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ABSTRACT 

Forests are huge reserves of carbon. A reliable proxy for estimating the carbon stored in a forest is 

the Above Ground Biomass (AGB) of the vegetation. Accurate reporting of the change in forest 

carbon is an essential requirement under various international agreements and also for individual 

targets of countries. Radar remote sensing has the ability to penetrate the forest canopy and hence 

has been widely used for estimating AGB. Different radar bands, each with distinct wavelengths, are 

sensitive to various components of vegetation. Longer wavelengths (like L- band) are more sensitive 

to the trunk while shorter wavelengths (like X- band) are more sensitive to the leaves and branches. 

The landscape in Indonesia is rapidly changing due to several reasons. Hence, the long-standing 

primary forests are converted into other land use categories like plantations. Therefore, It becomes 

essential to estimate the carbon lost during this process. This study aimed at examining and 

comparing individual radar X-, C- and L- bands and an integration of these bands for predicting the 

AGB of a complex tropical landscape in Indonesia with heterogeneous vegetation. The models were 

created using linear regression incorporating all field plots across the four land use categories, as well 

as specific subsets: forest, oil palm plantation, and a combination of both forest and oil palm 

plantation plots. The training R2 of the models using field plots of all four land use categories was 

consistently below 0.1 across all bands. When two land use categories were removed- rubber and 

shrubland, the R2 increased by many folds, with the highest achieved when using a combination of 

all three bands together and a combination of L- and C- band. For the oil palm plantations, X- band 

performed the best (0.44), along with its combination with C- band. For forests, L-band proved to 

have the highest accuracy (0.20), along with its combination with C- band and using all 3 bands 

together. Moreover, a comparison of these model coefficients was carried out to understand the 

difference in the slopes and intercepts, using ANCOVA. Between the three bands, the model slopes 

did not differ significantly for different land use categories, except between X- and L-band for 

forests. Between models for forests and for oil palm plantations, the slopes were not significantly 

different, except when using X- band backscatter as the continuous variable(factor). The intercepts 

were different when using L- and C- bands as the factor. Further analysis revealed that pooling the 

land use categories with statistically different intercepts might introduce a persistent bias in the 

models. To check the performance of the models on unseen data, validation accuracies (R2 and 

RMSE) were computed using the leave-one out cross validation methods. The highest validation R2 

was obtained for oil palm plantation field plots when using backscatter from X- and C- band (0.29). 

Relative RMSE showed that X- band had the least prediction errors for oil palm plantations, whereas 

L-band had the least errors for forests. A number of uncertainties in the models were discussed, 

some of them being the complexity of using different land use categories, non-linear relationships 

between AGB and backscatter and presence of outliers.  
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1. INTRODUCTION 

1.1. Background 

Climate change is the biggest threat to our environment in recent times (Deep, 2023; Fanelli, 2013). 

Human-induced deforestation is a significant contributor to climate change (IPCC, 2014). This is 

based on the fact that deforestation increases the level of carbon dioxide in the atmosphere, 

amplifying the greenhouse effect (Achard et al., 2004; Hansen et al., 2013). Forests have the capacity 

to serve as either carbon dioxide sources or sinks (IPCC, 2014). However, when they are cut down 

for reasons like land use change, their role shifts from being carbon sinks to becoming carbon sources 

(Gibbs et al., 2007). About a third of total carbon emissions in the past 250 years can be attributed 

to anthropogenic deforestation, forest degradation and land conversions activities (Smith et al., 

2014). A fundamental aspect of comprehending the global carbon cycle involves understanding the 

storage of carbon within vegetation as carbon sinks. (Falkowski et al., 2000). 

 

Accurate assessment of the changes in forest carbon is also essential for international agreements 

(Goetz & Dubayah, 2011). The Reducing Emissions from Deforestation and Forest Degradation 

(REDD+) initiative was started by the United Nations Framework Convention on Climate Change 

(UNFCCC) with the aim to reduce carbon emissions from forests and instead convert them in 

effective sinks (UNEP 2018; Herold et al., 2019). Within this initiative, partner countries are also 

expected to engage in monitoring, measuring, and reporting on their forest resources (UNEP 2018). 

REDD+ entails measuring changes in forest extent, evaluating forest quality and quantification of 

carbon stocks. 

 

In view of Indonesia, the contribution of the forestry sector is potentially immense in achieving 

Indonesian government’s target of reducing overall greenhouse gas emissions by 26% (Verchot et 

al., 2010). The implementation of REDD+ in Indonesia faces difficulties such as consistently 

monitoring and collecting information on the status of forests. It also highlights the significance of 

developing a carbon inventory system to accurately monitor carbon emissions and reduction 

(Verchot et al., 2010). In addition, there is an ever-increasing demand for oil palm plantations 

globally. However, oil palm plantations are considered to harm the ecosystem and environment 

where they are planted (Shigetomi, Ishimura, & Yamamoto, 2020). In the last 25 years, the rapid 

growth of oil palm plantations has resulted in conversion of about 3 million hectares of tropical 

forests in Southeast Asia (Miettinen et al., 2016). Large scale oil palm plantations managed by big 

companies were considered responsible for around 23% of deforestation in Indonesia between 2001 

and 2016 (Austin et al., 2019). While there is a reasonable understanding of the carbon emissions 

produced from the soil organic matter oxidation after converting peat swamp forests to Oil palm 

plantations, the overall net carbon emission resulting from this conversion over the entire life cycle 

of the plantation is still not well-defined or accurately measured (Tonks et al., 2017). 

 

The aboveground biomass (AGB) is a reliable proxy of the carbon stored in a forest and is utilized 

for monitoring forests widely (Larocque et al., 2014). It consists of all organic matter above the soil 

surface of a tree like stem, branches, trunk etc. (Ravindranath & Ostwald, 2007). AGB is hence an 

important climate indicator in this regard (Herold et al., 2019). Approximately half of Indonesia’s 

land cover is forest, which stores about 60 Gt of carbon, out of which 6 Gt is stored in the form of 

aboveground biomass (FAO 2009). In addition to carbon, the vegetation biomass is intricately linked 
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to several vital ecosystem processes, such as the cycling of water (Reichstein & Carvalhais, 2019). 

Hence, accurately estimating AGB is a requirement for development of effective forest management 

strategies (Urbazaev et al., 2016). AGB can be estimated through on-field measurements or by 

remote sensing techniques (UNEP 2018). The most accurate estimation of biomass is through field 

measurements. Nonetheless, some measurement techniques involve destruction or cutting down of 

trees, which goes against the principle of REDD+ (Stovall et al., 2017). In contrast to destructive 

measurements, allometric equations can be used where certain parameters are derived through 

ground-based measurements of trees in sample plots like Diameter at Breast Height (DBH) and tree 

height. These parameters are then used to estimate the AGB values of the trees via allometric 

equations and finally on plot level (Brown, 1997). However, the acquisition of such measurements 

in the field involves substantial time and labour (Segura & Kanninen, 2005). Remote sensing 

demonstrates the ability to regularly monitor the Earth’s surface and its characteristics over large 

regions. This makes it an important technique for biomass estimation (Lu et al., 2012). 

Many previous studies have used optical imagery for AGB estimation (Li et al., 2020; Urbazaev et 

al., 2016). However, optical imagery is not well suited for biomass estimation due to reasons like 

effects of cloud cover, especially in tropical regions. This limits the number of acquisitions available 

(Asner, 2010; Luckman et al., 2000). Moreover, in regions with high biomass problem of data 

saturation occurs when using optical imagery (Lu et al., 2012). LiDAR (light detection and ranging) 

technique is considered to accurately estimate AGB. This is due to its power to capture 3-dimensional 

information of a landscape accurately (Duncanson et al., 2010). On the other hand, use of LiDAR 

equipment is expensive, and it can only provide small to moderate spatial coverage (Gibbs et al., 

2007). 

 

Synthetic Aperture Radar (SAR) data is widely used for biomass estimation due to its strong 

correlation with AGB and advantages like resilience to weather impacts and ability to penetrate 

vegetation structures (Le Toan et al., 2011). As AGB increases, the backscatter, which measures the 

radar signal strength also increases until it reaches a saturation point (Mitchard et al., 2009a). 

Generally, linear, or logarithmic models have been used to describe the relationship between SAR 

backscatter and AGB (Yu & Saatchi, 2016; Schlund et al., 2018). Vegetation mainly causes volume 

scattering, where multiple scattering often changes the polarisation of the emitted and received signal 

(Vreugdenhil et al., 2020). Hence, cross-polarisation bands like Horizontal transmit, Vertical receive 

(HV) and Vertical transmit, Horizontal receive (VH) are considered generally more sensitive to 

vegetation. Longer wavelength radars (like L- and P-band) can derive more vertical information of 

vegetation due to their potential penetration into the vegetation and are considered more suitable for 

measuring higher biomass, whereas shorter wavelengths are considered more appropriate for 

measuring lower biomass (Patenaude et al., 2005). Shorter wavelengths like C- and X-band could 

also have benefits for AGB estimation and monitoring. One of the key benefits of utilizing Sentinel-

1 images lies in their short revisit time, where the frequency utilized by the Sentinel-1 mission of the 

European Space Agency (ESA) is in the C-band. Additionally, these images are available free of cost 

presenting a user-friendly and cost-effective option (Argamosa et al., 2018). X-band SAR particularly 

interacts more with the vegetation characterized by small leaf and branch components, along with 

slender trunks (Mitchard et al., 2009b). Hence, X-band SAR has also proved to be promising in 

mapping lower biomass regions (Solberg et al., 2010).  

 

Some studies have previously used a combination of radar bands for AGB retrieval (Englhart et al., 

2011; Schlund & Davidson, 2018; Sivasankar et al., 2018). Naidoo et al. (2015), used individual X-, 

C- and L-band SAR as well as their combination for modelling various structural parameters such as 
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woody AGB in African savannah. They discovered that a combination of all three bands had the 

highest accuracy in AGB estimation, although this is not most convenient. Secondary to this, using 

L-band alone showed a better estimation than using both X- and C-band individually and in 

combination. A study by Koh & Wilcove (2008) quantified the extent of primary forests converted 

to oil palm plantations, but quantification of the carbon emissions due to conversion from primary 

forests to oil palm plantations has not been performed. Another study by Asari et al. (2017) used L-

band SAR acquisitions to map the AGB of oil palm plantations and forests in Malaysia. Although 

this was done accurately for forests, they were unable to obtain similar accurate retrievals for oil palm 

plantations. 

