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ABSTRACT 

 
Interferometric Synthetic Aperture Radar (InSAR) technology has revolutionized the monitoring of 
surface deformation, providing detailed and high-resolution data critical for assessing hillslope 
stability. Despite these advancements, integrating InSAR data with environmental parameters to 
predict deformation occurrences remains underexplored. This study aimed to bridge this gap by 
developing a novel spatio-temporal model to predict hillslope deformation by combining InSAR data 
from Sentinel-1, made available by the European Ground Motion Service (EGMS), with dynamic 
environmental variables obtained from ERA-5 dataset and static terrain properties from the British 
Geological Survey (BGS). 
 
Utilizing InSAR's capability for precise surface deformation monitoring, a model using Graph 
Attention Networks (GAT) and Gated Recurrent Units (GRU) was developed, capturing both spatial 
and temporal dependencies in the dataset. The study was conducted for central England region, 
including the Peak District National Park, featuring significant surface deformation activity. 

A correlation analysis was performed to explore relationships between dynamic variables—such as 
precipitation, temperature, Leaf Area Index (LAI), and terrestrial water storage (TWS)—and hillslope 
deformation, revealing varying correlations ranging from -0.4 to 0.6. The proposed GAT-GRU model 
achieved a final training loss of 0.00015. The predictions were evaluated using Mean Squared Error 
(MSE) and Root Mean Squared Error (RMSE). The analysis indicated that the model captured the 
overall spatial and temporal dynamics. However, it struggled with extreme values and regions of high 
variability, with significant errors in regions of rapid surface movement beyond ±90 mm. 

The findings demonstrate the model's ability to capture general trends and spatial patterns of 
deformation, including slow movements that are often overlooked in traditional landslide inventories 
and can lead to catastrophic failures. However, challenges remain in predicting extreme values and 
highly variable regions. This research advances the development of predictive tools for surface 
deformation monitoring and early warning systems. Future work should focus on improving model 
performance with higher resolution environmental data and exploring causal relationships between 
variables. 

 

Keywords: Hillslope Deformation, InSAR, Graph Attention Networks, Gated Recurrent Units, 
Spatio-Temporal Model, Environmental Variables, Predictive Modelling 
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1. INTRODUCTION 

1.1. Background  

 
Landslides cause significant harm to both lives and property. According to the Unified Landslide 
Database (UGLD), over 185,000 people have perished in 37,000 landslides from 1903 to 2020 (Gómez 
et al., 2023). Extensive research has been conducted to understand the various causal factors and their 
interactions that affect slope stability and contribute to landslides (Chen et al., 2020; Tanyaş et al., 
2021). The literature predominantly focuses on creating susceptibility maps using either physically 
based (e.g., Van den Bout et al., 2021) or data-driven (e.g., Lombardo et al., 2020; Moreno et al., 2023) 
models, which can be heuristic (Corominas et al., 2014) or statistical (Pandey et al., 2023). 
Additionally, there has been an increase in the use of machine learning and deep learning algorithms 
for predictive landslide modelling (Dong et al., 2020).  
 
In all these approaches, landslide inventories play a key role. In the realm of physically-based 
modelling, previously occurred landslides are essential to validate outputs of a given model. On the 
other hand, for data driven models, landslide inventories are required for both training and validating. 
This dependency on landslide inventories causes some limitation in the resultant hillslope stability 
assessments because of two main reasons. First, landslide inventories are mostly incomplete and thus 
non-landslide locations may not be fully represented in the dataset. Specifically, small landslides are 
mostly missed in many inventories (Van Den Eeckhaut et al., 2012; Tanyaş et al., 2019). Second, 
hillslope stability cannot be solely assessed by failed hillslopes. Slow hillslope deformation may 
always exist regardless of landslide occurrences. And yet, there are many reported cases that such slow 
moving landslides led catastrophic failures (e.g., Iverson, 2000; Nappo et al., 2019; Lacroix et al., 
2020). This implies that monitoring and predicting hillslope deformations in addition to landslide 
occurrences could provide a better insight into hillslope stability assessments in general (Ji et al., 2020; 
Ganesh et al., 2023; Meng et al., 2023). In this regard, Interferometric Synthetic Aperture Radar 
(InSAR) technologies are invaluable. Spaceborne radar systems, particularly the Sentinel-1A and 1B 
satellites, provide SAR data with a 6–12-day temporal resolution globally, facilitating surface 
deformation monitoring on a regional and even global scale. For example, the Sentinel-1 mission's 
radar data has recently enabled comprehensive monitoring of surface deformation across Europe 
(Crosetto et al., 2021). Utilizing such deformation datasets could pave the way for developing 
advanced predictive tools and a new generation of early warning systems in the future. 

1.2. Motivation and Research Gap 

In the context of landslide monitoring, InSAR technologies have primarily been employed to observe 
slow-moving landslides (Y. Zhang et al., 2022; Dong et al., 2023). However, the development of 
predictive tools using InSAR-derived surface deformations that incorporate environmental parameters 
remains largely unexplored, with only a few exceptions. For example, He et al. (2023) utilized a 
multivariate statistical model, targeting mean slope velocity derived from InSAR data. They applied 
the Generalized Additive Mixed Model (GAMM) to analyse the contribution of various environmental 
factors to hillslope deformation. The study suggests that the accuracy of such predictive models could 
be enhanced by using high-resolution, precise input variables representing environmental factors like 
precipitation, snowfall, and groundwater table. Nava et al. (2023) evaluated various deep learning 
algorithms for forecasting landslide displacement, considering factors such as rainfall and reservoir 
water levels. They found that Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
outperformed 1D Convolutional Neural Network (CNNs). The study indicated that deep learning could 



 

8 

be effectively used in early warning systems for landslides and suggested that incorporating future 
weather forecast data could enhance predictive accuracy, despite potentially introducing uncertainty. 
Similar approaches have been also developed to predict deformation associated with land subsidence. 
For instance, Mirmazloumi et al. (2023) developed an early warning system to detect land subsidence 
in mining areas using the LSTM architecture. Radman et al. (2021) explored a weighted multivariate 
ensemble model to predict land subsidence, comparing it to individual models like LSTM, CNN, and 
multi-layer perceptron (MLP) networks. They concluded that the weighted ensemble model performed 
better in predicting subsidence. Nevertheless, none of these approaches are yet mature enough for 
operational use. 

