emotions and attending to external stimuli, particularly during 

stress-inducing or vigilance-demanding tasks (Allaert et al., 2019; Y. Wang et al., 2020; 

Causse et al., 2017). This might explain why there is a significant increase in activity in the 

right-DLPFC, given that Oba et al. (2022) suggested pedestrians serve as distractors by 

capturing the driver’s attention. However, it is not specified whether the engagement of the 

right-DLPFC in attentional processes linked to external stimuli exerts an inhibitory effect on 

the left-DLPFC, leading to a decrease in its activity. Current research does not explain the 

observed effect on the left-DLPFC when observing a pedestrian; thus, further research is 

needed to understand this activity pattern. 
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Possible reasons for not observing an increase in cognitive load for the other five route 

features in this study could be attributed to the age range of participants, 19 to 35, with a 

mean age of 23 (Foy et al., 2016). Research suggests that reduced PFC activity is associated 

with PFC maturation, which is not complete until around 25 years of age. Older individuals 

typically exhibit greater changes in PFC activity compared to younger ones (Foy et al., 2016). 

Given our participants' mean age of 23, it is possible that many participants have not yet fully 

developed their PFC, resulting in reduced activity related to cognitive load. However, further 

evidence is needed to solidify this association (Foy et al., 2016). 

Another explanation could be familiarity or automation. The participants, consisting of 

17 students and faculty members from the University of Twente and Saxion Hogeschool in 

Enschede, the Netherlands (Chinpongsuwan, 2023), likely have a degree of familiarity with 

cycling in Enschede and its route infrastructure. Familiarity or experience with a task is 

known to reduce cognitive load (Wu et al., 2024), as experienced individuals can perform 

tasks more effortlessly (Stapel et al., 2019). Automated routines can make certain tasks less 

demanding, rendering them insensitive to changes in cognitive load (Stapel et al., 2019). 

Cycling the route multiple times may have made it a routine task for participants, thereby not 

resulting in an increased cognitive load. 

Interpretation of Connectivity Analysis Results 

In regard to the connectivity analysis, we are able to observe connectivity within the 

PFC. However, we do not find strong connections, which we anticipated since the PFC is 

heavily involved in cognitive load, and certain areas, such as the DLPFC, are known to play a 

significant role in connectivity during load (Fishburn et al., 2014; Zuo et al., 2019; Aydöre et 

al., 2010). We also find varying levels of connectivity for different events. Crossing an 

intersection and observing a pedestrian results in more medium connections compared to 

Baseline. However, avoiding objects, passing by a cyclist or motorized vehicle, crossing over 
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a crosswalk, navigating through a roundabout, or encountering a traffic light leads to fewer 

medium connections compared to Baseline. 

However, we cannot definitively say that cognitive load is experienced in these 

situations, since in the statistical analysis, only a significant increase is found when avoiding 

an object, crossing over a crosswalk and viewing a pedestrian. We can, therefore, assume that 

while cycling, participants experience less connectivity in the brain when dealing with route 

features such as crosswalks and objects in their path, but more connectivity within the PFC 

when encountering pedestrians. 

We can explain the increased connectivity and broader network by assuming that 

viewing a pedestrian while cycling activates more areas of the PFC simultaneously, likely due 

to the additional processing of social information, as discussed earlier (Oba et al., 2022). 

The fewer medium connections and more specialised networks observed while 

avoiding an object in one’s path and going over a crosswalk could be attributed to the 

possibility that fewer regions within the PFC are active simultaneously during those events. 

The lack of strong connections between any regions of the PFC could also be due to the fact 

that during cognitive load, even if there is connectivity within the PFC, there might be 

stronger connectivity between the PFC and other brain regions, especially those involved in 

executive functions (Zanto & Gazzaley, 2013). Brain regions often noted for having increased 

connectivity with the PFC during cognitive load include the parietal cortex, the premotor 

cortex, and the supplementary motor area (Nagel et al., 2011; Honey et al., 2002; Zanto & 

Gazzaley, 2013). 

Another explanation for the lack of strong connections between different PFC regions 

could be insufficient activation due to incomplete PFC maturation, as discussed earlier (Foy et 

al., 2016). 

An interesting observation made during the connectivity analysis is that the right-

DLPFC has fewer or no medium connections to other areas of the PFC during the different 
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events compared to the left-DLPFC. We know that the left and right-DLPFC have slightly 

different roles when it comes to cognitive load, but both are involved in cognitive load (Lim 

et al., 2020). Under cognitive load, different networks in the brain become active, one of them 

being the frontoparietal executive control network (FPN), which the DLPFC belongs to (Zuo 

et al., 2019). We can assume that perhaps the left-DLPFC is more connected to other areas of 

the PFC during cognitive load, whereas the right-DLPFC is more connected to areas outside 

of the PFC. There is no research available about the differentiation in connectivity between 

the right and left-DLPFC during cognitive workload, so this remains speculative. 