 

The X-band experiences pronounced scattering when it interacts with the leaves, which proves to be 

relevant in getting information about the outer layer of trees. On the other hand, C-band interacts 

mostly with branch elements and L-band with the trunk of the tree (Roy et al., 2021). Hence, the 

integration of two or three radar frequencies can enhance the understanding about different terrain 

features as different frequencies are sensitive to distinct surface features (Notarnicola et al., 2007). 

Schmullius & Evans (2010), implied that combining high frequency SAR (X- or C-band) with lower 

frequencies (L- or P-band) is essential for monitoring different parameters across forestry. Hence, in 

the complex landscape of Indonesian forests which consist of both high biomass forest regions and 

low biomass plantations, it could be assumed that combining different SAR frequencies may lead to 

more accurate AGB estimation. 

1.2. Problem statement 

To fulfil Indonesian government’s target of greenhouse gas reduction and achieving REDD+ goals, 

it is imperative to establish a suitable forest inventory system for Indonesia. Monitoring forest 

resources helps to track the carbon stock changes at a smaller scale. This, in turn, facilitates the 

assessment of advancements in local policies and lays the groundwork for forthcoming regulations. 

 

The limitations of using a single SAR band have been highlighted in the preceding section. The 

literature review suggests that some studies achieved a higher accuracy when a combination of bands 

was used. Furthermore, using only the L-band wasn't effective in measuring the amount of AGB in 

land areas with lower vegetation like oil palm plantations. (Asari et al. ,2017). It is worth noting that 

these studies have been conducted in varying landscapes (Naidoo et al. ,2015; Englhart et al., 2011; 

Schlund & Davidson, 2018; Sivasankar et al., 2018). The synergistic capabilities of shorter and longer 

SAR frequency sensor technologies within the diverse and intricate tropical landscapes of Indonesia 

including forests and cash crops like rubber and oil palm have not been evaluated. 

 

Therefore, this study aims to overcome the limitations of using SAR bands individually. This will be 

done by analysing the accuracy of the AGB retrieval for the landscape in Indonesia with different 

combinations of SAR X-, C- and L-bands as compared to individual band retrievals. The insights 

from this study can help to understand how the choice of SAR wavelength (X-, C-, or L-band) impact 

the accuracy of AGB estimation in different land cover types within the Jambi landscape. Moreover, 

it can assess whether the combination of SAR bands improves AGB estimation compared to using 

individual bands. In this process, the method with highest accuracy for AGB retrieval of the whole 

region as well as for oil palm plantations will be identified. 
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1.3. Objectives, Research questions and Hypothesis 

 
The aim of this study is to use individual Synthetic Aperture Radar (SAR) X-, C- and L-bands and 

their combinations for AGB estimation in the complex landscape of Jambi, Indonesia. Additionally, 

this study will encompass AGB estimation specifically for both oil palm plantations and forested 

areas within the area. Furthermore, we will assess the accuracy of these AGB estimations and conduct 

a comparative analysis of models developed using different bands and their combinations. 

 

Objective 1: To assess the relationship between AGB and backscatter of SAR X-, C- and L-bands 

and their combinations. 

RQ1: For the whole landscape, what is the relationship between backscatter of SAR X-, C- and L-

bands and their combinations with the field-measured AGB? 

RQ2: Specifically for the oil palm plantations, what is the relationship between backscatter of SAR 

X-, C- and L-bands and their combinations with the field-measured AGB? 

RQ3: Specifically for the forests, what is the relationship between backscatter of SAR X-, C- and L-

bands and their combinations with the field-measured AGB? 

Hypothesis: - There is a significant logarithmic relationship between AGB and the backscatter values 

obtained from SAR X-, C-, and L-bands, both individually and in various combinations. 

 

Objective 2: To compare the developed AGB-backscatter relationships between individual SAR 

bands and land uses. 

RQ4: For the whole landscape, do the AGB-backscatter relationships significantly differ across the 

X-, C-, and L-bands? 

RQ5: Do the AGB-backscatter relationships significantly differ between the forests and oil palm 

plantations across the X-, C-, and L-bands? 

Hypothesis: - The AGB-backscatter relationship does not differ for the whole landscape across SAR 

X-, C- and L-bands and their combinations. 

Hypothesis: - The AGB-backscatter relationship does not differ between the forests and oil palm 

plantations across SAR X-, C- and L-bands and their combinations. 

 

Objective 3: To compare AGB estimation accuracies for X-, C-, and L-bands and their 

combinations.  

RQ6: For the whole landscape, Do the AGB estimation accuracies differ across SAR X-, C-, and L-

bands and their combinations? 

RQ7: For the Forests, Do the AGB estimation accuracies differ across SAR X-, C-, and L-bands and 

their combinations? 

RQ 8: For the oil palm plantations, Do the AGB estimation accuracies differ across SAR X-, C-, and 

L-bands and their combinations? 

Hypothesis: - The accuracy of Above-Ground Biomass (AGB) estimation will vary between 

individual SAR bands and their combinations across the entire landscape, for forests and oil palm 

plantation.
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2. STUDY AREA AND DATASETS 

2.1. Study area  

The forest cover of Sumatra island underwent a significant decline, plummeting from 71% in 1950 to just 

30% by 2010. Within Sumatra, the province of Jambi experienced an even more pronounced reduction, 

with forest loss exceeding 40% from 1990 to 2010 (Margono et al., 2012). For this study, the Indonesian 

province of Jambi has been selected. It is positioned at the heart of Sumatra island. The study area is situated 

between 1.233°S to 2.769°S latitude and 101.2°E to 104.733°E longitude (Rustiadi et al., 2022). The province 

has a land area of 49,000 km². The study is conducted in the Sarolangun Ban and Batang Hari regencies of 

Jambi (Figure 1). Overall, This region experiences a tropical and humid climate with a consistently moderate 

temperature year-round, averaging around 26 degree Celsius (Rustiadi et al., 2022). In addition, rainfall is 

abundant, but there are intermittent dry spells, notably in July. Acrisols are the prevailing soil type in this 

area. Regarding the vegetation, the study area is mostly covered by tropical rainforest, rubber, oil palm 

plantations and shrubland. The prevalent plantation type in the region includes Hevea brasiliensis 

monoculture (rubber) and Elaeis guineensis plantations (oil palm) (Kotowska et al., 2015). 

The Jambi province secured the fourth position within Sumatra regarding the overall expanse of oil palm 

plantations. These plantations are the major source of economic growth in the region. A mix of smallholder 

plantations, and large-scale company-owned plantations of these cash crops can be found in the study area. 

Due to the rapid expansion of oil palm plantations, the region has been facing several challenges like illegal 

logging caused by inconsistent policies (Rustiadi et al., 2022).  

 

 

 
Figure 1- Location of the study area - Sumatra Island within Indonesia and Sarolangun Ban and Batang Hari regencies 
within Jambi province (right image). (Source: basemap from ESRI, Indonesia administrative subdivision from 
Bakosurtanal–RSGISforium-Bpk. Suwandito) 

 

2.2. SAOCOM 1A L-band data 

SAOCOM 1A (Satélite Argentino de Observación COn Microondas) was launched by Argentina's space 

agency, Comisión Nacional de Actividades Espaciales (CONAE) on 8 October 2018. It is equipped with a 
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L-band sensor, and it has been found useful for forest studies (Seppi, López-Martinez, & Joseau, 2022). 

Three sets of dual-polarized images (HH and HV) were acquired, providing complete coverage of the field 

plots (Figure 2). However, for this study, only the cross-polarized HV band was employed, as it exhibits 

greater sensitivity to volume scattering induced by vegetation (Vreugdenhil et al., 2020). The processing level 

of the images corresponded to Single Look Complex (SLC), and the acquisition mode was StripMap (SM), 

this corresponded to a ground range and azimuth resolution of 10 m by 5 m, respectively (Table 1).  The 

SLC product consisted of both phase and amplitude information and had undergone radiometric calibration 

but without any geometric adjustments. The acquisition dates were 25th October 12th and 28th December 

2022. 

2.3. Sentinel-1A C-band data 

Sentinel-1A satellite was launched by the European Space Agency (ESA) in 2014. It is equipped with a C-

band SAR sensor. Two images were acquired to cover the field plots in the study area (Figure 2). The dataset 

used in this study includes two polarization channels known as VV and VH. For this study, just the cross-

polarised VH product was utilised (Vreugdenhil et al., 2020). The Ground Range Detected (GRD) product 

in the Interferometric Wide (IW) swath mode was acquired for the purpose of analysis (Table 1), which 

corresponds to a pixel spacing of 10 m by 10 m. Moreover, the ground range and azimuth resolution of the 

image is 20 m by 22 m. GRD data was selected as the phase information is not of relevance to this study 

and amplitude data is only required. At the GRD processing level, multi looking is performed to account 

for the speckle in the image. The sensing date was 22nd December 2022. This date corresponds to the dry 

season in Indonesia, which minimizes potential moisture-related interference with SAR backscatter. 

Sentinel-1 data with similar parameters has been frequently used in forestry applications (Roy et al., 2021; 

Zhang et al., 2023b). The data was acquired from European Space Agency’s scientific Copernicus data hub. 

 

2.4. TanDEM-X X-band data 

TerraSAR-X and TanDEM-X satellites were launched on June 15, 2007, and on June 21, 2010, respectively, 

as a collaborative effort between the German Aerospace Center (DLR) and Airbus Defence and Space. 

TerraSAR-X and TanDEM-X fly in close formation to capture interferometric SAR data. This study utilized 

three TanDEM-X single polarisation (HH) images, which collectively covered the field plots within the 

designated study area (Figure 2). The processing level and operational mode of the acquired data was Single-

look Slant Range Complex (SSC) and StripMap (SM) respectively (Table 1). The products at SSC processing 

level are not geocoded and exhibit uniform pixel spacing in both azimuth and slant range. The resolution 

measures approximately 3.3 meters in the acquired images (Airbus, 2015). The SM mode has a higher 

resolution and narrower swath width than other modes like ScanSAR and Wide ScanSAR, but lower 

resolution and swath width than the spotlight mode (Airbus, 2015). This provides a good balance between 

spatial resolution and ground coverage. The TanDEM-X images from 27th February 2018, 9th May 2018, 

and 25th February 2019 were acquired (Table 1). 