1.3. Deep Learning for Geohazards 

 
Deep learning techniques in natural hazard analysis primarily focus on pixel-level image analysis (Ma 
& Mei, 2021). These techniques include CNN-based models for landslide detection (Sharma et al., 
2017), Fully Convolutional Networks (FCN), and their variants such as U-Net and SegNet for object 
detection (Bianchi et al., 2021). These methods significantly reduce the time and resources traditionally 
needed for inventory generation. For example, Ji et al. (2020) implemented a CNN model with an 
attention mechanism, achieving over 95% accuracy in landslide detection. 
 
One key advantage of deep learning models is their robustness to sampling methods. A study on 
landslide susceptibility evaluation (LSE) in China's Three Gorges Reservoir region by Hua et al. (2021) 
found that a Deep Neural Network (DNN) architecture outperformed traditional machine learning 
algorithms like Random Forest, Support Vector Machine (SVM), and Logistic Regression (LR) in 
verification accuracy. The study highlighted that deep learning surpasses machine learning algorithms 
by reducing overfitting and improving generalization. 
 
For deformation prediction, Recurrent Neural Networks (RNN) are crucial because they can handle 
sequential data, such as time series. LSTM, a gated RNN variant that addresses the vanishing gradient 
problem, has been successfully used to predict landslide displacement caused by various factors (Xie 
et al., 2019; Meng et al., 2023). Efforts have also been made to predict InSAR time series using 
Independent Component Analysis (ICA) and LSTM (Peng et al., 2024). LSTMs can still lead to 
overfitting. GRUs offer a solution with fewer trainable parameters, faster training, and the ability to 
capture longer temporal dependencies (Chung et al., 2014). Predictive models for displacement using 
GRUs have demonstrated improved, or at least similar, predictive performance in a more 
computationally efficient manner (W. Zhang et al., 2022). 

1.4. Novelty and Scientific Contribution  

Although the above-mentioned algorithms have demonstrated impressive predictive capabilities, the 
mentioned recurrent networks only capture temporal sequences. Additionally, due to the irregular 
partitioning of the dataset in this research (into small catchments and slope units), CNNs are unsuitable 
since they work with regularly partitioned data, like pixels. To create a more representative spatio-
temporal model, it is necessary to account for both irregular spatial relationships and temporal 
dependencies. Graph neural networks (GNNs) can capture this spatial dependence. Unlike CNNs, 
which operate in Euclidean spaces and use the distance between features, GNNs function in non-
Euclidean spaces and consider neighbourhood relations (Jiang et al., 2022). GNNs have been 
successfully applied in various fields, such as forecasting virus spread (Tonks et al., 2022), modelling 
wildfire spread (Cisneros et al., 2023), and predicting traffic flow (Bhaumik et al., 2022).  
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In the field of land displacement, there have been a few attempts to incorporate spatial relationships 
using graph-based architectures. Ma et al. (2021) used a combination of graph convolution network 
and GRU to predict slope deformation. However, their approach was purely data-driven and external 
factors were not accounted for. Jiang et al. (2022) followed a similar approach. They applied graph 
convolution to GNSS displacement data to establish spatial dependence, then fed this output into a 
GRU network, thereby capturing both spatial dependence and temporal correlation (Figure 1). External 
triggering factors such as rainfall and reservoir water level were also incorporated but predisposing 
factors such as slope angle, were not included in the analysis. Their model outperformed ARIMA, 
SVM, and LSTM in prediction accuracy. Recently, Khalili et al. (2023) created a deformation 
prediction model based on Graph Convolution Networks (GCN) and LSTM. While they did utilize 
predisposing factors including slope and geology, dynamic environmental variables like rainfall and 
water storage capacity were not taken into account. Their model outperformed simple RNNs, GRU 
and simple LSTM, and the validation error was less than 4 mm for more than 90% of the data points. 
They suggested the use of more diverse variables in the future, along with attention-based mechanisms 
to capture more complex relationships in the dataset.  

 
Figure 1 The architecture of (a) GCN and (b) GRU proposed by Jiang et al. (2022) 

Given these research gaps and motivations, this thesis aims to build a novel spatio-temporal model for 
the prediction of hillslope deformation using GAT (Graph Attention) and GRU, while incorporating a 
number of predisposing factors such as slope and geology, as well as dynamic environmental factors 
such as precipitation and temperature.  

1.5. Main Objectives and Research Questions 

 
The main objective of this thesis is to develop a comprehensive spatio-temporal model that can predict 
hillslope deformation using InSAR-derived data. This involves not only understanding the complex 
relationships between environmental factors and surface deformation but also implementing advanced 
deep learning techniques to improve prediction accuracy. Specifically, the study aims to achieve the 
following objectives and address the related research questions (RQ): 
 
A) To Examine the Correlation between Environmental Variables and Hillslope Deformation: 
 
Objective A1: Investigate the relationships between dynamic environmental variables (e.g., 
precipitation, temperature, leaf area index, terrestrial water storage) and InSAR-derived surface 
deformations as an exploratory data analysis. 
     
        RQA1: How do precipitation, temperature, leaf area index, and terrestrial water storage relate to 
hillslope deformation? 
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Objective A2: Determine the optimal prediction and observation windows by analysing lagged 
correlations between these variables and hillslope deformation. 
 
        RQA2: What is the lag time for the effect of these environmental variables on hillslope 
deformation? 
 
B. To Develop a Novel Spatio-Temporal Model for Predicting Hillslope Deformation: 
 
Objective B1: Construct a spatio-temporal model incorporating both spatial and temporal 
dependencies using Graph Attention Networks (GAT) and Gated Recurrent Units (GRU). 
 
        RQB1: How accurately does the model predict hillslope deformation over different time periods 
and spatial extents? 
 
Objective B2: Integrate predisposing factors such as slope and geology along with dynamic 
environmental factors into the model. 
 
        RQB2: What are the main limitations and challenges in the model's predictive capabilities? 
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2. STUDY AREA 

This study will be conducted in an area covering 4,127 km² in central England (Figure 2), which 
includes the Peak District National Park and surrounding regions. The region experiences an average 
annual precipitation of 1,025 mm (compared to the England average of 985 mm) and an average 
temperature of 10.3°C (equal to the England average) (Media Centre Facts and Figures: Peak District 
National Park, n.d.). 
 
