
MSc Electrical Engineering
Dependable Integrated Systems

Robust and Scalable Selective
Sweep Detection using
Convolutional Neural Networks

Sjoerd van den Belt

Supervising committee:
dr. ir. N. Alachiotis
dr. N. Strisciuglio
dr.ing. K.H. Chen

June, 2024

Computer Architecture for Embedded Systems group
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

Localizing DNA mutations that have led to positive natural selection is important for understand-
ing viruses and diseases, the development of drugs, and many other applications. Traditionally,
statistical models processing single nucleotide polymorphisms (SNPs) have been applied to detect a
distinct pattern in SNP data indicative of positive natural selection, called a selective sweep. These
models can effectively and efficiently detect selective sweeps under simple evolutionary models but
are prone to high false positive rates when confronted with data where confounding factors are
present. Recently, machine learning-based methods have been demonstrated to be more robust
to confounding factors. Using convolutional neural networks (CNNs) the classification accuracy
of selective sweeps in the presence of confounding factors is improved, however, CNNs are com-
putationally expensive compared to statistical methods, limiting the usefulness of these methods
when applied to large datasets. In this thesis, FAST-NN is presented, which uses 1D convolutions
to process allele frequencies and pairwise SNP distances. FAST-NN achieves a selective sweep
classification accuracy on all tested datasets that outperforms or performs on par with the state-
of-the-art, while decreasing execution time on both CPU and GPU. Previous work that focuses
on using CNNs for selective sweep detection primarily evaluates classification performance and
does not explicitly evaluate the performance and precision of models when applied for detection.
In addition, CNN-based selective sweep detection methods apply a sliding window or grid over a
genome to sample windows for classification. When performing fine-grained detection, the sampled
windows overlap, and if each window is processed separately, this leads to repeated, redundant,
computations. The FAST-NN model was designed considering the classification of separate ge-
nomic segments. In this thesis, the FASTER-NN model extends the FAST-NN model and takes
advantage of wide input windows through a larger receptive field. FASTER-NN is specifically
designed to optimize detection performance, and has an improved detection sensitivity compared
to state-of-the-art models, while only processing allele frequencies and pairwise SNP distances.
Moreover, by using dilated convolutions and optimizing data reuse, the execution time is nearly
invariant to input width. FASTER-NN enables whole-genome scans at a considerably reduced
execution time compared to other CNN-based detection methods, paving the way for accessi-
ble CNN-based selective sweep detection, without requiring expensive hardware such as a GPU.
FASTER-NN has been extended to classify selective sweeps and recombination hotspots through
a single model. This extended model demonstrates the effect of partially retaining information on
linkage disequilibrium on recombination hotspot classification. By using grouped allele frequen-
cies, the execution time of recombination hotspot classification through a CNN can be reduced,
with a negligible effect on classification accuracy. Selective sweep detection through CNNs can be
accelerated by using reconfigurable hardware. FPGAs are constrained by limited I/O bandwidth
and hardware resources but can implement customized on-chip parallel pipelines that sustain high
data rates. Through the compact data format of allele frequencies, and by using only 1D convolu-
tions, the FAST-NN model requires limited I/O bandwidth and hardware resources. To this end,
an 8-bit quantized version of the model is deployed on an FPGA in a fully-pipelined architecture,
running at 90 MHz with an initiation interval of one clock cycle. This solution can densely scan all
22 human autosomes in 135 milliseconds, classifying one window of 128 SNP positions per clock
cycle.

Contents

1 Introduction 3

2 Selective sweep classification 6
2.1 Introduction . 6
2.2 Method . 8

2.2.1 Data representation . 8
2.2.2 Model architecture and selection . 9
2.2.3 Memory-efficient data formatting . 10

2.3 Evaluation . 11
2.3.1 Experimental setup . 11
2.3.2 Effectiveness of including SNP positions . 12
2.3.3 Model architecture search . 12
2.3.4 Effectiveness of allele frequency as input . 13
2.3.5 Comparing to summary statistics . 14
2.3.6 Comparing to other CNN-based methods 15

2.4 Discussion and conclusion . 16

3 Selective sweep detection 18
3.1 Introduction . 18
3.2 Method . 19

3.2.1 Efficient sliding window . 19
3.2.2 Model selection . 22
3.2.3 Post-processing . 23
3.2.4 Detection performance metrics . 24

3.3 Evaluation . 24
3.3.1 Experimental setup . 24
3.3.2 Detection performance . 25
3.3.3 Detection precision . 26
3.3.4 Detection efficiency . 29
3.3.5 Human genome scan . 30