The radar images acquired from different satellites for different bands, exhibit distinct characteristics and 

are accompanied by specific sets of metadata (Table 1). 

 

 

 
Table 1- Comparison of the characteristics of the X-, C- and L-band data 

Property X-band   C-band   L-band 

Satellite TanDEM-X Sentinel-1A SAOCOM-1A 
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Observation date  27 February 2018, 

9 May 2018, and 

25 February 2019 

22 December 

2022  

25 October, 12 

and 28 December 

2022 

Polarization HH VV and VH HH and HV 

Orbit direction/PASS Ascending Descending Ascending 

Ground range and azimuth 3.3*3.3 m  20*22 m 10*5 m 

Swath width 30km 250 km 55 km 

wavelength 3.11 cm 5.54 cm 23.51 cm  

instrument mode Strip Map (SM) Interferometric 

Wide Swath (IW) 

Strip map (SM) 

Observation direction Right Left Right 

Processing level Single Look Slant 

Range Complex 

(SSC) 

Ground Range 

Detected (GRD) 

Single-Look 

Complex (SLC) 

 

2.5. Field data 

 

Data were gathered in the field from May 2021 to April 2022 during an extensive data collection in the 

framework of the EFForTS (Ecological and Socioeconomic Functions of Tropical Lowland Rainforest 

Transformation Systems) project. The field plots were circular shaped with a radius of 17.84 metres, 

accounting for an area of approximately 1000 m² per plot. Data on all trees with  Diameter at Breast Height 

(DBH) more than or equal to 10 cm were collected. The DBH was measured at 1.3 metres above ground 

level. The height of the trees was recorded using a Vertex III height meter (Haglöf, Långsele, Sweden). Oil 

palm height was determined as the distance from the trunk's base to the lowest point of the youngest leaf. 

A total number of 103 field plots were used in this study, with 27, 30, 25 and 21 plots for oil palm, forests, 

rubber plantations and shrubland each. The spatial distribution of these plots is displayed in Figure 2.  

For the conversion of these biometric information to AGB, allometric equations were applied.  

For trees in shrubland, rubber plantations and forest plots, the allometric equation by Chave et al. (2014) 

was used. 

 

AGB =  0.0673 × ρ D 𝐻0.976 

Where, 

AGB = Aboveground Biomass of trees and rubber plantations (in Kg per tree) 

ρ = Wood density (in g cm-3) 

D= Diameter at Breast Height (in cm) 

H= Total tree height (in m) 

 

The wood density models employed in the study by Kotowska et al. (2015) were utilized. 

An allometric equation used by Khasanah et al. (2015) was applied for AGB estimation of oil palms. This 

equation equates the oil palm height to its biomass considering the soil type as well.  
 

AGB = 0.0939 × H + 0.0951 

Where, 

AGB = Aboveground biomass of oil palm plantations (in Mg) 

H = Total tree height (in m)  

Lastly, the AGB of all the trees in a plot were added and normalized to tons ha− 1.  
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Figure 2 – Coverage of the three satellite images around the field plots. (Basemap from ESRI) 
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3. METHODOLOGY 

3.1. Research methodology 

Figure 3 explains the sequence of methods that were followed to fulfil the final objectives and answer the 

corresponding research questions. 

 

Figure 3- Flowchart of methodology explaining how the objectives were achieved. The same methodology was 
performed for predicting the AGB of different land use categories and their combinations. 
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3.2. SAR data pre-processing 

The X-, C- and L-band images required certain pre-processing steps, before they could be utilised. As 

mentioned in section 2.2, only the cross-polarization bands of C- and L-band were utilised. Appendix B also 

provides a comparison between the models developed with co-polarized bands. This process involved 

performing a radiometric calibration, speckle filtering and geometric correction to obtain the final geocoded 

image with backscatter values. The pre-processing was conducted using the Sentinel Application Platform 

(SNAP) software, developed by the European Space Agency (ESA). SNAP is an open-source software that 

offers comprehensive SAR preprocessing capabilities for missions such as Sentinel-1, SAOCOM-1A, and 

TanDEM-X. 

 

As a first step, Radiometric calibration was performed. This converted the raw Digital Number (DN) values 

of the image into physical units (𝜎0), that represented the backscatter in order to perform a quantitative 

analysis. After calibration, backscatter coefficients for the three different images were obtained.  

This step was followed by speckle filtering, which was required to reduce the salt and pepper effect that 

arises in radar images due to inherent speckle noise. The aim of despeckling is to reduce speckle noise while 

retaining the details in the image (Painam & Manikandan, 2023). Some available filters in the SNAP software 

are Enhanced Frost, Mean, Kuan, Median, Frost, Lee, Wiener, and Gamma MAP filter. A kernel of certain 

window size is applied over the imagery to reduce the noise. For this study, a Lee filter with a window size 

of 7*7 (Lee, 1980) was used to reduce the noise in the image to make it more interpretable. A 7*7 window 

size provides a good trade-off between speckle reduction and edge preservation without compromising the 

spatial resolution of the images with 10*10 metre pixel size (Rubel et al., 2021). The Lee filter employs a 

spatial filtering technique that is relatively straightforward to implement, thereby minimizing the 

computational demands involved (Liu et al., 2021).  

 

The images' orientation were distorted, a result of how the sensor acquires the data. To rectify this, a 

geocoding process was performed. The topographic variations of the earth’s surface need to be accounted 

for, due to which we used a Range-Doppler Terrain correction in SNAP. Shuttle Radar Topography Mission 

(SRTM) data provides accurate topographic details, which plays a crucial role in geometric correction. The 

SRTM 3-sec DEM which is directly downloadable via SNAP was used for this purpose. In this step, the 

images were also resampled to a pixel spacing of 10 by 10 metres. This corresponds to the coarsest pixel 

resolution present in the three imageries. This was done to prevent oversampling of the Sentinel-1 data. 

Having the same pixel spacing for all images was important for consistency of analysis. 

For the SAOCOM-1A images, a manual georeferencing was also conducted. This was done keeping in 

consideration the geo-location uncertainty of the satellite, which is about ±70 metres. A visual inspection 

was done to identify any potential geo-location errors and it was found that the images were off by a few 

pixels. This potentially meant that the field plots were located in a completely different location on the 

imagery than on the ground.  As a consequence, ground control points were collected on the software QGIS 

using a very high resolution base imagery from google satellite images Polynomial degree 3 transformation 

was used along with a nearest neighbour resampling. Further, the raster georeferencer was utilised for 

georeferencing with a mean error between 1.5-3 metres for all three images. 

3.3. Backscatter extraction 

The backscatter values were extracted for all the field plot polygons using the zonal statistics tool in QGIS. 

The diameter of the circular field plots was 35.68 metres. It was difficult to extract backscatter information 

on a plot which was circular, as the pixels of the image were square. Considering the resolution of the images 

to be 10 metres, a pixel window of 4*4 was created to fit around the plots. The mean value of backscatter 

coefficients was extracted to ensure consistency in case of noisy data. After the extraction of the mean 

backscatter values that were in a linear scale, the SAR data was converted to Decibels (dB). 
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𝜎0 = 10 ∗ 𝑙𝑜𝑔10(𝜎0[𝑙𝑖𝑛𝑒𝑎𝑟]) 

Where, 

𝜎0 = Backscatter (in dB) 

𝜎0[𝑙𝑖𝑛𝑒𝑎𝑟] = Backscatter (in linear units) 

3.4. Developing regression model 

The next step involved deriving regression models using backscatter values obtained from all field plots. 

Parametric regression models have been extensively used for AGB estimation (Lu et al., 2012; Schlund et 

al., 2018). These models were developed separately for single, combination of two and all bands (as depicted 

in Figure 4a, for the 4 land use classes, for data from just forests and oil palm plantations as well as for two 

classes separately - oil palm plantations and forests (Figure 4b). This added up to a total of 28 models. 

 

Figure 4- a) Venn diagram representing the bands and their combinations which will be used as the independent 
variable. b) Representing the different land uses and their combinations present in the study. 

 
All the 103 data points were used for developing these regression models for all 4 land use categories, oil 

palm plantations and forests. A log-log relationship between AGB and SAR backscatter has been extensively 

utilized (Schlund et al., 2018). A linear regression was applied to establish a log-log relationship between the 

log10(AGB) and backscatter coefficients (in dB), resulting in a forward model. This forward model was 

inverted to derive AGB values by computing the antilog, a process commonly known as the backward 

model. For creating models for combinations of bands, multiple linear regression was applied, with the 

backscatter of bands as the independent variables. The equation corresponding to the linear regression 

model is provided below. 

  

log10(𝐴𝐺𝐵)  =  𝛽0 𝜎0 + 𝛽1 

Where,  

log10 = Logarithmic value of AGB 

𝛽0 = Model coefficient for the corresponding backscatter 

𝜎0 = Backscatter coefficient (in dB) 

a) b) 
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𝛽1 = Intercept 

3.5. Comparison of models 

A comparison of the slopes (𝛽0) and intercepts (𝛽1) of the created models was done to understand if the 

established relationships between AGB and backscatter for different land use categories was significantly 

different. An Analysis of Covariance (ANCOVA) is a suitable method for this purpose. It is used in cases 

where one independent variable is categorical (covariate), and the other one is continuous (factor) 

(Khammar et al., 2020). It measures the impact of the categorical variable, across 2 categories, on the 

relationship between the factor and the dependent variable (Faraway, 2006, Khammar et al., 2020). An 

interaction term was introduced in the created model. This variable represents the combined effect of two 

variables on the dependent variable and is crucial for assessing whether the choice of radar band or land use 

category influences the relationship between AGB and backscatter. P-values were calculated to evaluate the 

null hypothesis that the interaction terms have no effect. Commonly used significance levels of 0.05, 0.01, 

and 0.001 to interpret the strength of evidence against the null hypothesis were applied. For instance, a p-

value less than 0.05 indicates statistical significance at the 95% confidence level, while a p-value less than 

0.01 corresponds to a significance level of 99%, and a p-value less than 0.001 indicates significance at the 

99.9% confidence level. These thresholds guide the interpretation of the statistical significance of the 

interaction terms in our analysis. 

 

A significant p-value indicated strong evidence against the null hypothesis, suggesting a statistically 

significant interaction between factors. For example, a p-value less than 0.05 indicates less than a 5% 

probability that the observed interaction could occur if the null hypothesis were true, leading us to reject the 

null hypothesis in favour of the alternative—that there is a meaningful interaction affecting the relationship. 