From a regional point of view, the area is one of the five outcrops of British Carboniferous Limestone, 
featuring extensive karst topography. Overall, the area is characterized by Carboniferous rock 
formations deposited in a rift basin and affected by glacial scouring during the Quaternary period 
(Huggett, 2020). Spatial distribution of these carboniferous units is diverse over the study area, with 
limestone and blanket peat dominating the southern part, intermittent volcanic activity leading to 
basaltic layers, and fluvial deposits such as mudstones, sandstones, and shales in the northern and 
western areas, where active fluvial erosion occurs. 
 
Landslides have been also reported in the area in relation with different geological 
formations/processes. For instance, periglacial and paraglacial weathering have weakened and eroded 
the strata, resulting in deep-seated landslides such as Alport Castles, one of the largest rotational 
landslides in the country (Donnelly et al., 2002). Additionally, shallow, rainfall-induced landslides are 
common in the region (Dixon & Brook, 2007; Huggett, 2020). 

Figure 2 Map of the study area partitioned into slope units with associated time series sample data of 
downslope deformation, precipitation, and temperature. 



 

12 

3. DATASET: PREPARATION AND PREPROCESSING 

This chapter details the process of data collection, the sources of the data, and the preprocessing steps 
taken to prepare the dataset for later analysis. 
 
This study uses InSAR-derived surface deformations released by the European Ground Motion Service 
(EGMS) (Costantini et al., 2021), spanning a period of 6 years from 2016 to 2021, sampled every 7 
days. To systematically examine this rich dataset, Slope Units (SUs) have been used as landscape 
partitions. SUs are geomorphologically meaningful mapping units showing similar aspect values and 
widely used to delineate hillslopes in the context of landslide hazard assessment (Reichenbach et al., 
2018). For the study area, 6,352 SUs were generated (Figure 2) using the algorithm developed by 
(Alvioli et al., 2016). The scatterer giving the highest absolute velocity per SU was selected, and each 
SU was labelled with the corresponding vertical and east-west displacement time series. The target 
variable of the study is hillslope deformation, which has been provided as the net vector of east-west 
and vertical deformation. I converted these deformations to their downslope components (Cascini et 
al., 2010). 
 
In addition to the surface deformation dataset, I also gathered several environmental factors to exploit 
them as the predictive variables of the model. Specifically, I used time series of temperature (weekly 
mean), precipitation (weekly cumulative), Leaf Area Index (LAI) and terrestrial water storage (TWS) 
provided by the ERA5 dataset (Hersbach et al., 2020). TWS is a measure of the total water content on 
the surface and the subsurface, including lakes, rivers, snow, ice, soil moisture (Girotto & Rodell, 
2019). LAI is a dimensionless quantity that describes the canopy foliage. In barren land, the value is 
close to 0, and in the case of intensive timber cultivation, it can range from 16-45 (Bréda, 2008). In the 
given dataset, it ranges from 1.2 to 3, which is common in grasslands and shrublands. It indicates that 
the vegetation is not very dense. I sampled all these variables for SUs. These constitute the dynamic 
variables (Table 1).  
 
I also generated terrain properties (i.e., static variables) such as slope, curvature, elevation, profile 
curvature, planar curvature and aspect using the Digital Elevation Model (DEM) provided by the 
British Geological Survey (BGS). In the study area, elevation ranges from 26 to 625 m, with a mean 
of 222 m and the mean slope angle is 6.8⁰.  This shows that the area displays neither very high 
elevations nor very steep slopes. In addition to these variables, BGS also provided the upper soil 
thickness ang geology type, other static variables I used in the analyses.  
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Table 1 Summary of predictive variables used in the analyses. 

 

 Variable 
Type 

Variable 
Temporal 
Resolution 

Spatial 
Resolution 

Preprocessing Source 

Target 
Variable 

Time 
series 

Downslope 
displacement 

Jan 2016- 
Dec 2021 
Measured 

every 7 
days. 

Time series 
of absolute 
maximum 

deformation 
point per 
slope unit 

Weekly 
observations 

Derived 
from 

EGMS 
vertical and 

EW 
deformation 

Dynamic 
Variables 

Rainfall 
(Weekly 

cumulative)

Per Slope 
Unit 

 

Scaled 

ERA5 
dataset 

resampled 
to ~11 km 

Temperature 
(Weekly 
mean) 

LAI  

TWS  

Static 
Continuous 

Elevation 

NA 

Scaled (std=1; 
Mean=0) BGS 

Dataset  

ruggedness 
area_2 

slop_avg 

ss_thick 

reg_thick 
up_thick 

profC_avg 

planC_avg 

northness 
eastness 

Categorical geo 
One-Hot 
Encoded 
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4. METHODOLOGY 

This chapter outlines the methodologies used in this study, detailing the steps taken to analyse the data 
and develop the predictive model. Section 4.1. provides an overview of the methodology related to the 
first objective and section 4.2. discusses the methods of the second objective including model 
construction. The preprocessing techniques applied are explained in section 4.3. Section 4.4. covers 
the model training process including data splitting, hyperparameter finetuning, loss function and 
model optimization.   

4.1. Correlation Analysis 

The first sub-objective is related to preliminary analysis of time series. Correlation provides an insight 
into the relationship between variables and have been used in the variable selection process for deep 
learning models (Ma et al., 2022). The literature shows that correlation between rainfall and 
deformation has shown complex interactions, that vary across regions. Studies have found significant 
correlation for lag time of 9 days in unstable regions with silt and clay (Lollino et al., 2006) to 9 months 
in the case of deep-seated landslides (Ardizzone et al., 2011). This study will attempt to capture the 
linear and non-linear relationships of the time-varying variables and deformation to investigate the lag 
period.  

4.1.1. Pearson Correlation Coefficient 

I used the Pearson Correlation Coefficient (PCC) to assess the variable relationships. PCC is a 
statistical measure that quantifies the strength and direction of the linear relationship between two 
continuous variables (Faizi & Alvi, 2023). This coefficient is calculated by dividing the sample 
covariance of the two variables by the product of their standard deviations.  