3.4 Conclusion and discussion . 32

4 Recombination hotspot classification 33
4.1 Introduction . 33
4.2 Method . 34

4.2.1 Grouped DAF model design . 34
4.2.2 Sample reordering . 34
4.2.3 Multi-label classification . 35

4.3 Evaluation . 35
4.3.1 Experimental setup . 35
4.3.2 Combined classification performance . 35

4.4 Discussion and conclusion . 36

5 Hardware acceleration 38
5.1 Introduction . 38
5.2 Related work . 39
5.3 Architecture . 40

5.3.1 Quantization . 40
5.3.2 Buffer design . 41

1

5.3.3 Component design . 41
5.4 Implementation . 42
5.5 Evaluation . 44

5.5.1 Accuracy of quantized neural network . 44
5.5.2 Estimated inference speed on FPGA . 44

5.6 Conclusion and discussion . 46

6 Discussion and conclusion 47

2

Introduction

Positive natural selection is an evolutionary phenomenon that drives the adaptive power of a
species to its environment. Positive natural selection, or any non-random selection process, exists
due to genetic diversity throughout a population [50]. Neutral genetic diversity does not affect any
physical characteristics or traits of a species. On the other hand, adaptive genetic diversity leads
to changes in the attributes of a species, which can improve its fitness. This, in turn can lead to
an increased chance of survival and reproduction for the carriers of the mutated gene. Positive
selection is a purely statistical consequence inherent to populations where adaptive genetic diversity
is present. When a subgroup of a population has an elevated reproduction rate, due to genetic
diversity, the part of the population carrying the favourable genes has an increased chance of
spreading this gene to new generations [23]. One can imply that nature selects the favourable
genes to be propagated to consecutive generations, hence the term positive natural selection.

Determining which genetic mutations lead to positive natural selection is important for under-
standing the evolution of a species. This can lead to understanding mutations that have enabled
resilience to disease in animals, which can in turn infer the effect of a virus on humans [16]. De-
tecting positive selection can improve designing effective drug treatment [7]. Moreover, natural
selection is also relevant in research towards viruses, such as SARS-CoV-2 which was responsible
for the COVID-19 pandemic, in this virus positive selection is used to identify the mutations that
led to the adaption of the virus to human transmission [29].

Over the course of multiple generations, a favourable gene that leads to positive natural selection
is spread to an increasing proportion of the population. Given sufficient time, and under certain
conditions, the entire population will adopt the favourable gene [23]. When genomes are sampled
from present-day populations where positive natural selection has driven its evolution over past
generations, the positive selection leaves specific patterns in the genetic encoding [53]. The pattern
left by positive selection is referred to as a selective sweep. Uncovering these patterns is the key
challenge to identifying the positive natural selection that previous generations have undergone.
This is not a trivial task, positive natural selection is not the only effect that leaves patterns in the
genome. Other population effects, such as bottlenecks in population size, and genetic effects, such
as genomic regions with increased recombination rates, can leave patterns similar to those left by
positive natural selection [1].

Detecting specific patterns in genetic data requires an appropriate encoding of this data that
can be processed by computer algorithms. The genome is made up of organic molecules called
nucleotides. In DNA these nucleotides are arranged into long sequences of nucleotide pairs, also
called basepairs. The information in the DNA is encoded in the sequences formed by the basepairs.
When identifying patterns which arise because of mutations in the DNA, it is not necessary to
process all basepairs, since many basepairs do not demonstrate any genetic variation throughout
a population. To reduce the data to only include informative basepairs, given a certain set of
samples from a population, only the basepairs where at least one sample has a mutation are kept.
These basepairs are named single nucleotide polymorphisms (SNPs). Single nucleotide refers to
the mutation affecting a single nucleotide basepair, and polymorphisms refer to the existence of
different basepairs at this position.

Identifying specific patterns in SNP data is a common method for studying population genomics.
This includes the identification of selective sweeps, and identifying regions in the genome with
higher levels of recombination, called recombination hotspots [13]. Statistical tools exist which
can efficiently process SNP data of multiple samples in a population to identify patterns indicative
of a selective sweep. [54][49][1]. The patterns these tools use to detect regions of interest are
based on our limited understanding of the effect that evolution has on the genome. Recently,
machine-learning methods, and in particular neural networks, have proven to outperform statistical
methods in detecting genomic regions of interest [20][56][43][68][69]. These methods do not rely

3

on our fundamental understanding of the underlying mechanisms driving genetic mutations, but
rather these models learn the patterns embedded in these mutations from training data.

SNP data from multiple samples can be arranged into a matrix of SNPs, and it can be assumed
that SNPs in close proximity, on the same genome, have a higher correlation than distant SNPs.
This naturally points towards convolutional neural networks (CNNs) as the model of choice for
analyzing SNPs [38]. CNNs have an inductive bias for identifying the local spatial arrangement
of data, making these networks excellent models for SNP processing. CNNs have widely been
employed for SNP analysis, and have proven accurate and more robust to false positives when
analyzing patterns in the presence of confounding effects [68][69]. Using machine learning for this
task does come with some disadvantages, the execution time that CNNs require is greater than
the execution time of summary statistics. Genetic datasets are growing in size due to advances
in DNA alignment [51], increasing the input size to these models. The processing power required
by CNN models to perform inference over genetic data increases as these datasets expand. These
limitations in the scalability of CNNs reduce the effectiveness and adaption of CNNs as a practical
tool to analyze SNP data.