Figure 5 explains the sequence of process with the example of comparison of two particular bands. The 

same steps were followed for other combinations of bands and the two land use categories. 

 

H0 – There is no statistically significant difference between the slopes of the two bands or land uses. 

H1- There is a statistically significant difference between the slopes of the two bands or land uses. 
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Figure 5- Methodological steps followed for performing ANCOVA. 

 

If the interaction was significant between the factor and covariate, it was interpreted that the slopes of the 

bands/land uses were significantly different (Figure5). For such models, ANCOVA could not be used to 

test the difference in intercepts. If the interaction term was not significant, it was interpreted that the slopes 

of the model between different bands/land uses is not significantly different. For models like these, a simpler 

model without the interaction term was created as seen in Figure 5. The significance level of the covariate 

was tested and if it was significant, it was interpreted that the intercepts between the two categories were 

significantly different. On the other hand, an insignificant covariate meant that the intercepts were not 

significantly different between the two categories. 

Firstly, to find out if the models created using different bands had significantly different slopes across 

forests, oil palms and the 4 land use categories, an additional categorical variable was added representing the 
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presence or absence of a particular band. Since, in each model there are two bands, a single dummy 

represented one band, where 1 indicated presence of that band and 0 indicated the absence. This makes the 

other band as the reference category (Schlund et al., 2018). Table 2 shows the combination of bands between 

which the differences in slopes and intercepts was tested. In total, twelve pairs of slopes and intercepts were 

tested. A similar method was used to compare model coefficients across different land use categories, which 

is forests versus oil palms as can be seen in Table 3. Appendix D shows the same analysis done between 

different combinations of the four land uses. Land use was treated as a covariate, and the backscatter from 

one of the bands served as the factor. A similar approach was used as above, where a categorical variable 

representing the presence or absence of a land use category was introduced. A similar equation was 

established with the interaction term with the covariate representing the two land use categories. The 

procedure to establish whether the coefficients were significantly different or not was the same as above.  

 

 
Table 2- Representing the different bands (covariate) between which the ANCOVA was performed for different land 
uses and their combinations, with the backscatter as the factor 

Combination of 

bands (covariate) 

Land use 

X- + C- All 4 land use 

categories 

Forests and oil palm 

plantations 

Forests Oil palm 

plantations C- + L- 

X- + L- 

 
Table 3 – Representing the two land use categories (covariate) between which ANCOVA was performed with the 
backscatter from different bands as the factor. 

Bands Land use (covariate) 

X- Forests and oil palm plantations 

C- 

L-- 

 

The model equation showing the interaction term was as follows. 

 

log10(𝐴𝐺𝐵)  =  𝛽0 𝜎0 + 𝛽2𝐵𝐴𝑁𝐷 + 𝛽3𝐵𝐴𝑁𝐷 ∗ 𝜎° + 𝛽1 

Where, 

log10(𝐴𝐺𝐵) = Logarithmic value of AGB 

𝛽0 = Slope for the factor 

𝜎0 = Backscatter coefficient (in dB) 

β1 = Intercept 

β2 = Slope for the covariate 

BAND = Categorical variable representing presence or absence of a band or land use 

𝛽3= Slope for the interaction term 
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3.6. Accuracy assessment 

3.6.1. Leave-one out cross validation 

Accuracy assessment was performed to assess how well the three single radar bands and their combinations 

performed in estimating AGB for all 4 land use categories, oil palm plantations and forests on unseen or 

independent data. For this purpose, a leave-one out cross validation approach was used. This approach is 

common to use when there is insufficient data for creating a training-validation split (Webb et al., 2010). In 

this approach, each observation is used for validation. For the first step, all except one observation is used 

for model training and then the error metric is calculated on the one data point, as can be seen in Figure 6 

(Cha et al., 2020). This is continued till all the observations have been used for validation.  An average for 

the error metric will be taken as the final value. This provides the validation accuracy of the models.  

 

 
Figure 6- Leave-one out cross validation (Cha et al., 2020) 

In this case, there were 103 data points, whereas individually within the land use category oil palm plantations 

and forests, there are 27 and 30 observations respectively. This was insufficient to create a training-validation 

split. The performance of 21 models using the coefficient of determination (R2) and Root Mean Square 

Error (RMSE) was evaluated. This metric provided insights into how well the models perform on unseen 

data. Hence, the R2 and RMSE values for 28 models was obtained. The logarithmic value of AGB was used 

as the dependent variable. Then, for each iteration the prediction in logarithmic value was converted through 

an antilog to obtain the prediction in tons/ha. After this, the RMSE values in the original AGB units from 

all iterations were averaged to obtain the absolute RMSE in tons/ha. A challenge was to compare the RMSE 

values of different land use types with each other. This was because the range of AGB values for all land 

use categories were different as can be seen in the box plot in Figure 7. An approach for the comparison of 

the RMSE values across land use categories was developed to rule out this bias. The relative RMSE was 

calculated by firstly computing the standard deviation of the RMSE values across all iterations and then 

dividing the average RMSE of the model with the standard deviation (Moriasi et al., 2007). This ensured 

that the RMSE is scaled according to the variability of the AGB values of that land use category. The relative 

RMSE values less than 1 would indicate that the model's average prediction error is less than the variability 

of the data (standard deviation). Whereas values greater than 1 would suggest that the model's average 

prediction error exceeds the variability of the data. A model with lower relative and absolute RMSE indicated 

a better fit between the predicted and actual values. 
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Figure 7- Box plot showing the range of AGB values across different land use categories. 

 

Moreover, R2 could not be calculated for each iteration as there was only one data point. Hence, the 

variability could not be explained by using just one data point. Therefore, all individual predictions across 

all iterations were compared to the true values to calculate the R2. We compared these performance metrics 

of our models between X-, C- and L-bands and their combinations for the 4 land use categories. Further, 

this comparison was done between the accuracies obtained for the developed models of oil palm plantations 

and forests. A model with higher R2 value meant that the particular band or band combination was able to 

explain more variability in AGB than a model with lower R² value.  

 

The training R2 explains how well the model explains the variance of the dataset it was used to be created. 

This can be overly optimistic and hence validation R2 was used to assess the performance of the model on 

unseen data. Comparing the training and validation R2 can give an indication if the model is overfitting. 

Overfitting occurs when a model performs well on the data it was trained on but not on unseen independent 

data.  

3.6.2. Akaike Information Criterion (AIC) 

For the purpose of evaluation of the Goodness of Fit (GoF) in regard to the complexity of the model, 

several methods could be used. One of the most common measures used for this purpose is Akaike 

Information Criterion (AIC). AIC provides an assessment of how well the developed model fits on the 

training data. AIC provides a trade-off between fit of data and complexity of the model (Kuha, 2004). A 

penalization is introduced for models with more parameters. This is essential to compare the models 

developed by single, dual, and triple bands. A model using all three radar bands might explain the variation 

in AGB better than a model using a single band, but at the same time it increases the complexity. In this 

case, the complexity is related to the acquisition cost, computational power, and time. In terms of 

comparison of AIC values, differences of more than 2 are considered evidence of a better fit, and differences 

of ten or more are considered strong evidence (Burnham and Anderson, 2004). AIC values can be compared 

for models fitted on the same dataset, with lower values representing a better fitted model while balancing 

the complexity. Hence, to compare the AGB-backscatter relationships developed using single bands, 

combination of two bands and all three bands, AIC was used. A lower AIC meant the model was a better 

fit to the provided data than a model with a higher AIC. 
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4. RESULTS 

4.1. Results from regression analysis  

The model parameters established as a result of the regression analysis between log (AGB) as the dependent 

variable and backscatter of the three different radar bands and their combinations as independent variables 

can be seen in Table 4. The significance levels of the model intercepts and slopes along with the training 

accuracies is also mentioned in Table 4.  

 
Table 4- The training R2 and model coefficients with significance levels marked as * (lightest blue) for p-values < 0.05, 
** (light blue) for < 0.01, and *** (dark blue) for < 0.001. Coefficients without any * symbol are not statistically 
significant.  

Band/ban

d 

combinati

ons 

Land use Intercept Slope X- Slope C- Slope L- Training 

R2 

X- Rubber, 

Shrubland

, Oil palm 

and 

Forest 

2.28*** 0.04**   0.07 

C- 2.38***  0.02  0.01 

L- 2.14***   0.01 0.003 

X- + C- 2.44 *** 0.03* 0.01  0.07 

C- + L- 2.40***  0.02 0.001 0.01 

L- + X- 2.47*** 0.04**  0.01 0.07 

X- + C- + 

L- 

2.50*** 0.04* 0.003 0.01 0.07 

X- Forests 
and oil 
palm 
plantation
s 
 

2.38*** 0.03* 
  

0.10 

C- 3.24*** 
 

0.08*** 
 

0.22 

L- 3.28*** 
  

0.08*** 0.33 

X- + C- 3.22*** 0.02 0.07** 
 

0.23 

C- + L- 3.51*** 
 

0.03 0.06** 0.36 

L- + X- 3.45*** 0.03* 
 

0.07** 0.4 

X- + C- + 
L- 

3.51*** 0.03* 0.01 0.07*** 0.4 

X- Oil palm 

plantation

s 

2.35*** 0.05***   0.41 

C- 2.74***  0.05  0.05 

L- 2.16***   0.01 0.005 

X- + C- 1.75** 0.06*** -0.04  0.44 

C- + L- 2.81**  0.05 0.005 0.05 

L- + X- 2.34*** 0.05***  -0.0002 0.41 

X- + C- + 

L- 

1.79* 0.06*** -0.04 0.003 0.44 

X- Forests 2.20*** -0.009   0.007 

C- 2.65***  0.03  0.05 

L- 2.97***   0.05* 0.19 
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X- + C- 2.63*** -0.02 0.04  0.09 

C- + L- 3.00***  0.003 0.05* 0.20 

L- + X- 2.92*** -0.006  0.05* 0.20 

X- + C- + 

L- 

2.96*** -0.01 0.009 0.046 0.20 

 

Among the models predicting AGB for all four land use categories, those utilizing solely the X-band 

exhibited the highest statistical significance, with p-values less than 0.01 (Figure 8). Additionally, models 

combining the X-band with both the C- and L-bands, as well as models incorporating all three bands, also 

yielded significant results, with p-values less than 0.05. All models predicting the AGB of combined forest 

and oil palm data exhibited statistical significance, with p-values below 0.001 across all models, except for 

the model utilizing solely the X-band as the predictor (Figure 8). 