 

where xi and yi are the individual data points, and 𝑥̅ and 𝑦ത are the means of the x and y variables, 
respectively. 

Values of the PCC range from -1 to 1, where 1 indicates a perfect positive linear relationship, -1 
indicates a perfect negative linear relationship, and 0 indicates no linear relationship (Rodgers & 
Nicewander, 1988). 

The PCC is particularly useful for illustrating the strength of linear relationships. It may not recognize 
strong non-linear relationships and is sensitive to outliers, which can significantly distort the results. 
Despite its limitations, the PCC remains a widely used tool in statistical analysis for identifying and 
measuring linear relationships. It provides valuable insights into how variables are related and helps 
in understanding the nature of their association.  
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4.1.2. Lagged Correlation 

While analysing the cause-and-effect relationship, there could be some lag time between two. For 
instance, hillslope deformation may occur sometime after a rainfall event because penetration of 
surface water to possible failure surface may take some time. This is particularly valid for deep seated 
landslides (Ardizzone et al., 2011). Therefore, assessing the lag time between dynamic and the target 
variables could provide some insights into deformation mechanism.  
   
Lagged correlation is a statistical technique used to identify the relationship between two time series 
variables at different time lags. This method is useful when the impact of one variable on another may 
not be immediate but occurs with a delay. 
 
The lagged correlation at lag k can be calculated based on the following equation: 
 

 
where xt  and yt are the time series data points at time t, and 𝑥̅ and 𝑦ത are the mean values of the 
respective series.  
By shifting one time series relative to another and calculating the correlation for each lag, the time 
delay at which the relationship is strongest, can be identified.  
 
Lagged correlation provides valuable insights into the temporal dynamics between variables, helping 
to reveal delayed effects and predict future behaviour based on past data. In this study case, a lagged 
correlation can be used to establish how past rainfall affects current downslope deformation, thus, 
providing an insight into the effect of current rainfall on future deformation trends.  
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4.2. Proposed Spatio-Temporal Model [GAT+GRU] 

 
In order to establish a model that is truly spatio-temporal in nature, I used a combination of GAT and 
GRU. The model uses the PyTorch layer GAT from the ‘PyTorch Geometric’ library (Fey & Lenssen, 
2019). It is based on the structure introduced by Veličković et al. in 2017. This model aims to capture 
both spatial dependencies among nodes in a graph and temporal dependencies across multiple time 
steps (Figure 3).  

 

Figure 3 Conceptual Diagram of the proposed model 
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4.2.1. Adjacency Matrix 

An adjacency matrix is crucial for the graph attention layer. It ensures that spatial dependencies are 
captured in the model in the form of a graph structure. I generated the adjacency matrix using the 
‘libpysal’ library in python (Rey & Anselin, 2007). It uses the k-nearest neighbours method to create 
spatial weights with k=4, meaning each node (slope unit) in the graph will be connected to its four 
nearest neighbours (Figure 4). 

  

        (a)           (b) 
 

 
 

Figure 4 (a) Graph Structure defined by (b) Adjacency Matrix 

 

4.2.2. Graph Attention Layer (GAT) 

The core component of the Spatio-Temporal Model is the Graph Attentional Layer, which is inspired 
by the work of Velickovic et al. (2018). This layer performs self-attention on the nodes of the graph to 
compute attention coefficients that indicate the importance of neighbouring nodes' features to each 
node. The attention mechanism used in this layer allows for assigning different importances to different 
nodes within a neighbourhood while handling different sized neighbourhoods efficiently (Figure 5). 

Figure 5 Multi-head attention with 3 heads for node 1. The features are then concatenated or averages to 
produce new weights ℎത1’ (Veličković et al., 2017) 
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4.2.2.1. Input and Linear Transformation 

 
Given a set of node features ℎ= {ℎ1, ℎ2,…,ℎN}, where ℎI ∈ 𝑅F and N is the number of nodes, the layer 
applies a shared linear transformation to these features using a weight matrix 𝑊∈𝑅F

0
x F . The 

transformed features are then used to compute attention coefficients. 
 

4.2.2.2. Attention Mechanism 

 
The attention coefficients ɑij are computed using a single-layer feedforward neural network 
parameterized by a weight vector 𝑎∈𝑅2F

0 and applying the LeakyReLU nonlinearity. The attention 
coefficients are then normalized across all neighbouring nodes using the softmax function: 

 

 
where Ni  is the neighbourhood of node 𝑖 in the graph and eij are the edge features. This formula 
normalizes the edge features using the softmax function, which ensures that the attention coefficients 
sum up to 1. 

 

4.2.2.3. Multi-Head Attention 

To stabilize the learning process and enhance the model's expressive power, multi-head attention is 
employed. In this setting, K independent attention mechanisms are used, each producing its own set of 
attention coefficients. The output features from each attention mechanism are then aggregated, 
resulting in the following output feature representation for each node: 

where 𝜎 is a nonlinearity function such as ReLU, Wk is the weight matrix for the 𝑘-th attention 
mechanism, and 𝛼kij are the normalized attention coefficients computed by the 𝑘-th attention 
mechanism. 
 

4.2.3. Gated Recurrent Unit (GRU) 

Following the Graph Attentional Layer, the model utilizes a Gated Recurrent Unit (GRU) layer to 
capture temporal dependencies in the data. The output features from the Graph Attentional Layer are 
passed through the GRU layer, which produces hidden states representing the temporal information at 
each time step. 

 
GRUs are gated recurrent networks with two gates: a reset gate and an update gate (Figure 6). The 
reset gate controls the amount of past information to discard, while the update gate regulates the 
amount of new information to preserve. This design enables GRUs to efficiently capture temporal 
dependencies within sequential data (Chung et al., 2014). 
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Figure 6 A GRU Unit with reset gate (rt) update gate (zt) and the current hidden layer vector ħt 

 (W. Zhang et al., 2022) 

 

The equations governing the GRU operation are as follows: 
 

 
where: 

 𝑥t is the input at time 𝑡 
 ℎt is the hidden state at time 𝑡 
 𝑧t is the update gate 
 𝑟t is the reset gate 
 ħt is the new memory content 

 

Output 

Finally, a linear layer is applied to the output of the GRU layer to obtain the final prediction for each 
node. 
 