When detecting selective sweeps on a genome, the SNPs on the genome are scanned for patterns.
Scanning an entire genome can be done by sliding a window across the genome and analyzing each
window separately. Optimized tools that employ summary statistics to detect positive selection
perform such sliding window approaches [1][48]. When increasing the width of the window used to
slide over the genome, the processing time for each sampled window increases. Due to this, using
wide windows for fine-grained scans is inefficient, even when using summary statistics to analyze
SNP data. When CNN models are implemented for this task, the efficiency is even lower due to
the higher execution time per window. Most research towards using CNNs to analyze SNP data
focuses on classifying SNP data, rather than scanning extensive sequences of SNPs [20][56][43][68].
If the execution time to scan genomes using CNN models is impractical, these tools will not be
widely adopted, despite their effectiveness.

The field of bio-informatics often deals with the need to process large amounts of data. To
reduce the extensive processing times imposed by this, hardware acceleration using programmable
hardware has been explored in various domains, including phylogenetics and population genetics
[4][42][64][11][6]. In the context of detecting positive natural selection, processing SNPs through
statistical models has been accelerated using Field Programmable Gate Arrays (FPGAs) [5][6][15].
Using FPGAs, dedicated hardware architectures are implemented, which outperform the through-
put of general-purpose hardware. Whilst FPGA-based hardware acceleration for CNNs is a popular
domain of research [57][63] [28], no previous work has implemented a CNN model for SNP pro-
cessing on an FPGA.

This thesis tackles the challenges accompanying the practical use of CNNs for detecting positive
natural selection. Solving these challenges will allow future research to efficiently and reliably detect
regions of interest on genomes, which is applicable in various research domains, such as drug and
virus research. The research throughout this thesis attempts to answer the following research
question: How can CNNs be deployed to efficiently, accurately and robustly detect genomic regions
affected by positive natural selection? To answer this question, four sub-questions are posed.

1. Genomic datasets are extensive and CNN-based models do not scale as well to the large
datasets as summary statistics-based methods, making CNNs less efficient. This raises the
following question. How can CNN-based classification models for positive selection be scalable
to a large sample size without compromising effectiveness?

2. Often, classification accuracy is used as the sole performance metric of CNN-based methods.
However, the practical application of these models is detection when scanning a genome. To
address this discrepancy, the following question is addressed. How can CNN-based models be
optimized, in terms of efficiency and effectiveness, for detecting regions affected by positive
selection when scanning a genome?

3. Identifying the presence of other genomic effects at the position of a potential selective
sweep can be used to tune the parameters of the detection framework. Currently, models
that perform classification using SNP data focus on classifying a single genomic effect using
a dedicated model. This raises the question, can CNN-based models be extended to detect
multiple genomic effects, without repeating inference, and does detecting confounding factors
improve the ability to detect selective sweeps?

4. The high parallelism of an FPGA implementation can increase the throughput of a selective
sweep detection algorithm, but requires quantization which can affect the model performance.

4

By increasing throughput through hardware acceleration, the execution time to process large
datasets can be reduced, allowing for fine-grained detection without the disadvantage of long
execution times. To explore this, the following question is posed. Can FPGAs be used to
accelerate a quantized CNN model to detect positive selection on a genome without reducing
the effectiveness of the model?

Question 1 is explored in chapter 2, where SNP data is compressed in order to reduce the processing
time of a CNN model, reducing the execution time required to classify SNP data. In chapter 3 the
second question is addressed, by analyzing the effect of different CNN models on the precision and
accuracy of detection, and demonstrating an efficient CNN-based detection framework. Chapter
4 evaluates the effectiveness of the models proposed in the previous chapter on another genomic
effect, and adapts the model for the simultaneous classification of two distinct effects. Finally, in
chapter 5 the model from chapter 2, using the efficient implementation demonstrated in chapter 3
is accelerated using an FPGA.

5

Selective sweep classification

2.1 Introduction

Positive natural selection is a driving factor for the adaption and evolution of a species. The
genome of a species that has been affected by positive natural selection features an identifiable
region called a selective sweep. A complete hard selective sweep is a selective sweep that occurs as
a consequence of a beneficial genetic mutation that is ultimately adopted by the entire population.
Any mention of a selective sweep in this work refers to a complete hard selective sweep. In order
to analyze the genomic mutations within a population, the genome data can be represented by
its single nucleotide polymorphisms (SNPs). Each SNP represents a position (locus) along the
genome where a mutation has been observed. These SNPs can be represented as binary states
indicating either an ancestral (original) or derived (mutated) state at a polymorphic locus. The
SNP data of a population is represented as a 2-dimensional matrix featuring the consecutive SNPs
of a unique sample from the population as its rows, where each column corresponds to a specific
SNP locus. Through modern DNA sequencing methods, there has been a surge in the available
amount of genetic data, leading to datasets of increasingly large sample sizes [51], which can lead
to more effective selective sweep detection [46].