 

The significance of models predicting the AGB of forests using either the L-band alone or it’s combination 

with X- and C-bands was confirmed, with p-values less than 0.05 for all three models. This indicates strong 

statistical evidence against the null hypothesis, suggesting that these models are statistically significant 

predictors of forest AGB (Figure 8). 

 

Similarly, for models created for AGB of oil palm plantations, models incorporating just the X-band and 

also its combination with the C-band had highly significant p-values below 0.001, indicating strong evidence 

against the null hypothesis. Additionally, models including the X-band with the L-band and all three bands 

together also showed a strong significance, with p-values below 0.01. Overall, all the models produced for 

different land use categories were significant when using a combination of X- and L-band as predictors. 

 

 

 
Figure 8- Heat map visualising the significance levels of various models created with different bands and their 
combinations for different land use categories. For forests, all models with L-band and for oil palm plantations all 
models with X- band have a significant slope. 
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In statistical analysis of the models developed for the four land use categories, the 𝑅2 for the training data 

was consistently below 0.1 across all bands and their combinations (Table 4). This indicated a generally poor 

fit of the models to the training data of all 4 land use types. Figure 9 provides a comparison between the 

regression models developed using single C- band VH, L-band HV and X- band HH backscatter. Out of 

the individual three bands, X- band had the highest R2 of 0.07. L-band had the least training R2 among the 

three individual bands and also among the combination of bands. X-band was consistently the only 

significant predictor, with p-values indicating statistical significance (Table 4).  

 

 

  
Figure 9- Regression plots showing relationship between log (AGB) of all four land use categories and a) X- band HH 
backscatter, b) C- band VH backscatter and c) L-band HV backscatter. 

The results of linear regression performed using just the data of the forests and oil palm land use category 

showed improvement in some bands than using the data of all four land use categories together as can be 

seen in Table 4. The highest R2 of 0.40 was achieved when using all the three bands together and also when 

using a combination of X- and L- band. On the other hand, the lowest R2 of 0.09 was achieved when using 

just the X- band. Figure 10 provides a comparison between the regression using the three bands individually. 

L-band had the highest R2 of 0.33 whereas X- band had the lowest corresponding to 0.09. L-band was a 

significant predictor in all the models that were created with it either individually or with a combination with 

other bands with p values below 0.001 and 0.01. In models utilizing X-band exclusively, as well as in 

combination with L-band and a combination of all three bands, X-band exhibited notable significance. 

Moreover, C-band demonstrated statistical significance as a predictor in models using solely C-band 

backscatter and in models incorporating both C-band and X-band data. Hence, when using the three bands 

individually, all three bands were established as significant predictors. 
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Figure 10- Regression plots showing relationship between log (AGB) of oil palm plantations and forests and a) X- 
band HH backscatter, b) C- band VH backscatter and c) L-band HV backscatter 

In the specific case of oil palm plantations, the model performance varied more significantly across different 

radar bands. The highest training 𝑅2 achieved was 0.44, utilizing backscatter data from all three bands (X-, 

C-, and L-band) and separately from a combination of just the X- and C-bands. Conversely, the use of solely 

the L-band yielded a notably low 𝑅2 of 0.005. A comparison between the models created with the three 

bands individually can be seen in Figure 11. Within the three single bands, X- band yielded the highest R2 

of 0.41. Statistical analysis identified the X-band as a consistently significant predictor for estimating oil palm 

plantation AGB (Table 4). 
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Figure 11- Regression plots showing relationship between log (AGB) of oil palm plantations and a) X- band HH 
backscatter, b) C- band VH backscatter and c) L-band HV backscatter  

Regarding forest land cover, the optimal model performance was an 𝑅2 of 0.20. This highest R² was observed 

in models using combined backscatter data from X- and L-bands, L- and C-bands, as well as from a 

combination of all three bands. From Figure 12, it can be concluded that within the three individual bands, 

the highest accuracy of 0.19 was obtained with L-band backscatter. This means that 19% of variability in 

forest AGB can be explained with the help of L- band. A negative slope is seen between X- band backscatter 

and forest AGB along with the lowest R2 of 0.007. The L-band backscatter was identified as the only 

statistically significant predictor in these models, with its significance demonstrated by a p-value less than 

0.05 (Table 4). 

 

From the analysis presented in Table 4, it is evident that the intercepts for all models were statistically 

significant. In these models, the intercept represents log (AGB) when backscatter from the radar bands is 

zero. The significance of the intercept indicates that AGB is detected even in the absence of backscatter. 

The p-values for the intercepts vary, falling below 0.05, 0.01, and even 0.001, demonstrating varying degrees 

of strong statistical evidence against the null hypothesis at these thresholds. This suggests a significant 

baseline level of AGB across different models. 
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Figure 12- Regression plots showing relationship between log (AGB) of forests and a) X- band HH backscatter, b) 
C- band VH backscatter and c) L-band HV backscatter 

4.2. Results of the comparison of models 

A comparison of the model coefficients using ANCOVA was performed where firstly the model slopes 

were compared using an interaction term. A significant interaction was noted only between X- band and L-

band for forests (Table 5). This indicates a significant difference in the slopes between X- and L- bands for 

forest data. The interaction term was not significant for other land use categories, indicating no significant 

difference between the slopes of different bands for these land uses (Table 5).  
 

Table 5- The % confidence that the slopes are statistically different between different bands. Where, n.s indicates no 
significant difference between slopes, 95% (lightest blue shade) ,99% (light blue) and 99.9% (dark blue) represent the 
respective confidence that slopes are statistically different from each other for the bands. 

Bands Four land use 

categories 

Forests and oil 

palms 

Oil palm 

plantations 

Forests  

X- + C- n.s n.s n.s n.s 

C- + L- n.s n.s n.s n.s 

L- + X- n.s n.s n.s 95% 

 

As a next step, for the models which didn’t have a significant difference between the slopes, a significant 

difference for intercepts was checked by assessing the significance of the categorical variable in a model 

without the interaction term (Table 6). For models where the interaction term was significant, implying a 

significant difference in slopes, a similar method could not be used. A significantly different intercept was 

observed for the estimation of oil palm plantation AGB and AGB of all four land use categories between 
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X- and C- band, and X- and L-band (Table 6). For other models, the categorical variable (representing two 

bands) was not significant, with p-value more than 0.05. Hence, the null hypothesis was accepted, signifying 

the intercepts are not significantly different between different bands. 

 
Table 6- The % confidence that the intercepts are statistically different between different bands. Where, n.s means no 
significant difference between slopes, 95% (lightest blue shade) ,99% (light blue) and 99.9% (dark blue) represent the 
respective confidence that slopes are statistically different from each other for the bands. 

Bands Four land use 

categories 

Forests and oil 

palm plantations 

Oil palm 

plantations 

Forests  

X- + C- 99% n.s 99.9% n.s 

C- + L- n.s n.s n.s n.s 

L- + X- 95% n.s 99% - 

 

Figure 13 displays the regression lines generated using different radar bands, facilitating a comparison of 

their slopes and intercepts. When models were constructed using both forest and oil palm data (Figure 13b), 

the regression lines for models with the C-band and L-band as independent variables appear visually parallel. 

From Table 5, it can be seen that statistically these two models have a similar slope. However, for all other 

land use categories, the regression lines for models created with C-band and L-band backscatter do not 

overlap and are not parallel. Statistically, as seen from Table 5, there is no significant difference in the slopes 

of these models. Additionally, the regression lines for X- and L-band models for forests diverge into 

different directions (Figure 13b). These two models also have statistically different slopes as can be seen 

from Table 5. 
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 Figure 13- Comparison of the regression lines between models created with X-, C- and L-band backscatter 

for AGB of a) all 4 land use categories b) forests and oil palm plantations c) oil palm plantations and d) 

forests. 

 

To examine if the slopes of models created with forests and oil palm plantation data are significantly 

different, the two land use categories were introduced as the categorical variable. Table 7 outlines the 

confidence levels associated with the corresponding significance levels for the difference in slopes and 

intercepts between forests and oil palm plantations. Analysis revealed that only when the model was created 

with X- band backscatter, there was a significant difference in slopes between forests and oil palm plantation 

models. Moreover, models constructed with the L- and C-band individually exhibited confidence levels 

indicating a significant difference in intercepts between forests and oil palm plantations for these models. 

 

Table 7- The % confidence that the slopes and intercepts are statistically different between models created with forests 
and oil palm plantations data. Where, n.s means no significant difference between slopes, 95% (lightest blue shade) 
,99% (light blue) and 99.9% (dark blue) represent the respective confidence that slopes are statistically different from 
each other for the bands. 

Band % confidence- slopes % confidence- intercepts 

X- band 99% - 

C- band n.s 99.9% 

L- band n.s 99% 

 

Figure 14 demonstrates the visual comparison of regression lines between models created for forest and oil 

palm plantation data using the three bands individually. In models utilizing X-band data for forests, the 

slope parameter shows a negative value. This indicates a notable difference in the slope of the regression 

lines between forests and oil palm plantations, with the lines diverging distinctly. Table 7 confirms this 

statistical difference between the model slopes. The regression lines for the C-band data exhibited a slightly 

parallel trend, suggesting some similarity in the relationship between AGB and C- band backscatter across 

forests and oil palm plantations. However, for the L-band data, there was no parallel trend observed between 

the regression lines. Notably, the regression line for forests appears steeper than that for oil palm plantations, 
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indicating a more pronounced relationship between the AGB and L-band backscatter in forested areas 

compared to oil palm plantations.  

 

 

 

 

 
 

Figure 14- comparison of the regression lines between models created for predicting the AGB of forests and AGB of 
oil palms using a) X- band, b) C- band and c) L-band data.  

4.3. Assessment of predictive accuracy in developed models 

4.3.1.  RMSE analysis for model validation 

The RMSE values were calculated in absolute terms and also in relative terms keeping in consideration the 

variation in AGB in the data of that particular land use type. Refer to appendix A for the exact values of the 

relative and absolute RMSE. Figure 15 provides a comparison of the relative RMSE between models created 

for predicting AGB of different land use types using different bands and their combinations. The values of 

relative RMSE do not have units. 