 
 

4.3. Preprocessing 

 
To prepare the data for the model, it must first be preprocessed and transformed into a suitable format. 
The following sections describe these preprocessing steps in detail. 
 

4.3.1. Normalizing Aspect into Eastness and Northness 

The aspect, which defines the flow direction of a slope, is a cyclic property which ranges from 0⁰ to 
360⁰, where a north-facing slope will have an aspect of 0⁰, 90⁰ is an east-facing slope, 180⁰ means 
south-facing and a west-facing slope will have an aspect of 270⁰ (Olaya, 2009). Since, aspect ‘a’ and 
a+360⁰ refer to the same slope direction, in order to convert it into a more meaningful input variable, 
it is transformed to northness and eastness using trigononmetric functions (Wang et al., 2016).  
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Northness = cos (Aspect) 
Eastness = sin (Aspect) 

 
Northness of 1 represents a north-facing slope, while -1 represents a southwards slope. Similarly, for 
eastness, a value of 1 represents an east-facing slope and vice versa.  
 

4.3.2. Z-score Normalization 

 
Z-score normalization method was employed during data preprocessing to standardize features. It 
involves adjusting features by subtracting their mean and dividing by their standard deviation, resulting 
in a transformation where features have a mean of zero and a standard deviation of one (Figure 7).  

 
This procedure ensures that each variable contributes fairly to the model's learning process, preventing 
any single feature from exerting unequal influence due to its scale (Faraway et al., 2011). For instance, 
in our dataset, elevation ranges from 100 to 650 m, whereas another variable, ‘upper soil thickness’ 
ranges from 0 to 1.6 m. This difference in magnitude might cause the model to treat the two variables 
differently. Thus, to ensure equal contribution of all variables, this normalization was performed. 

 

 

Figure 7 Example of two variables, Elevation and Upper soil thickness, before and after normalization 
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4.3.3. One-hot Encoding 

 
One hot encoding is a technique used in data preprocessing to convert categorical variables into a 
binary format that is more suitable for machine learning algorithms (Brownlee, 2020). It involves 
creating binary columns for each category within the categorical variable and assigning a value of 1 to 
the column corresponding to the category present in each observation, while assigning 0 to all other 
columns. In this dataset, the geology column, ‘geo’ had 6 classes (Figure 8b). These were one-hot 
encoded to convert them to suitable input for the model (Figure 8a). 
 

 
(a) 

 
(b) 

 

Figure 8 (a.) Map depicting the distribution of the various geological classes. (b.) One-hot encoded geology 
variable for model input 
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4.4. Model Training  

 
With the model constructed and the data preprocessed, the next step was to train the model. The model 
training process is described in the following sections. 

4.4.1. Data Preparation and Splitting  

 
The dataset spans a period of 6 years, from January 2016 to November 2021. After preprocessing, the 
weekly dataset consists of a total of 360 timesteps. To ensure effective training and unbiased 
evaluation, the dataset was divided into three parts: training (2/3), validation (1/6), and test sets (1/6) 
(Figure 9). This division, based on time, ensured that all nodes of the graph were present in each of the 
three datasets, maintaining a consistent graph structure while having different time steps for each set 
(Table 2). This consistency is crucial for the integrity of the model, as it allows the model to learn and 
evaluate on the same set of nodes, differing only in the time steps used. The structured splitting was 
done to prevent data leakage and to ensure unbiased results. 
 

Figure 9 Dataset splitting into training, validation, and test sets 

 
Table 2 Training, validation, and test set 

Dataset Time Period Time 
Steps 

Purpose Nodes 

Training set Jan 2016- Dec 2019 240 Model Training All graph 
nodes 

Test Set Dec 2019- Dec 2020 60 Model Evaluation 
(prediction) 

All graph 
nodes 

Validation Set Dec 2020- Nov 2021 60 Hyperparameter 
finetuning 

All graph 
nodes 

 

4.4.2. Hyperparameter Finetuning 

 
Hyperparameters are set before the model’s learning process begins, unlike model parameters, which 
are learned during the training process from the data itself. They affect the learning process (Yang & 
Shami, 2020). The three hyperparameters in this model were- learning rate, GRU units and Batch 
Nodes (Table 3). 
 

Table 3 Model Hyperparameters and their importance 

Hyperparameter Description Importance 
Learning Rate (LR) Controls the step size at each 

iteration while moving toward 
a minimum of the loss 
function. 

Affects the speed and quality of the 
convergence. A very high learning rate can 
cause the model to converge too quickly to 
a suboptimal solution, while a rate too low 
can result in a long training process. 
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GRU Units Number of units (neurons) in 
each GRU (Gated Recurrent 
Unit) layer. 

Determines the model's capacity to learn 
from sequential data. More units can 
capture more complex patterns but also 
increase the risk of overfitting and 
computational cost. 

Number of Batch 
Nodes  

Equivalent to the batch size, 
this is the number of nodes in 
each batch during training. 

Impacts the model's ability to generalize. A 
larger batch size can provide a more 
accurate estimate of the gradient but 
requires more memory and can lead to 
longer training times. 
The adjacency matrix is trained in batches 
of fully connected nodes, to prevent model 
complexity. A method 
‘get_connected_nodes’ (elaborated in 
Appendix 9.1) is defined to ensure that the 
nodes in each batch are fully connected.   

 
 
Hyperparameter finetuning refers to adjusting the values of hyperparameters, to find an optimum 
solution- the best model performance. This was done by means of permutations. Different 
combinations of hyperparameter values were run on the validation set in nested loops, and the best 
combination was determined based on the overall loss for each epoch (detailed results in Appendix 
9.2). The best performance was achieved with a learning rater of 0.01, 64 GRU units and 256 batch 
nodes. With this combination of hyperparameters, the model achieved a final loss of 0.00015, and 
displayed stable convergence over the epochs (Figure 10).  
 

 
Figure 10 Training loss for the best hyperparameters over 50 epochs. 