The presence of a selective sweep leaves three distinct signatures that are detectable through the
analysis of SNPs. The three signatures are: a localized reduction in polymorphism [53], a shift in
the site frequency spectrum (SFS) towards higher and lower frequencies of derived variants [12], and
a pattern of linkage disequilibrium (LD) with increased LD on both sides of the sweep and reduced
LD across the sweep [33]. These signatures are primarily used by selective sweep detection methods
through summary statistics [1] and likelihood-based methods [17]. More recently, machine learning
methods have proven to be highly successful in identifying selective sweeps [20][56][43][68] [69], out-
performing statistical and likelihood-based methods. Machine learning methods use convolutional
neural networks (CNNs) [38] to learn the difference between genomes affected and unaffected by a
selective sweep. Despite the advances in selective sweep recognition by virtue of machine learning-
based methods, practical and robust detection of selective sweeps remains challenging.

Under realistic evolutionary conditions, the selective sweep is often not the only genomic effect
at play. Other effects than selective sweeps may simultaneously and similarly introduce signatures
in the genome and confound the effect purely introduced by a selective sweep [62], misleading
likelihood and summary-statistics-based methods. CNN-based methods that process raw SNP
data are more robust to these underlying effects [69] [68], but do not scale well to large sample
sizes limiting their practicality. Modern DNA sequencing allows for the efficient accumulation
of genetic data samples [51], which can improve the effectiveness of selective sweep detection
[46]. As the sample sizes of datasets increase, more SNPs are discovered [59], further growing the
amount of raw data to be processed. CNN-based methods generally focus on processing whole SNP
matrices [20][56][43][68] [69], which is computationally expensive since the number of computations
performed by a CNN scales linearly with both the sample size and the number of SNPs per sample.
Other CNN-based methods compute summary statistics in a preprocessing step, and apply a CNN
classifier to these statistics [32], but this requires extensive preprocessing, which is also inefficient.
Existing CNN-based methods fail to address the prohibitive computational complexity required to
process large SNP datasets, and require expensive resources or accelerators, such as GPUs, to run
efficiently.

Selective sweep detection is often framed as a classification problem and focuses on optimiz-
ing the classification accuracy on narrow genomic segments [20][56][43][68]. Practical applications
of selective sweep classification, however, most often require localizing the regions affected by a
selective sweep within a larger genomic sequence, making it a detection problem rather than a
classification problem. Selective sweep detection is similar to the more general problem of object

6

detection using CNNs, which is an extensive field of research [71]. To precisely localize the regions
affected by selective sweeps, fine-grained detection is required. A classification model can trivially
be used for detection by sliding a window over the input data, where a smaller window stride
enables increased detection granularity. Increased granularity increases the detection precision
and reduces the chance of missing a target since less data is being skipped between windows, but
comes at the cost of greater computational expense. Using a fine-grained sliding window, often the
stride of the window is less than half the window width, in which case consecutive windows will
overlap. Processing the overlapping data for every single window is computationally expensive.
Convolutional layers exhibit translational equivariance, which implies that identical input at dif-
ferent positions in the window leads to identical output at different positions in the window. This
makes it possible to reuse the CNN output of the overlapping region [52], significantly optimizing
fine-grained sliding window detection. Many CNN-based methods for selective sweep classification
suggest per-window reordering of SNP data as a pre-processing step before classification [68][20]
[56]. Reordering data impairs the reuse of data between overlapping windows. When reordering
data based on the content of a window, the overlapping components between different windows are
not consistent, prohibiting data reuse, and requiring processing the whole window at each position.