When incorporating all four land use categories simultaneously, the relative RMSE remained consistently 

below 1 across all models. Notably, the lowest relative RMSE of 0.69 was observed when utilizing only the 

X-band data, indicating the most accurate predictions within this land use category. Conversely, when 
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focusing solely on forest and oil palm data, employing only the X-band data resulted in the highest relative 

RMSE of 0.72 among all models, reflecting the highest prediction error within this specific land use category. 

Generally, the prediction errors for models created with forest and oil palm data were lower than the errors 

in models created with other land use types, except when using solely the X- band backscatter. 

For forests, the relative RMSE was also lower than 1 for all bands and their combinations. The lowest 

relative RMSE of 0.72 was achieved when using just the L-band whereas the highest RMSE of 0.81 was 

obtained when using just the X- band. This means that size of the prediction error was 72% of the standard 

deviation of the observed values of forest AGB (in tons/ha). As the value is below one, it suggests that the 

error of the model is smaller than the data’s standard deviation. For the oil palm plantations, the model 

created with using a combination of L- and C- had the highest relative RMSE of 1, signifying that the 

prediction error is equal to the standard deviation of the observed values. The lowest RMSE of 0.71 was 

achieved using just the X- band. 

In summary, using X- band backscatter resulted in the most accurate predictions for models created with 

oil palms and all the 4 land use categories together, whereas it resulted in the least accurate predictions for 

forests and using forests and oil palm data together. L- band, led to the lowest prediction errors for forests 

and highest for models created with the 4 land use categories together.  

 

 
Figure 15- Comparison of the relative RMSE between models created for predicting AGB of different land use 
categories using different bands and their combinations. 

4.3.2. Model fit assessment through R² 

The validation R2 computed using the leave one out cross validation method indicated the variability that 

was explained with the models created on unseen data. Figure 16 provides a comparison between the 

validation R2 of models created for different land use categories using different bands and band 

combinations.  

For all the models created using the data from all 4 land use categories, the R2 was consistently below 0. 

This indicated that the model was performing worse than a model that simply predicts the mean of the 

dependent variable- AGB for all observations.  

Some improvement in the R2 values were noticed when two land use categories-forests and oil palms were 

used to create the models. The highest R2 value of 0.26 was obtained when using a combination of L- and 

C- band, which also corresponds to the lowest relative RMSE value of 0.60 for this particular land use 
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category. The lowest R2 of -0.08 for this category was obtained using just the X- band, which also 

corresponds to the highest RMSE of 0.72 for this category. 

For forest data, all models had a R2 below 0 except the model created using L-band backscatter, having an 

R2 of 0.02. For oil palm plantations, the highest R2 was of 0.29 was obtained when using a combination of 

X- and C- band. The lowest R2 of -0.33 was obtained when using a combination of the L- and C- band. 

Generally, the validation R2 of all models were at low levels signifying that the relationship between AGB 

and backscatter could not be properly captured by the models and that the models are not generalizing well 

to new unseen data. 

 

 
Figure 16- Comparison of the R2 between models created for predicting AGB of different land use categories using 
different bands and their combinations. 

4.3.3. AIC: A measure of model fit and complexity 

An assessment of the AIC values was performed to compare models created with different bands or band 

combinations to predict the AGB of a particular land use category or several land use categories combined 

(Figure 17). The comparison was done between models created for the same land use category.  

When using the data for all 4 land use categories together, the highest AIC value of 61.08 was achieved 

when using all three bands together. This increases the complexity of the model and hence the model gets 

penalised for this. On the other hand, the lowest AIC value of 57.09 was obtained when using just the C- 

band. According to the rule of thumb mentioned in section 3.6.2, a difference of more than 2 in AIC 

provides evidence of better performance of the model with lower AIC value. Hence, there is substantial 

evidence that the model with C- band performs better than model with all three bands, taking into 

consideration the complexity as well. For the other models, the difference between AIC values was not 

significant to make conclusions. 

The AIC values of models created for AGB estimation of just two land use categories-forests and oil palms 

were compared. Using L-band individually along with its combination with X- and C- band proved to have 

a better fitted model than utilising just the X- band or it’s combination with C- band (Figure 17) This was 

established by a difference of AIC value larger than 10 between these models. The highest AIC of -0.42 was 

obtained using the X- band and the lowest of -24.70 using a combination of X- and L- bands.  
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Within the forest land use category, L-band individually, along with its combination with C- and X- band 

showed substantial evidence of a better fitted model than a model with X- band and its combination with 

C- band, with a difference of more than 2 in the AIC values (Figure 17). 

For the oil palm plantations, there was evidence based on AIC values that the models created using C- and 

X- band individually performed better than the model created using a combination of all three bands. For 

other models, the difference between AIC values was not greater than 2, hence no conclusions about their 

performance could be made (Figure 17). 

 

 

 
Figure 17- Comparison of AIC values between models created for predicting AGB of different land use categories 
using different bands and their combinations. 
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5. DISCUSSION 

5.1. Investigating the difference in model performance and coeffecients between different radar 
bands individually  

This study found significant differences in the slopes of models predicting AGB using X-band and L-band 

backscatter, particularly for forests. Moreover, The band with the highest accuracy and the only one with 

significant slopes for estimating the AGB of forests was L-band and for oil palm plantations was X- band. 

 

These differences can be attributed to the different penetration capabilities of the two bands in forests. L-

band, with its longer wavelength, can penetrate deeper into forest canopies and interact with larger 

vegetation elements such as trunks and large branches, leading to more accurate AGB estimates (Patenaude 

et al., 2005). This observation aligns with previous research, which has demonstrated the superior 

performance of L-band SAR in high-biomass areas due to reduced signal attenuation at higher biomass 

levels (Johannsen et al., 2015; Saatchi et al., 2011). Conversely, X-band SAR, with its shorter wavelength, 

primarily interacts with smaller vegetation elements like leaves and small branches and is more sensitive to 

vegetation with lower biomass (Mitchard et al., 2009b).  A visible difference between the ranges of biomass 

of these land use categories can be seen from Figure 7. This results in lower sensitivity and accuracy of X-

band for AGB estimation in dense forests, whereas a higher accuracy for oil palm plantations. More reasons 

for the better performance of X-band for oil palm plantations is discussed in Section 5.4.2. Furthermore, 

this study found that the X-band model for forests was not statistically significant, suggesting that X-band 

backscatter is less effective for high-biomass regions. This is consistent with other studies highlighting the 

limitations of X-band SAR in densely vegetated areas (Shivamogga et al., 2019). This can be attributed to 

the saturation effect of lower wavelength bands for high biomass (Asner & Mascaro, 2010).  

 

Moreover, for some land use categories, the intercept of the model using solely X-band differs from the 

intercept of the two models that only use L- or C-band. This suggests that X-band responds differently from 

the other two bands to non-vegetation elements, meaning when AGB is zero. In case of no vegetation, the 

backscatter responds to soil properties like moisture and terrain roughness (Yu & Saatchi, 2016). This can 

be attributed to difference in wavelength between the three bands.  

 
When all four land use categories were combined, the training accuracies obtained were below 0.1 and 
validation accuracies below 0.  The potential reasons for this are discussed in Section 5.2. Hence, any 
conclusions about the band with highest performance for predicting the AGB of all four land use categories 
cannot be made. This also shows that the developed models did not generalize well on unseen or 
independent data. This is often an indication of overfitting (Figure 18)- a case when the training accuracy is 
substantially higher than the validation accuracy (Salman & Liu, 2019). These findings highlight the 
importance of selecting appropriate radar bands for accurate AGB estimation, supporting effective land 
management and conservation strategies. All in all, the variation in penetration capabilities across different 
biomass ranges of the L-, C- and X-band lead to statistically distinct model coefficients and accuracies of 
the models. For that reason, it is important to select the appropriate radar wavelength for different 
vegetation types to improve AGB estimation accuracy (Burt et al., 2020).  
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Figure 18- Comparison of the training and validation R2 for a) all four land use categories b) forests and oil palm 
plantations c) oil palm plantations and d) forests. These graphs show the overfitting of the models. 

5.2. Investigating the difference in model coeffecients between forests and oil palm plantations 

 

The models created to predict AGB using X-band backscatter showed significantly different slopes for 

forests and oil palms. Additionally, the intercepts of the four models, each combining either forest or oil 

palm plantation with L-band or C-band, differ from one another. 

 

Firstly, As mentioned in section 5.1, this difference can be attributed to the distinct biomass ranges of these 

two land use categories. Secondly, the structural differences between these land use categories could alter 

the backscatter that is received by the same radar band. Oil palm plantations have a more uniform canopy 

height compared to the heterogeneous and multi-layered canopy structure of natural forests (Foster et al., 

2011; Luskin et al., 2017). As AGB is also sensitive to the structure of vegetation (Dobson et al., 1995), this 

could also be a potential reason for the varied performance of the different bands for different land use 

categories. The uniform structure and lower biomass of oil palms result in a stronger and more consistent 

response in X-band backscatter, leading to a steeper slope in the AGB model. In contrast, the varied 

structure and higher biomass of forests result in a weaker and more variable X-band backscatter response, 

contributing to a flatter slope (Shivamogga et al., 2019). 

 

A study by Woodhouse et al. (2012) presented that combining different forest types for predicting AGB 

should be approached with caution due to potential biases. Similarly, combining different land use categories 

for AGB estimation should be avoided as they represent distinct groups with different biomass ranges, 

which could lead to inaccurate predictions or bias. The main issue is that combining two distinct groups for 

linear regression can lead to a model that reflects the relationship between the groups rather than accurately 

capturing the unique characteristics of each group. In addition, interpreting the differences in the slopes and 

intercepts of the models presents a challenge. Many of the models and their slopes are not statistically 

significant, which could introduce bias or inaccuracies in the conclusions derived from these slopes. 

However, it is noteworthy that all the intercepts of the models were statistically significant. 
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5.3. Penalising model complexity for integration of bands 

In the case of all land use categories and their combinations, one of the highest training accuracies was 

achieved when using a combination of all the three bands. However, Naidoo et al. (2015) emphasized that 

while high accuracy is achieved with the use of three bands, it is important to evaluate the individual 

contributions of each band to the model's performance. It was noted that in this case, only one or two bands 

had significant slopes (Table 4). This signifies that although a higher accuracy was being achieved, not all 

the bands contributed significantly to explaining the variance of the model. The time and cost associated 

with the use of all the three bands needs considerable attention (Taboga, 2024). The C- band used in this 

study is available publicly, whereas the X- and L-band are not. When penalising the models for their 

complexity, a combination of all the three bands provides lowest performance for oil palms and all four 

land use categories. Therefore, the best performing models in terms of accuracy might not be the same 

when the model is penalised for added variables (Claeskens & Hjort, 2012). With limited resources, the 

integration of multiple bands should be considered critically.  