Best hyperparameters: {'lr': 0.01, 'gru_units': 64, 'num_nodes': 256} 
Final loss for LR=0.01, GRU Units=64, Num Nodes=256: 0.000156 
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4.4.3. Loss Function and Optimizer  

 
During training, the loss function quantifies the accuracy of the model by finding the similarity 
between the actual and predicted values. Since this is a predictive model for sequential data, Mean 
Squared Error (MSE) was used as the loss function. It tries to minimize prediction inaccuracies across 
multiple time steps, by penalizing larger errors more significantly (Brownlee, 2020). It computes the 
average squared difference between the predicted and actual values during training.   

where, n is the number of samples (or data points),  yi represents the actual value of the target variable 
for the i-th sample, ŷi represents the predicted value.  

The optimizer updates the model’s weights to minimize loss function. The Adaptive Moment 
Estimation optimizer (Adam) was used (Kingma & Ba, 2014). The Adam optimizer is beneficial 
because it adapts the learning rate for each parameter, leading to faster and more efficient training. The 
adaptive learning rates for different parameters are calculated based on the first and second moments 

of gradients (mt and vt respectively). It incorporates momentum by using the moving averages of 
gradients.  

 

Where, β1 and β2 are the decay rates for these moment estimates, gt is the gradient of the loss function 
w.r.t. the parameters at time step t.  

η is the learning rate, θ t-1 represents the parameters from the previous time step, and 𝜃t is the updated 
parameter after applying the Adam optimization rule. These parameters of the model include the 
weights and biases, which need to be adjusted during training to minimize the loss function.  

 

Once the model was trained on the training set, it was applied to the test set. The predicted values were 
then used to evaluate the model's performance, as discussed in Section 5.2. 
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5. RESULTS 

This chapter presents the results of the analyses and the performance of the developed predictive 
model. Section 5.1 provides the findings from the correlation analysis, detailing the relationships 
between dynamic environmental variables and hillslope deformation. Section 5.2 discusses the 
performance of the spatio-temporal model.  

5.1. Correlation Analysis 

 
The objective was to assess the relationship between the dynamic variables and the target variable. For 
instance, to find the relationship between the precipitation at time t-1 and downslope displacement at 
time t, the precipitation column was shifted by one step. Since each data point in the dataset represents 
weekly observations, this shift corresponds to a time lag of 7 days. Similarly, lagged correlation was 
also calculated between target variable and LAI, TWS and temperature (temp), respectively.  
 
For lag=1, positive correlation was obtained with precipitation for most slope units. While the other 
three variables resulted in negative correlation values for the majority of slope units (Figure 11).  
 
 

 
Figure 11 Spatial distribution of correlation values for the entire dataset, for a time lag= 1 (1 week) 
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Similar analysis was done was a lag of 2, 4, 8 and 12 (corresponding to a lag time of two weeks, one 
month, two months and 3 months respectively). The correlation values either did not change, or 
reduced further, as the lag time was increased (Figure 12). Overall, the correlation values with 
downslope displacement ranged from -0.2 to 0.3 for precipitation, -0.4 to 0.6 for temperature, -0.4 to 
0.5 for TWS and between -0.4 to 0.6 for LAI.  
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Correlation values between target variable (downslope displacement) and 4 other dynamic variables 
(precipitation, temperature, TWS and LAI), with a shift of lag= 0, 1, 2, 4, 8 and 12 (left to right). 

 
 
 
 
 
 
To analyse the relationship between the correlation values and other variables, bivariate plots were 
created. However, no apparent patterns emerged (Figure 13). Similar plots for the various time lag 
correlations revealed no apparent trends (details in Appendix 9.3).  

Lag=0 Lag=1 Lag=2 Lag=4 Lag=8 Lag=12 
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Figure 13 Bivariate plots between correlation values and other variables, without lag. 

In order to account for the seasonality and cumulative effect of variables on the target variable, the 
data was aggregated monthly and seasonally (3 months), and the resulting correlation was calculated. 
For instance, the correlation between the maximum absolute displacement and monthly total rainfall 
was calculated to be 0.12. Even though on visual inspection, higher displacement appears to have 
occurred in months with higher rainfall in some parts of the dataset, the correlation value is extremely 
low (Figure 14).   

Figure 14 Downslope displacement and cumulative monthly rainfall 
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5.2. Prediction Model 

 
After the hyperparameters were decided based on the validation set, the model was trained on the 
training set and evaluated on the test set to assess its predictive performance. The training process 
involved optimizing the model parameters to minimize the MSE on the training data. After training, 
the predictions were compared against the actual values to evaluate its generalization ability. This 
section presents a detailed analysis of the model's performance using various metrics and 
visualizations. 
 

5.2.1. Temporal Dynamics 

To understand the model's performance over time, I compared the actual and predicted values for 
specific nodes. This helps in understanding the temporal dynamics and accuracy of the model over 
time steps, for individual nodes (Figure 15). While the model captures the general trend and 
fluctuations of the actual values (Figure 15 (a) and (b)), there are nodes with sharp changes in signal 
where the predictions significantly deviate from the actual values (Figure 15 (c) and (d)).  
 
 

  
(a) (b) 

 
 

 
 

(c) (d) 
 
Figure 15 Examples presented for the time series of predicted and actual values for individual nodes, 
where model performed well (a and b) and where it could not capture the abruptly varying signal (c 

and d)  
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5.2.2. QQ Plot Analysis 

 
A QQ (Quantile-Quantile) plot is used to compare the distribution of actual and predicted values. In 
Figure 16, the quantiles of the actual values were plotted against the quantiles of the predicted values. 
The closer the points are to the 45⁰ reference line (y=x), the better the predicted values match the actual 
values. Deviations from this line indicate discrepancies between the distributions. It can be observed 
that most points in the central region of the data lie close to the y=x line, indicating that the predicted 
values follow the distribution of the actual values. The model's predictions for values near the mean 
are relatively accurate (Figure 16). However, at the extremes there are major deviations. Specifically, 
the model over and underestimates for low and high values, respectively. This pattern suggests the 
model tends to smooth out extreme values, predicting fewer extreme values than the actual 
observations. 
 

 
 

Figure 16 QQ Plot shows the quantiles of the actual values on the x-axis and the quantiles of the predicted 
values on the y-axis. 
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5.2.3. Spatial Distribution  

The visualization of the average actual and predicted values for the entire dataset provides an overview 
of the model’s predictions (Figure 17). The model captures the general spatial patterns, but there are 
regions where the predicted values significantly deviate from the actual values.  
 