The SNP matrix encodes the LD and the SFS but does not include the locations of the SNPs
on the genome. The locations of the SNPs must be known to derive the degree of polymorphism
within a region, and a reduction of localized polymorphism is one of the signatures of a selective
sweep. The SNP matrix and the SNP positions can both be passed to the same CNN model in
a process called data fusion. Previously, SNP positions have been fused by separately processing
the positions through a fully connected layer, and appending the output to the final layer of a
CNN-based classifier [20]. This is an example of late fusion, as the position data is fused with
the SNP data at the output stage of the model. One problem with this implementation is that
by processing the SNP positions through a fully connected layer the spatial arrangement of the
SNP positions is not explicitly passed to the model. In a fully connected layer, each value is
combined with each other value, not taking into account the fact that neighbouring position values
are more closely related than distant position values. Moreover, late fusion limits the ability of the
model to combine the information of the SNP positions with the SNP matrix. Another general
framework for analyzing SNP data proposes early fusion, by fusing the distances between SNP
positions at the input stage of the model, as an additional input channel to the CNN [13]. In this
implementation, the spatial arrangement of the position data is explicitly passed to the model,
since the convolutional layers take this information into account. This improves the ability of
the model to interpret the position data. When the relative arrangement of the SNP positions is
considered, the SNP density, and thus the local polymorphism, at any location within a window
can easily be computed. By fusing the SNP positions and SNP matrix at the input of the model,
the model can account for any patterns that arise when combining the SNP matrix and the local
SNP positions, this is an example of early fusion. This has been applied for the classification of
recombination hotspots [13].

In this chapter, FAST-NN (reversed abbreviation of Neural Network for Tracing Sweeps with
Allele Frequencies) is introduced. This novel CNN method provides scalable CNN-based selective
sweep classification. FAST-NN addresses the scalability problem faced by existing CNN-based
methods whilst retaining robustness to confounding factors. FAST-NN does not require any pre-
processing to compute summary statistics. It exploits two fingerprints that are informative of
selective sweeps, the density of polymorphisms [53] and the SFS [12]. These metrics are fully
encoded by a vector of derived allele frequencies, and a vector of SNP distances. Both vectors are
one-dimensional and thus are size-invariant to the sample size. This makes FAST-NN scalable to
datasets featuring large sample sizes. FAST-NN does not require reordering any data, allowing
the model to exploit data reuse when implemented in a detection context for efficient fine-grained
selective sweep detection.

By employing early fusion of the derived allele frequency vector with the SNP distance vec-
tor, and by optimizing the model architecture through an extensive neural architecture search
(NAS), FAST-NN exhibits improved classification accuracy when classifying selective sweeps that
are in the presence of various confounding factors. The design of FAST-NN features the following
contributions:

• By evaluating the effectiveness of fusing SNP distances with raw SNP data or derived allele
frequency data, it is demonstrated that early fusion leads to the greatest performance gain.

• It is demonstrated that derived allele frequencies are an effective method for classifying se-
lective sweeps, especially when used in combination with SNP distances. This allows for

7

scalable CNN-based selective sweep detection that is practical without requiring any hard-
ware acceleration.

• FAST-NN outperforms state-of-the-art CNN-based selective sweep classification methods,
without any window-based preprocessing or data reordering step, enabling integration into
an efficient detection framework.

The performance of FAST-NN is evaluated for selective sweeps in the presence of recombina-
tion hotspots, population bottlenecks, and migration. Despite its compact 1D data representation,
FAST-NN does not compromise performance. Under all evaluated conditions, FAST-NN outper-
forms existing CNN-based classification methods whilst requiring significantly less execution time.
The scientific results of this chapter have been presented in a peer-reviewed conference paper
accepted for publication [58].

2.2 Method

2.2.1 Data representation

The SNP matrix is a two-dimensional arrangement of SNPs where the rows represent the samples,
or individuals, from the population and the columns represent loci at which a SNP occurs in any of
the samples. Each value in the matrix represents the state of the allele at a locus for a sample in the
population. A binary ’0’ represents an ancestral state of the allele, and a ’1’ represents a derived
(or mutated) state. The positions of the loci in the SNP matrix are given in terms of basepairs
(bp) where one thousand bp is expressed as a kilobase (kb or kbp). From the SNP matrix and
the SNP positions, features indicative of a selective sweep can be computed. The site frequency
spectrum (SFS) is the frequency spectrum of polymorphisms over all SNPs. A shift in the SFS,
where high and low frequencies become more prominent, is a signature of a selective sweep. This
signature is locally encoded in the vector of derived allele frequencies (DAFs) of a SNP matrix.
The DAF at a locus is determined by the number of derived SNPs divided by the total number of
samples. The DAF at locus i of a SNP matrix is computed as follows:

DAFi =

∑N
j=0 aij

N
, (2.1)

where N is the sample size and aij is the SNP value at locus i for sample j. Figure 2.1 illustrates
how a SNP matrix looks in its binary format before computing the derived allele frequencies and
as a DAF vector. The brightness of a pixel on the DAF vector scales linearly with the derived
allele frequency, where a frequency of 1.0 translates to a white pixel and a DAF of 0.0 translates
to a black pixel. The size of the DAF vector is independent of the number of samples. Moreover,
the DAF vector is robust against missing data, since the derived allele frequency at a certain locus
can be computed from any number of samples at a certain locus, by reducing N by the number of
missing values.