Practical Implications 

The practical implications of this study suggest that it is possible to assess cognitive 

load while cycling with an fNIRS device located at the PFC. Based on our findings, we can 

assume that dynamic route features may impact cyclists’ level of cognitive load more than 

road infrastructure. Especially when engaging with pedestrians, it appears that this interaction 

has a significant impact on cyclists’ cognitive load, similar to encountering an object in their 

path or passing over a crosswalk. It seems that the chance of someone or something entering 

the path they are cycling on, whether it is an object or a person, increases their cognitive load. 

This knowledge can inform safety measures for infrastructure design. For instance, since 

sidewalks are often next to cycling paths, a barrier such as a grass strip could be placed 

between them to keep pedestrians and cyclists apart, thereby reducing the chance of a 

pedestrian stepping onto the cycling path. Additionally, ensuring that cycling paths are always 

separate from roads used by cars and other motorized vehicles, and prohibiting parking on the 

side of the road where cycling paths are located, could help reduce the cognitive load on 

cyclists. 

Limitations and Future Directions 

It is important to acknowledge that besides the practical implications, this study also 

has a few limitations. Data was collected from optodes located at the PFC; however, it is 
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possible that the optodes did not cover the whole PFC. Areas such as the ventrolateral PFC, 

which might also be involved in cognitive workload, were not included in the analysis as they 

lie outside of the optode placement (Nagel et al., 2011). Furthermore, the different areas of the 

PFC and their corresponding optode placements were only estimated since there is no 

guideline on which optode placement corresponds to which exact brain area for the fNIRS 

device and the optode template used for data collection. Another important limitation of this 

study is that not all participants encountered the Crosswalk and Avoiding Object events. 

Therefore, the sample sizes for these two events are smaller than for the other events, which 

could potentially reduce the reliability of the results for these two events. This is important to 

acknowledge since we did find significant changes in cognitive load for these two events. 

Ensuring that all participants encounter the same events can only be done in simulators, but 

that would compromise the authenticity. While t-tests and correlation analyses offered some 

valuable insights into how cognitive load relates to encountering various route features while 

cycling in this study, they can oversimplify the dynamics of brain activity and functional 

connectivity. These methods may not fully capture the complexity of neural interactions and 

could miss nuanced patterns that might be better explored using advanced multivariate 

techniques or network analyses. 

Future studies should replicate the study to determine whether the unusual activity 

pattern for the Pedestrian event at the left-DLPFC is a recurring pattern or just an anomaly 

found in our study. Since the effect of pedestrians on drivers or cyclists is not well-researched, 

more research on this would be beneficial. Another interesting aspect to explore would be to 

conduct the same study with young adults and older adults to see whether older adults 

experience more changes in cognitive load for the different route features compared to young 

adults, and whether PFC maturation is a plausible explanation for not finding many 

significant changes in cognitive load in our study. It would also be beneficial to select an 

fNIRS device or optode template where the exact brain regions corresponding to each optode 
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position are known, making it easier to draw conclusions about connections between specific 

brain regions in a connectivity analysis. Another interesting area to explore is the application 

of a brain-computer interface or neurofeedback for managing cognitive load in cyclists. By 

providing real-time feedback on brain activity, these technologies could help cyclists monitor 

and adjust their cognitive load in response to different route features, potentially improving 

safety.  

Conclusion  

This study aimed to understand cognitive load patterns in cyclists by examining 

changes in activity during various cycling events, identifying route features that coincide with 

these changes, and exploring connectivity within the PFC under different traffic conditions. 

Our findings revealed that dynamic route features, such as avoiding an object and viewing a 

pedestrian, generally led to an increase in cognitive load, as evidenced by higher HbO levels 

in the right-DLPFC and left-DLPFC. Static route features like crossing a crosswalk also 

elicited increased cognitive load, but to a lesser extent than dynamic features. The 

connectivity analysis showed weak to medium connections within the PFC across all events, 

with notable connectivity in the frontal areas of the DMPFC and VMPFC. Interestingly, the 

right-DLPFC exhibited fewer medium connections compared to the left-DLPFC during 

events, which might suggest a differentiation in functional roles under cognitive load. Our 

results align with previous research indicating that dynamic route features, particularly those 

involving potential social interactions like viewing pedestrians, significantly impact cognitive 

load. However, the unique decrease in cognitive load observed in the left-DLPFC when 

viewing pedestrians requires further investigation to understand the underlying neural 

mechanisms. This study underscores the importance of considering cognitive load in urban 

planning and infrastructure design to enhance cyclist safety. Measures such as separating 

cycling paths from sidewalks and roads could potentially reduce cognitive load and improve 

the overall cycling safety. Future research should address the limitations identified, including 
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exploring the role of PFC maturation and employing advanced neuroimaging techniques to 

capture the complexity of neural interactions. Additionally, investigating the use of brain-

computer interfaces or neurofeedback for real-time management of cognitive load in cyclists 

presents an exciting avenue for improving cycling safety and performance. 
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Appendix A 

Statistical Analysis Plots of Unsignificant Results 

Figure A1 

Comparing Event Avoiding Object with Baseline at the Right-DLPFC 

 

 