(a)               (b) 

Figure 17 The spatial distribution of average (a) actual and (b) predicted values across the dataset. 

The distribution of these values in the histogram shows the spread and central tendency of the actual 
and predicted values. Figure 18 shows a symmetric distribution centered around zero with most values 
falling within -50 to 50. The distribution of the predicted values is similar to the actual values, 
indicating that the model's predictions follow the overall distribution of the actual data. The histograms 
reveal that while the central tendency and spread are similar, there are deviations in the tails of the 
distribution. As also indicated by the QQ plot, the model overestimates low values (predicts them to 
be less negative than they are). 

  

(a) (b) 
Figure 18 Histogram showing the distribution of (a) actual values and (b) predicted values of target variable 
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5.2.4. Prediction Error 

 
Figures 19 and 20 show the Root Mean Square Error (RMSE) and MSE distribution in the study area, 
respectively. The map on the left showcases the spatial variability of prediction errors across the study 
area. The histogram on the right provides a frequency distribution of these errors. The RMSE ranges 
from 0 to 12 mm. It can be observed that the majority of the error values are concentrated at lower 
ranges, with a sharp decline as the error value increases. This indicates that the model generally 
performs well in most areas, with a few regions exhibiting higher prediction errors.  

(a)                                                        (b) 
 

Figure 19 Spatial and Frequency Distribution of RMSE (a) RMSE Map (b) Histogram of RMSE 

 
 

(a)                                (b) 
 

Figure 20 Spatial and Frequency Distribution of MSE (a) MSE Map (b) Histogram of MSE 
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6. DISCUSSION 

This chapter discusses the implications of the results in the context of the study's objectives. Section 
6.1 discusses the correlation analysis results, the challenges posed by the coarse resolution of dynamic 
variables from the ERA-5 dataset compared to the finer-resolution InSAR data, and its impact on 
capturing complex relationships between variables. Section 6.2 evaluates the performance of the 
spatio-temporal model, highlighting its strengths and limitations, especially in predicting extreme 
deformation values. 

6.1. Spatial Resolution Discrepancy  

Low values of correlation between the various dynamic variables and downslope displacement were 
obtained and there is an overall lack of trend of correlation values with increasing lag time. This could 
indicate that, since correlation measures linear relationships, it was unable to capture the complex 
relationships in the dataset. Mutual Information, a metric which captures non-linear relationships 
between variables, gave quite high values with precipitation (in Appendix 9.4). However, individually 
taken, it is not a conclusive metric.     

Additionally, poor performance of the correlation analysis could also be attributed to the discrepancy 
in the data resolution. The dynamic variables from the ERA-5 dataset have a resolution of about 11 
km. This means each pixel represents a large area, averaging the values of variables (e.g., precipitation, 
temperature, LAI) over this extensive region (Figure 21a). Such aggregation can smooth out local 
variations and extreme values that might be critical for understanding downslope displacement. 
Downslope displacement is often influenced by localized factors such as micro-topography, soil 
properties, vegetation cover, and small-scale weather events. These factors can vary significantly 
within an 11 km pixel, leading to a loss of critical information when using coarse-resolution data. For 
example, intense rainfall in a small part of the 11 km pixel might trigger a landslide, but the average 
precipitation value for the whole pixel might not reflect this intensity. The displacement data from 
EGMS is spatially rich, capturing fine-scale variations in slope movement. This high level of detail 
can include localized events and variations that are not visible in the coarser ERA-5 data. 

Figure 21 Discrepancy in the data resolution between the ERA5 (dynamic variables) and EGMS dataset 
(target variable) 

(a) Low resolution of LAI and Precipitation (b) InSAR Scatterers (c) Slope Units 
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Efforts were made to smoothen the high spatial resolution EGMS displacement dataset by taking the 
signal of the scatterer with the highest mean deformation per slope unit (Figure 21b and c). Yet, the 
dynamic variables derived from the ERA-5 dataset are still coarser at a resolution of about 11 km. The 
significant difference in spatial resolution means that one pixel in the ERA-5 data covers a much larger 
area compared to multiple finer-resolution scatterer signals in the EGMS data. This spatial 
misalignment can lead to inaccuracies when correlating the two datasets because the precise location 
and extent of displacement events might not correspond directly to the averaged dynamic variables. 

6.2. Outliers and Error Distribution 

The analysis of the results indicates that the model performs reasonably well around the middle ranges 
in capturing both spatial and temporal dynamics of the dataset. The QQ plot reveals that the predicted 
values generally follow the distribution of the actual values, however, the model struggles with extreme 
values and certain regions with high variability, especially beyond the range of ±90 mm. This is 
reiterated by the distribution of the average prediction errors (Figure 22) which show higher values for 
slope units where the average downslope is beyond the range of ±100 mm.  
The significant differences between MSE and RMSE across various bins of downslope displacement 
suggest the presence of outliers in the data. MSE, which involves squaring each error before averaging, 
is especially sensitive to these outliers, resulting in disproportionately larger values compared to 
RMSE (Chai & Draxler, 2014). This pattern might be also associated with data quality issues. The 
EGMS dataset was generated for the entire European region and in such a large scale processing of 
SAR data, some uncertainties that we cannot assess might exist in the repository. 
 

 
Figure 22 Distribution of RMSE and MSE across the downslope displacement ranges 
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6.3. Landslides and Error Distribution 

The analysis revealed that the error is notably larger in slopes affected by flows and falls. This can be 
attributed to the fact that fast-moving processes are challenging for InSAR to capture accurately, as 
the signal is not well-suited for such rapid changes. Sudden changes in surface displacement lead to 
signal decorrelation and phase noise, making it difficult for InSAR to maintain coherence and provide 
reliable measurements (Moretto et al., 2021). 

A comparison of the errors (Figure 20 a) with the landslide inventory provided by the BGS (Figure 
23) indicates that most SUs with high error are associated with landslides. However, the reverse is not 
necessarily true - not all landslide locations correspond to high errors. This discrepancy can be 
attributed to the varying nature of landslides and the specific characteristics of different regions. 

The bar chart (Figure 24) shows the distribution of average prediction error by landslide type. It 
indicates that the average error is highest for fast movements, including falls and flows, underlining 
the difficulty in modelling these rapid movements accurately.  