5.4. Uncertainties in regression analysis 

The linear regression models of this study might be influenced by the difference in polarisations between 

L- and C- bands and X- band, geo-location errors (Urbazaev et al., 2018) and cloud related disturbances in 

TanDEM-X imagery. Other potential reasons for errors in the AGB estimation have been widely discussed 

(Asner & Mascaro, 2010). For instance, a study by Zhang et al. (2023b) found that while volume scattering 

is the dominant mechanism in forested areas, double bounce scattering still contributes significantly to the 

overall backscatter, especially in dense forest environments. This can introduce errors in AGB estimation if 

not properly accounted for. 

5.4.1. Outliers 

The results obtained from the regression analysis using the data from all four land use categories had training 

accuracies below 0.1 and validation accuracies below 0 (Figure 16 and table 4). When two land use 

categories- rubber and shrubland were removed, the model performance increased by many folds. To 

examine the two land categories as potential outliers, an examination of the orthophotos of the study area 

was done to further investigate the reason. In the case of shrubland, it was noticed that some plots had 

visible spaces between the vegetation representing ground or bare soil. Figure 19 shows an example of such 

plot from the acquired orthophoto. 
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Figure 19- Plot S27 representing the spaces without vegetation in the plot. The red circle depicts the original extent 
of the field plot and the black square is the extent of the field plot created for the backscatter extraction from the 
pixels.  

The description of shrubland plots provided under the project was “Unused fallow land, including 

grasslands, which is in transition to a forest, will be defined with DBH size distribution. In practice, 

shrubland can contain up to 50 % tree canopy closure above the lowest vegetation layer. Each chosen 

shrubland plot has at least one tree with a canopy starting at least 1.5 metre height and at least a canopy 

diameter of 2 metres”. This potentially meant that the backscatter in these plots were not just from the 

biomass of vegetation, but also from bare soil or ground. Empty spaces of ground between less dense 

vegetation in plots could mean that the backscatter is representing not just the biomass of the vegetation 

but also the ground or soil.  

 

Moreover, the field plots consisted of two varieties of rubber plantations- Jungle rubber, which is grown 

wild and monoculture, which is planted by humans in a systematic manner (Agustina & Oktavia, 2021). The 

rubber plantation plots were defined under the project as “Any rubber plantation from monocultures down 

to jungle rubber with as little as 10% rubber tree stems out of the total stem number in a 2500 m2 area”. In 

this case, the plots with jungle rubber contain a mix of jungle rubber along with other trees. This 

heterogeneity in the vegetation structure of the plots could potentially not be captured by a simple linear 

model. When combining vegetation with variable structure, the complexity of the model requires to capture 

the variability of AGB increases. (Zhang et al., 2020). Hence, various non-parametric methods have been 

tested to predict AGB (Zhang et al., 2020, Li et al., 2020). 

5.4.2. Polarisations 

The study was performed using two cross polarisations from L- and C- band, and one co-polarisation from 

X- band. Cross polarisations respond better to volume scattering, which is characteristic of vegetation. On 

the other hand, co-polarisations do not perform similarly (Vreugdenhil et al., 2020). Hence, a comparison 

between different bands would introduce a bias. Due to lack of available cross polarisation bands for X- 

band data, this study could not perform a comparison between cross polarisations. Appendix B provides a 

comparison between co-polarisations of the three bands. The training accuracy of these were lower than 

when cross polarisations of C- and L-band were utilised. This is in line with the assumption that was based 

on previous studies that cross polarisations perform better for AGB estimation than co-polarised bands 

(Vreugdenhil et al., 2020). Furthermore, Patel et al. (2006) found that due to the horizontal canopy structure 
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of the vegetation in their study, HH polarisation of L- and C- band was sensitive to the plant density. The 

structure of the vegetation can also impact it’s sensitivity to a polarisation. The type of oil plantation used 

in this study is also seen to have horizontal structured branches as can be seen in Figure 20 (CABI, 2024). 

This characteristic likely explains the effective performance of X-band HH polarization in capturing the 

plantation's horizontal characteristics. 

 

 
Figure 20- Elaeis guineensis oil palm plantation with horizontal structured branches (CABI, 2024). 

5.4.3. Temporal differences between ground data and satellite imagery 

The field data collection was conducted from 2021-22, whereas the TanDEM-X imagery was already 

acquired in 2018-2019. Hence, there was a gap of two to three years between the field plots and the satellite 

imagery. This could introduce possible biases in the models if the vegetation growth was higher than the 

error margins of the model. An additional analysis using available AGB data from 2012 and 2019 field plots 

to calculate the growth rate of the vegetation was performed. This is presented in Appendix E. A further 

analysis into this was performed by using additional Canopy Height Model (CHM) using LiDAR data to 

calculate the annual change in tree height (Appendix F). As the growth rate was within the error margins, 

possible interference from this temporal difference can be rejected. Additionally, although matured trees in 

a forest do accumulate carbon, the growth rate of biomass is not substantial in a few years to impact AGB 

estimation (Köhl, Neupane, & Lotfiomran, 2017). 

5.4.4. Quality of satellite images 

In a manual revision of the geo-location of the SAOCOM imagery, it was found that the location was off 

by a few pixels (30-40 metres), a manual georeferencing was performed after which the mean error was 

reduced to 1-3 metres. Earlier studies have also mentioned the effect of geo-location errors of satellite 

imagery and the potential errors it can introduce for estimating the AGB (Urbazaev et al., 2018). As the 

georeferencing was performed manually, there were still chances of a geo location error or the plots not 

perfectly overlapping the satellite imagery. For the circular field plots, a square region was chosen keeping 

in consideration the shape of the pixels. Figure 19 shows the circular plots (in red outline) and the 

corresponding square plots (in black outline). Hence, the square plot introduced regions that were not 

present in the field plot on ground. This could interfere with the backscatter signal. 

Moreover, for the TanDEM-X imagery, a disturbance due to cloud interference was spotted as seen in 

Figure 21. Three field plots belonging to oil palm, rubber and shrubland land use category were located on 

this patch. As the cloud is absorbing the signal, the signal was attenuated for these three plots. 
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Figure 21- Showing the cloud disturbance (outlined in red) present in the TanDEM-X image 

5.5. Practical applications and future prospects 

The study aimed at comparing different radar bands and their combinations for estimating AGB of different 

land use categories together as well as individually. The results of the study indicated the importance of 

certain bands for estimating the AGB of a particular land use category over others. It also signified that 

although using a combination of bands might give better accuracies, it also increases model complexity 

much more than the increase in accuracy. These results could potentially help the Indonesian government 

to achieve their target of reducing carbon emissions and well as for REDD+ MRV. A quantification of the 

carbon lost when primary forests are converted to oil palm plantations could also be done. In this view the 

study provides information about the best band/band combination for forest and oil palm plantation AGB, 

while also considering the complexity of more bands.  

 

The analysis also revealed if pooling different land use categories is reasonable to create a linear model to 

predict AGB. It was found that for land use categories with similar AGB ranges like rubber and oil palm 

plantations, there is no significant difference between the model coefficients. For other land use categories, 

with different AGB ranges, a significant difference in model coefficients introduces a bias. Hence, the 

variability in the AGB couldn’t be captured by a linear model. This is important if accurate models need to 

be created for complex landscapes such as the one in this study. A landscape with varied vegetation types 

might need a non-linear model to capture the variability in biomass. 

5.6. Proposed recommendations 

Proposed recommendations to enhance the applicability of this study are: 

 

1. The studies focusing on an integration of radar bands or a comparison between radar bands for 

AGB estimation should utilise the same polarisation for consistency. Different radar polarisations 

respond differently to vegetation. This might lead to biases in the comparison of bands. 

2. Integration of several other remote sensing technologies such as LiDAR and optical imagery can 

be tested. Moreover, inclusion of several variables like tree height and vegetation indices can help 

to mitigate the drawback of saturation that is faced with using just radar data (Tian et al., 2023). 
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Combining radar with other remote sensing technologies can improve the robustness of biomass 

estimates across diverse forest types and conditions. Data from multiple remote sensing sources 

can increase the accuracy of AGB estimation. 

3. Future studies can dive into different parametric and non-parametric methods that can be applied 

to capture the variability of AGB when different types of vegetation are utilised. These models can 

range from machine learning models such as random forest, SVM to deep learning methods such 

as gradient boosting and neural networks. For estimation of AGB at a regional scale, these models 

could capture the vegetation complexity well.  

4. An effect of a combination of different vegetation types including plantations could be studied. 

Plantations have a more homogeneous structure than wild vegetation, making these categories 

different. The need for separate models for estimating the AGB of plantations can be explored. 
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6. CONCLUSIONS 

In order to achieve different targets for reducing carbon emissions from deforestation, an accurate 

measurement of the carbon lost when one land use category is converted to another is essential. 

Moreover, to meet targets of international agreements and national targets, carbon quantification of 

forests is essential. As AGB is a reliable proxy for the carbon stored in a forest, accurate methods to 

estimate AGB needs to be established. This study examined the role of different radar bands, which have 

proved to have high accuracy in AGB estimation.  An effect of the integration of these bands was also 

examined. This study revealed the bands that have the most optimal performance for a specific land use 

category. L-band had indeed the best performance along with significant slopes out of the three bands for 

high biomass vegetation of forests. For the lower biomass vegetation of oil palm plantations, X- band 

proved to have the best performance. The accuracies obtained for models when the four land use 

categories were extremely low. Investigation into the possible reasons revealed presence of two outlier 

land use categories, oversimplification of linear models for the analysis and different biomass ranges of the 

vegetation types. Hence, the analysis was performed again by excluding the two outlier land use categories. 

The accuracies achieved when forests and oil palms were combined increased by many folds, With L-band 

proving to give the most accurate model within the three bands. 