Complementary to the DAF vector, another signature of selective sweeps is a local reduction
in polymorphisms. The degree of polymorphism along the genome is encoded in the density of the
SNPs per basepair. This density cannot be computed from the SNP matrix itself, for this metric
the basepair positions of the SNPs must be known. The positions of the SNPs can be described
by a position vector P . In a previously proposed classification model, the raw position vector has
been used as input to a CNN-based classification model [20]. This work focuses on classifying SNP
matrices of full simulations. In the case of classifying entire simulations, passing the raw SNP
positions to the model does not impose a problem. However, when the SNP matrix used as input
to a CNN-based model is a windowed subset of SNPs sampled from a larger sequence of SNPs,
using this position vector P as raw data to train and test a classification model can lead to issues.
When the model is only trained with data at a specific absolute position, then the model may not
generalize to new data where the absolute positions differ from the training data. If the selective
sweep in the simulation always occurs at the same absolute position on the genome, then the model
may not be able to classify a selective sweep at any other absolute position. To ensure that the
model is not biased to an absolute position, the position data must be made independent of the
absolute position of the sampled SNP matrix on the genome. One method to remove this bias is by
encoding the SNP positions within the matrix as positions relative to a particular column on the
matrix. This method, however, leads to another problem. Calculating the SNP positions relative to
a particular column is not a translation equivariant operation, and is therefore problematic when
implementing the classification model in an efficient sliding window-based detection framework.

8

(a) 32 SNPs (selective sweep)

SNP matrix (selective sweep)

DAF vector (selective sweep)

32 SNPs (neutral)

SNP matrix (neutral)

32
 s
am
pl
es

32
 s
am
pl
es

DAF vector (neutral)

(b)

(c)

Figure 2.1: Figure (a) shows two 32-SNP windows sampled from larger selective-sweep (top) and
neutral (bottom) datasets. Figures (b) and (c) depict the resulting SNP matrices and their visual
representation as derived allele frequency vectors, respectively.

Another method to remove the positional bias of the SNP data is by using the pairwise distances
between SNPs. This transformation is independent of the absolute position of the matrix and is
translation invariant. This method is inspired by the work of [13], where this has been applied for
recombination hotspot classification. The pairwise distances between the SNPs are computed as
follows:

Di = Pi+1 − Pi. (2.2)

The distance value of the final SNP in a sequence is defined as 0. This distance vector is of the same
length as the DAF vector. This has the added benefit that these vectors can be processed as a single
matrix. From the DAF vector and the distance vector two of the metrics that are classically used
to identify selective sweeps are represented, the SFS and the degree of local polymorphism. When
considering a CNN as a classification model, this data representation has a significant impact on
the computational efficiency. The complexity of 2D convolution on an N×N matrix with a K×K
kernel is ∼ O(N2K2). The complexity of a 1D convolution on a 1D vector of length N with kernel
length K is only ∼ O(NK) [35]. This decrease in complexity makes 1D CNN models practical
for use by researchers and users who do not have access to GPUs or other high-performance
computing equipment, especially when large datasets need to be processed. Moreover, the training
and inference time of these models is significantly reduced compared to the 2D counterpart. Finally,
the amount of data that needs to be stored and passed to the model is reduced, making it more
scalable to large datasets. Especially in the scope of genetics, scalability is a major concern.
Through advances in DNA sequencing methods, the amount of data that is available for analysis
is increasing rapidly [51]. As the number of samples for a genome increases, so does the number of
known SNPs along this genome [59]. Therefore the increase in the amount of data to be processed
when the sample size increases exceeds a linear relation.

2.2.2 Model architecture and selection

For convolutional neural networks (CNNs), and other types of artificial neural networks (ANNs)
there is at present no analytical method to determine an optimal architecture for the problem at
hand. Often, architectures are empirically determined based on the complexity of the problem,
the expected patterns to be found in the data, and previously confirmed effective architectures. A
more rigorous approach to model selection is to perform a neural architecture search (NAS). A NAS
attempts to find an optimal neural network architecture within a given search space. Previously,
a NAS was used to determine the optimal model for selective sweep classification [68]. In this
instance, a number of hyperparameters determining the architecture and training method of the

9

model were defined. For each hyperparameter a number of options are considered. The selection
was then done through an iterative process, where the hyperparameters are optimized sequentially,
reducing the number of candidate architectures throughout the process. This method requires less
computation than a full grid search. In a grid search, each position in the hyperparameter space
is tested. The combination of hyperparameters leading to the best performance is selected.