 

Figure 23 Distribution of Landslides in the region (2014 -2021) (Source: BGS) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Landslide 
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Figure 24 Distribution of average prediction error by landslide type, showing largest average error 
for flow and fall. 

 

The effectiveness of InSAR technology diminishes when it comes to rapid movements such as those 
seen in debris flows and falls. The high velocity and sudden nature of these events result in phase 
unwrapping errors and loss of signal coherence, which in turn lead to inaccurate measurements and 
high prediction errors (Zhong et al., 2024). However, this technology is quite effective for detecting 
the onset of movement and monitoring slow, gradual displacements over time. For example, it can be 
used to identify areas where slope movements are beginning and to monitor landslides that exhibit 
slow, continuous deformation (Sun et al., 2016). This capability makes InSAR an invaluable tool for 
early warning systems and long-term monitoring of landslide-prone areas. 
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7. CONCLUSION 

This chapter provides the concluding remarks. Section 7.1. summarizes the main findings in relation to the 
research objectives. Section 7.2. offers recommendations for future research directions in this field, while 
highlighting the importance and scope of further research.  
 

7.1. Main Findings in relation to the Research Objectives 

 
Objective 1: Relationship Between Environmental Variables and Deformation 
 

 The study found varying correlations between dynamic variables and hillslope deformation, 
with precipitation showing positive correlations at certain lags, and temperature, leaf area 
index, and terrestrial water storage showing negative correlations. However, these correlations 
were generally low, indicating complex, non-linear interactions that may not be fully captured 
by linear correlation or given the low spatial resolution of the dynamic variables.  
 

 The analysis of lag time did not reveal any apparent trends, suggesting that the impact of these 
environmental variables on hillslope deformation is not straightforward and may vary across 
different conditions and regions. 

 
Objective 2: Development of the Spatio-Temporal Model 
 

 The proposed GAT+GRU model successfully integrates both spatial and temporal 
dependencies. It utilizes graph structures to capture spatial relationships among slope units and 
recurrent units to model temporal sequences. The incorporation of predisposing and dynamic 
environmental factors in a spatio-temporal model is a novel approach. 
 

 The model generally captures the trends and fluctuations in deformation data but struggles with 
extreme values. Spatially, the model's predictions align with actual deformations in many areas 
but deviate in regions with high variability. The performance analysis through QQ plots and 
spatial distribution maps indicates areas for potential improvement, particularly in handling 
extreme deformation values. 

 

7.2. Future Recommendations 

Slope stability and hillslope deformations are governed by a complex interaction of various factors 
(Dong et al., 2020; Scaringi & Loche, 2022). For example, Kang et al. (2021) identified seasonal 
changes in InSAR-derived deformation rates, attributing pore pressure and clay-rich body swelling as 
key factors. Other studies have linked monthly precipitation (Xu et al., 2019) and earthquakes (Fang 
et al., 2022) to positive correlations with InSAR-derived deformations. Given that the intensity and 
frequency of these influencing factors are rapidly changing due to climate change (Handwerger et al., 
2019), understanding their contributions is crucial for gaining deeper insights into deformation 
patterns. Future research focusing on establishing feature importance and SHAP values of variables in 
the model could provide crucial insights into the influence of individual factors. These insights can 
significantly improve our understanding of slope evolution under varying conditions and enhance the 
predictive capabilities of the model (Lundberg & Lee, 2017). 
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To build on the current findings, employing different modelling approaches on the same dataset could 
also help in comparing results and identifying the most effective methods for prediction. Moreover, 
running the same model on different datasets could assess the model's robustness and generalizability. 
This comparative approach could highlight the model's strengths and areas needing improvement, 
ensuring it performs well across various conditions and datasets.  

Future research could also consider incorporating ground-based measurements, which provide 
dynamic variables at a finer spatial resolution. This could lead to more significant correlation results, 
as seen in studies by Lollino et. al (2016) and Ardizzone et al. (2011). Utilizing high-resolution data, 
from sources such as the weather observations from the UK Meteorological Service (Met Office WOW 
- Home Page, n.d.) can capture localized variations and extreme values that are often critical for 
understanding downslope displacement. 

In addition to correlation analysis, future studies could benefit from examining causal relationships 
between variables. Employing causal inference techniques can help identify and understand the direct 
effects of environmental factors on hillslope deformation, providing deeper insights into the 
mechanisms driving these processes (Runge et al., 2019) . 

With more people living in hazardous areas and extreme weather events becoming more common due 
to climate change (Wallemacq et al., 2015), this direction of research could lay the foundation for a 
global hillslope displacement prediction model. Enhanced by AI-based accurate weather forecast 
models like the recent GraphCast (Lam et al., 2023), such a model would provide critical, timely 
warnings, potentially saving lives and reducing property damage. This global approach to hillslope 
deformation prediction is a vital step forward in disaster risk reduction and management. 
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9. APPENDIX 

 
9.1 Batched Adjacency Matrix 

A function ‘get_connected_nodes’ is used to form a fully connected subgraph by identifying connected 
nodes. It ensures that every batch is fully connected, which is crucial for capturing the graph structure 
during training.  The batch size (determining the number of nodes in each batch) is determined during 
hyperparameter-tuning and can be given as an input.  
 

 

Figure 25 Function to define batched adjacency matrix 
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9.2 Hyperparameter finetuning 

 
 
Training Loss for different hyperparameter combinations:  

 
Figure 26 Results from hyperparameter finetuning for different combinations 
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9.3 Additional Results: Correlation Analysis 

 
 

 
Figure 27 Bivariate plots between correlation values and other variables, with lag=1. 
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Figure 28 Bivariate plots between correlation values and other variables, with lag=2. 
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Figure 29 Bivariate plots between correlation values and other variables, with lag=4. 
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Figure 30 Bivariate plots between correlation values and other variables, with lag=8 
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Figure 31 Bivariate plots between correlation values and other variables, with lag=12 

 
 
 
 
 
 
 
 
 



 

51 

9.4 Measuring non-linear relationship: Mutual Information  

 
9.5 Landslide distribution by type in the region 
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9.6 Model Architecture composed of GAT + GRU layers 
 

 
 