Figure A2 

Comparing Event Cyclist with Baseline at the Right-DLPFC 



55 
 

 

 

Figure A3 

Comparing Event Intersection with Baseline at the Right-DLPFC 

 

 

Figure A4 
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Comparing Event Motorized Vehicle with Baseline at the Right-DLPFC 

 

 

Figure A5 

Comparing Event Roundabout with Baseline at the Right-DLPFC 
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Figure A6 

Comparing Event Traffic Light with Baseline at the Right-DLPFC 

 

 

Figure A7 

Comparing Event Cyclist with Baseline at the Left-DLPFC 
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Figure A8 

Comparing Event Crosswalk with Baseline at the Left-DLPFC 

 

 

Figure A9 

Comparing Event Intersection with Baseline at the Left-DLPFC 
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Figure A10 

Comparing Event Motorized Vehicle with Baseline at the Left-DLPFC 

 

 

Figure A11 
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Comparing Event Roundabout with Baseline at the Left-DLPFC 

 

 

Figure A12 

Comparing Event Traffic Light with Baseline at the Left-DLPFC 
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Appendix B 

Channel Naming Conventions and Locations 

 

Table B1 

Table Showing Channel Naming Conventions and Locations 

 Channel Name MNI-Coordinate (x y z) Assigned Brain Region 

Channel 1 Rx1 - Tx1 (1,1) -103,07  -59,70  34,75 OFC 

Channel 2 Rx2 - Tx1 (1,2) -77,65  -82,73  44,43 OFC 

Channel 3 Rx1 - Tx2 (2,1) -109,32  -22,60  54,85 DLPFC 

Channel 4 Rx3 - Tx2 (2,3) -86,61 -2,77 84,88 DLPFC 

Channel 5 Rx1 - Tx3 (3,1) -84,39 -46,20 74,14 OFC 

Channel 6 Rx2 - Tx3 (3,2) -58,97 -69,23 83,82 VMPFC 

Channel 7 Rx3 - Tx3 (3,3) -61,69 -26,37 104,18 DMPFC 

Channel 8 Rx4 - Tx3 (3,4) -30,57 -50,71 106,84 VMPFC 

Channel 9 Rx2 - Tx4 (4,2) -28,58 -91,20 76,87 VMPFC 

Channel 10 Rx4 - Tx4 (4,4) -0,17 -72,68 99,89 VMPFC 

Channel 11 Rx6 - Tx4 (4,6) 28,07 -91,81 76,31 VMPFC 

Channel 12 Rx3 - Tx5 (5,3) -31,18 -3,80 117,85 DMPFC 

Channel 13 Rx4 - Tx5 (5,4) -0,05 -28,13 120,51 DMPFC 

Channel 14 Rx5 - Tx5 (5,5) 0,06 31,50 116,40 DMPFC 

Channel 15 Rx7 - Tx5 (5,7) 31,18 -4,61 117,82 DMPFC 

Channel 16 Rx3 - Tx6 (6,3) -60,95 31,32 99,58 DMPFC 

Channel 17 Rx5 - Tx6 (6,5) -29,71 66,62 98,14 DMPFC 

Channel 18 Rx5 - Tx7 (7,5) 30,04 65,50 98,81 DMPFC 

Channel 19 Rx7 - Tx7 (7,7) 61,15 29,39 100,22 DMPFC 

Channel 20 Rx4 - Tx8 (8,4) 30,30 -51,47 106,55 VMPFC 

Channel 21 Rx6 - Tx8 (8,6) 58,53 -70,60 82,97 VMPFC 

Channel 22 Rx7 - Tx8 (8,7) 61,54 -27,94 103,85 DMPFC 

Channel 23 Rx8 - Tx8 (8,8) 83,96 -48,29 73,26 OFC 

Channel 24 Rx6 - Tx9 (9,6) 76,80 -84,31 42,76 OFC 

Channel 25 Rx8 - Tx9 (9,8) 102,23 -62,00 33,05 OFC 

Channel 26 Rx7 - Tx10 (10,7) 86,60 -5,03 84,79 DLPFC 

Channel 27 Rx8 - Tx10 (10,8) 109,02 -25,37 54,20 DLPFC 
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Appendix C 

Connectivity Analysis Correlation Matrices 

 

Figure C1 

Correlation Matrix of Baseline 

 

Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C2 

Correlation Matrix of Event Avoiding Object 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C3 

Correlation Matrix of Event Cyclist 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C4 

Correlation Matrix of Event Crosswalk 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C5 

Correlation Matrix of Event Intersection 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C6 

Correlation Matrix of Event Motorized Vehicle 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C7 

Correlation Matrix of Event Pedestrian 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C8 

Correlation Matrix of Event Roundabout 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 

Figure C9 

Correlation Matrix of Event Traffic Light 
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Note. The lower triangle shows the correlation coefficients. The heatmap of blue to red 

coloring applies to the correlation coefficients. The upper triangle shows the corresponding p-

values. The higher the p-value, the darker the shading. Significant p-values (> 0.05) do not 

have any shading. 

 