The NAS that was performed in [68] considered a model that uses the full SNP matrix as
input. The rows and columns of the SNP matrix are reordered before it is passed to the CNN.
Using this method a lightweight model was selected which exhibited state-of-the-art performance
on selective sweep classification in the presence of confounding factors. Because of the different
data representations in this work, another NAS is performed to identify the optimal architecture
of a model processing DAF data. Considering the 1D data representation that is used, the com-
putational power required to train a single model is significantly reduced. This makes performing
a full grid search over a selection of parameters a practical approach. The base model used for
the NAS is shown in figure 2.2. The base model is a simplified version of the SweepNet model,

1D
 C

on
v

la
ye

rs
 +

m
ax

 p
oo

l +
R

eL
U

1D
 C

on
v

la
ye

rs
 +

m
ax

 p
oo

l +
R

eL
U

1D
 C

on
vo

lu
tio

na
l

la
ye

rs
 +

m
ax

 p
oo

l +
R

eL
U

FC
 la

ye
r (

C
 x

 3
2)

 +
 R

eL
U

G
lo

ba
l a

ve
ra

ge
 p

oo
l

Fu
lly

 C
on

ne
ct

ed
(3

2
x

2)Input

(CxWN) (32xWN) (32)

Output (2)

N times

(Input shape: 2xW0)

Figure 2.2: Base model for model architecture grid search. The data shape is indicated beside the
dataflow arrows. The first step is repeated N times depending on the specific architecture.

omitting the Squeeze-and-Excitation layer for simplicity, and replacing the 2D convolutional layers
for 1D convolutional layers. Each convolutional layer is followed by a max pooling layer. The
max pooling layer uses a kernel with a width and stride of 2, which was empirically found to
yield the best results over the search space. Using a pooling layer, the width of the data reduces
after each convolution, decreasing the number of computations and increasing the receptive field
of the model. The hyperparameters in the NAS search space, and the considered values for each
hyperparameter, are shown in table 2.1. A limited number of options for each hyperparameter

Table 2.1: List of hyperparameters and selected options for model grid search, resulting in a total
of 240 candidate models.

Hyperparameter Options Candidate models

Conv layers 2, 3, 4, 5 4
Conv channels 8, 16, 32, 64, 80 20
Kernel width 2, 3, 4 60
Kernel stride 1, 2, 3 180

are selected, to reduce the evaluation time. The candidate options are selected based on what has
been observed to perform well in other works, and considering the intention for the model to be
lightweight. As such the options for the number of layers and channels are not explored beyond
these proposed options, as this could result in a model that is larger than intended, in terms of
parameters and computational expense.

2.2.3 Memory-efficient data formatting

It has been mentioned that the allelic state of each SNP considered is either ancestral, represented
by a binary ’0’, or derived, represented by a binary ’1’. In previous methods focusing on the use
of CNNs for selective sweep analysis, the SNP matrix is interpreted as an image [20][68][56][43].
Each pixel in the image represents a single state of an allele. To store these pixels, a single colour
channel is used, which can store a pixel value between ’0’ (white) and ’255’ (black). This is not
memory efficient, each pixel requires one byte of memory, whilst the pixel actually only encodes
a single binary state. An additional issue that arises when using an image format to store the

10

SNP data occurs when implementing the SNP distance data in addition to the SNP matrix. The
bandwidth of SNP distances that one would like to store can well exceed the 256 values that an
image channel can store. Finally, when storing the derived allele frequency data instead of the
SNP matrix, the 8-bit channel limits the precision at which this data can be stored. Considering
the memory inefficiency of storing the SNP matrix in an image format, and the shortcomings of
an image format to store the distance and DAF data, using an alternative format to store the data
is preferable.

In order to store the SNP matrix and the distance data efficiently, the binary SNP states can
be packed into bytes, each byte yielding 8 SNP states. The SNP distance data can be stored as
floating point values. Each floating point requires 4 bytes to store. The number of bytes required
to store the SNP matrix and distance data is calculated in equation 2.3:

Braw = W ×
(
4 +

⌈
N

8

⌉)
, (2.3)

Where Braw is the number of bytes to store the matrix, W is the width of the matrix, and N is
the number of samples in the matrix. To store the DAF vector, each frequency can be stored as a
floating point value. In this case, the number of bytes to store the DAF vector and distance data
is calculated through equation 2.4:

Bdaf = W × (4 + 4). (2.4)

Equation 2.3 and 2.4 indicate that when the sample size is greater than 32, saving the DAF vector
becomes a more memory-efficient method for storing the raw SNP data, and can consequently
reduce data loading time. The 1000 Genomes Project [18] can be taken as an example. In this
real-world study, the sample size of the gathered data is 2504. In this case, storing the data as
DAF vector instead of SNP matrix reduces the amount of data to be saved by 97.5%.

2.3 Evaluation

2.3.1 Experimental setup

To generate neutral SNP data, SNP data containing a selective sweep and data containing several
different confounding factors, simulation software ms [26], mssel (kindly provided by R. R. Hudson),
mbs [55] and msHOT [25] is used. In continuation of the work done in [68], six datasets containing
several different confounding effects are generated. Table 2.2 shows the datasets, along with the
commands used to generate these corresponding dataset. The datasets for training consist of 1000

Table 2.2: Datasets used for evaluation. For each confounding factor, two different genomic scenar-
ios were tested. Parameters show the simulation parameters along with the command line options
in the corresponding simulation software.