 

The investigation also uncovered an important finding about the use of different radar bands for AGB 

estimation. A major contribution of the study could be to show that although integration of different radar 

bands improves the model performance, the increased costs of acquiring different bands or increase in 

complexity overshadows the increase in the accuracy of the model. In practical terms, when estimating the 

AGB of a big landscape, acquiring multiple radar bands might not be optimal if similar results could be 

obtained from a single radar band. A combination of the three bands produced one of the highest training 

accuracies, but the slopes of just one or two bands were significant. This indicated the redundance of the 

other bands in the analysis. AIC values revealed that using single bands gives the highest accuracy when 

the models are penalised for their complexity.  

 

The study also examined the efficiency of integration of different vegetation types, with different biomass 

ranges for estimating the AGB. The model coefficients, which is in most cases intercepts and in one case 

slope for these vegetation types were statistically different. Hence, an integration of these land use 

categories could introduce a bias in the analysis. It was found also that vegetation with similar biomass 

ranges like oil palm and rubber plantations had coefficients which were not statistically different. This 

makes it acceptable to pool them in order to develop a model for AGB estimation.  

 

In general, discretion should be used when integrating vegetation of different biomass ranges in a linear 

model and alternative complex models could be utilised. The sensitivity of different bands to different 

land use categories along with the increasing costs developed for acquiring more bands should be 

considered. 
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APPENDICES 

 Appendix A: RMSE, validation R2 and AIC values for different categories 
 

Bands Land use RMSE (tons/ha) Relative RMSE 

X- Rubber, Shrubland, Oil 
palm and Forest 

54.89 0.69 

C- Rubber, Shrubland, Oil 
palm and Forest 

57.23 0.72 

L- Rubber, Shrubland, Oil 
palm and Forest 

57.78 0.73 

C- + X- Rubber, Shrubland, Oil 
palm and Forest 

55.45 0.70 

L- + C- Rubber, Shrubland, Oil 
palm and Forest 

57.81 0.73 

X- + L- Rubber, Shrubland, Oil 
palm and Forest 

55.44 0.70 

X- + C- + L- Rubber, Shrubland, Oil 
palm and Forest 

55.92 0.71 

X- Forests and oil palm 
plantations 

59.66 0.72 

C- Forests and oil palm 
plantations 

53.74 0.65 

L- Forests and oil palm 
plantations 

50.74 0.61 

C- + X- Forests and oil palm 
plantations 

54.87 0.66 

L- + C- Forests and oil palm 
plantations 

49.8 0.60 

X- + L- Forests and oil palm 
plantations 

50.42 0.61 

X- + C- + L- Forests and oil palm 
plantations 

51.00 0.62 

X- Oil palm plantations 25.26 0.71 

C- Oil palm plantations 33.36 0.94 

L- Oil palm plantations 34.33 0.97 

C- + X- Oil palm plantations 25.11 0.71 

L- + C- Oil palm plantations 35.36 1.00 

X- + L- Oil palm plantations 26.88 0.76 

X- + C- + L- Oil palm plantations 26.82 0.75 

X- Forests 68.68 0.81 

C- Forests 67.52 0.80 

L- Forests 60.82 0.72 
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C- + X- Forests 66.85 0.79 

L- + C- Forests 62.49 0.74 

X- + L- Forests 62.62 0.74 

X- + C- + L- Forests 63.9 0.75 

 

Bands Land use Validation R2 

X- Rubber, Shrubland, Oil 
palm and Forest 

-0.06 

C- Rubber, Shrubland, Oil 
palm and Forest 

-0.09 

L- Rubber, Shrubland, Oil 
palm and Forest 

-0.10 

C- + X- Rubber, Shrubland, Oil 
palm and Forest 

-0.06 

L- + C- Rubber, Shrubland, Oil 
palm and Forest 

-0.11 

X- + L- Rubber, Shrubland, Oil 
palm and Forest 

-0.05 

X- + C- + L- Rubber, Shrubland, Oil 
palm and Forest 

-0.06 

X- Forests and oil palm 
plantations 

-0.08 

C- Forests and oil palm 
plantations 

0.06 

L- Forests and oil palm 
plantations 

0.26 

C- + X- Forests and oil palm 
plantations 

0.02 

L- + C- Forests and oil palm 
plantations 

0.26 

X- + L- Forests and oil palm 
plantations 

0.25 

X- + C- + L- Forests and oil palm 
plantations 

0.23 

X- Oil palm plantations 0.27 

C- Oil palm plantations -0.17 

L- Oil palm plantations -0.30 

C- + X- Oil palm plantations 0.29 

L- + C- Oil palm plantations -0.33 

X- + L- Oil palm plantations 0.16 
X- + C- + L- Oil palm plantations 0.16 
X- Forests -0.14 
C- Forests -0.11 

L- Forests 0.02 

C- + X- Forests -0.13 

L- + C- Forests -0.02 

X- + L- Forests -0.01 

X- + C- + L- Forests -0.06 
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Bands Land use AIC values  

X- Rubber, Shrubland, Oil palm and 

Forest 

58.47 

L- Rubber, Shrubland, Oil palm and 

Forest 

58.15 

C- Rubber, Shrubland, Oil palm and 

Forest 

57.09 

C- + X- Rubber, Shrubland, Oil palm and 

Forest 

59.08 

L- + C- Rubber, Shrubland, Oil palm and 

Forest 

59.09 

X- + L- Rubber, Shrubland, Oil palm and 

Forest 

60.14 

X- + C- + L- Rubber, Shrubland, Oil palm and 

Forest 

61.08 

X- Forests and oil palm plantations -0.42 

L- Forests and oil palm plantations -23.53 

C- Forests and oil palm plantations -14.25 

C- + X- Forests and oil palm plantations -12.41 

L- + C- Forests and oil palm plantations -23.58 

X- + L- Forests and oil palm plantations -24.70 

X- + C- + L- Forests and oil palm plantations -23.75 

X- Oil palm plantations -10.25 

L- Oil palm plantations -10.37 

C- Oil palm plantations -11.60 

C- + X- Oil palm plantations -9.61 

L- + C- Oil palm plantations -9.63 

X- + L- Oil palm plantations -8.51 

X- + C- + L- Oil palm plantations -7.68 

X- Forests -14.05 

L- Forests -20.16 

C- Forests -15.28 

C- + X- Forests -13.72 

L- + C- Forests -18.18 

X- + L- Forests -18.69 

X- + C- + L- Forests -16.69 
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Appendix B: Comparison of regression between co-polarizations of 

bands. 
 



 

56 

 
 

 

 

 

 

 

 

 



 

57 

Appendix C: Residual Standard Errors of the models.  

 

Bands Land use RSE (tons/ha) 

L- Rubber, Shrubland, Oil palm and 

Forest 

78.15 

C- Rubber, Shrubland, Oil palm and 

Forest 

78.04 

X- Rubber, Shrubland, Oil palm and 

Forest 

77.00 

L- + C- Rubber, Shrubland, Oil palm and 

Forest 

78.11 

C- + X- Rubber, Shrubland, Oil palm and 

Forest 

76.91 

X- + L- Rubber, Shrubland, Oil palm and 

Forest 

76.20 

X- + C- + L- Rubber, Shrubland, Oil palm and 

Forest 

76.55 

X- Forests and oil palm plantations 81.22 

C- Forests and oil palm plantations 75.06 

L- Forests and oil palm plantations 67.52 

C- + X- Forests and oil palm plantations 75.73 

L- + C- Forests and oil palm plantations 67.70 

X- + L- Forests and oil palm plantations 67.19 

X- + C- + L- Forests and oil palm plantations 67.74 

X- Oil palm plantations 27.85 

C- Oil palm plantations 35.24 

L- Oil palm plantations 36.03 

C- + X- Oil palm plantations 27.7 

L- + C- Oil palm plantations 35.96 

X- + L- Oil palm plantations 28.37 

X- + C- + L- Oil palm plantations 28.33 

X- Forests 85.48 

C- Forests 84.56 

L- Forests 78.64 

C- + X- Forests 85.40 

L- + C- Forests 80.00 

X- + L- Forests 85.01 

X- + C- + L- Forests 81.50 
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Appendix D: Comparison of slopes and intercepts between other land use categories 

1. showing % confidence that the slopes and intercepts are statistically different between models 

created with forests and shrubland data. 

Band % confidence- slopes % confidence- intercepts 

X- band n.s 99.9% 

C- band n.s 99.9% 

L-- band n.s 99.9% 

 

2. showing % confidence that the slopes and intercepts are statistically different between models 

created with forests and rubber data. 

Band % confidence- slopes % confidence- intercepts 

X-- band n.s 99.9% 

C- band n.s 99.9% 

L-- band n.s 99.9% 

 

3. showing % confidence that the slopes and intercepts are statistically different between models 

created with oil palm and rubber data. 

Band % confidence- slopes % confidence- intercepts 

X- band n.s n.s 

C- band n.s n.s 

L-- band n.s n.s 

 

4. showing % confidence that the slopes and intercepts are statistically different between models 

created with rubber and shrubland data. 

Band % confidence- slopes % confidence- intercepts 

X-- band n.s 99.9% 

C- band n.s 99.9% 

L-- band n.s 99.9% 
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5. showing % confidence that the slopes and intercepts are statistically different between models 

created with oil palm and shrubland data. 

Band % confidence- slopes % confidence- intercepts 

X-- band n.s 99% 

C- band n.s 99.9% 

L-- band n.s 99.9% 

 

Appendix E: AGB change in the field plots from 2012 to 2019 

 

AGB data for the field plots were also collected in 2012 and 2019. The plot size was different than the one 

in 2021. The plots from these two years were selected due to the consistent plot size of these two years. The 

common plots were joined from 2012 and 2019 to calculate the annual growth rate of the plots.  

To determine if the temporal inconsistency caused due to the difference in the acquisition of the satellite 

imagery and ground truth data is significant, firstly, the growth rate of the oil palm, rubber and forest 

vegetation was calculated by using the AGB plot data from 2012 and 2019. The growth rate was 3.29 tons/ha 

per year. Hence in two years, the growth was 6.58 tons/year. To determine whether this growth is substantial 

to affect the model’s performance, the Residual Standard Errors (RSE) of the models were compared to the 

growth rate. The RSE of the models varied between 78.15 and 76.20 tons/ha using data for all land use 

categories together, 27.7 to 36.03 and 85.48 to 78.64 for models created for predicting AGB of oil palm 

plantations and forests respectively (Appendix C). 
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Appendix F: Tree height change in the plots from 2020 to 2022 
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