Dataset Software Parameters Values

Mild bottleneck (D1)
Severe bottleneck (D2)

Neutral:
ms
Selective:
mssel

Severity (-eN)
Duration (-eN)
Beginning (-eN)
Selection coefficient (-s)
Sweep start time (-t)

0.5 (D1), 0.005 (D2)
0.001 (D1), 0.002 (D2)
0.1 (D1), 0.01 (D2)
0.02
0.016

Recent migration (D3)
Old migration (D4)

Neutral:
ms
Selective:
mssel

Population join time (-ej)
Selection coefficient (-s)
Sweep start time (-t)

0.003 (D3), 3 (D4)
0.02
0.005

Recombination hotspot
Low intensity (D5)
High intensity (D6)

Neutral:
msHOT
Selective:
mbs

Hotspot intensity (-v)
Hotspot region size (-v)
Selection coefficient (-s)
Sweep start time (-t)
Mutation rate (-t)
Recombination rate (-r)

2 (D5), 20 (D6)
5 kb
0.02
0.005
2000
2000

neutral and 1000 selective simulations, of which a split of 15% is used for validation. The datasets
for testing consist of 1000 neutral and 1000 selective simulations. Each simulation consists of 128

11

samples, and from each simulation, a window of 128 SNPs is extracted, resulting in a 128 × 128
SNP matrix. For the selective simulations, the origin of the selective sweep is at the center of the
window.

The neural networks are realized in Pytorch [45]. The networks are trained for 100 epochs at a
learning rate of 0.5 ·10−3, which empirically showed reliable training of the models. The models are
trained with mini-batches of batch size 8 and the Adam optimizer is used [34]. After each epoch,
the validation accuracy is computed. The model with the highest validation accuracy is saved for
testing. When training using the full SNP matrix as input, the rows of the matrix are shuffled to
randomize the training data, reducing the effects of overfitting. Unless mentioned otherwise, the
data is saved and loaded as full SNP matrix data.

To evaluate the models, the testing accuracy of the models is analysed. In addition to this, the
training and inference time of the models is measured. Execution times were measured on a single
CPU core (Intel Xeon at 2.1GHz running Ubuntu 20.04) and on a GPU (Nvidia A40).

2.3.2 Effectiveness of including SNP positions

To evaluate the effectiveness of including the SNP positions, three different model architectures are
compared. Firstly, the SweepNet [68] architecture is used as-is, without including SNP position
data. Secondly, the SNP distances are processed in a fully connected layer with an input width
of 128 and an output width of 64, the output of which is appended to the input of the final fully
connected layer of the SweepNet model. This approach to fusing the position data to the SNP data
is similar to the method used in [20]. Finally, the SweepNet model is used with an additional input
channel added to the first convolutional layer, to include the SNP distances. Each model is trained
a total of 10 times for each dataset, no data reordering is applied for any of the models. Figure 2.3

D1 D2 D3 D4 D5 D6
Dataset

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

Without fusion
Late fusion FC layer
Early fusion convolutional layer

Figure 2.3: Effect of introducing SNP position data to the SweepNet model. Late fusion introduces
the SNP distances after the convolutional layers through a fully connected layer. Early fusion
introduces the SNP distances as an additional channel next to the SNP matrix. Average accuracy
is displayed, and error bars indicate the highest and lowest-scoring models out of 10 training runs.

shows the accuracy of the three architectures for each dataset. The bar chart indicates the mean
accuracy of the 10 models, and the error bars indicate the least and best performing model. The
figure clearly shows that including the SNP position data can improve the model’s accuracy. The
extent of this benefit depends on the confounding factor. Moreover, the architecture with early
fusion through the convolutional layers shows the greatest improvements, most notably in dataset
5. The improvements from including the SNP position data using convolutional layers as opposed
to a separate FC layer can be explained by the fact that this method of including the positions
highlights the spatial arrangement of the positions. It makes it more feasible for the model to learn
local SNP densities and other spatial patterns. Moreover, the model is able to combine the SNP
distance data with the SNP matrix at an earlier stage, potentially leading to useful patterns for
recognition.

2.3.3 Model architecture search

The model architecture search as described in section 2.2.2 is performed. The models in the
architecture search are evaluated by training and validating the models on dataset D4, which

12

is the dataset featuring old migration. As demonstrated in figure 2.3, this is one of the more
challenging confounding factors to perform classification in. By optimising the model for this
dataset, a model with optimal performance, even under challenging conditions, is selected. Figure
2.4 shows the maximum validation accuracy during training for each of the candidate models.

8 16 32 48 64 80

4
3
2

Ke
rn

el
 w

id
th

2 layers

8 16 32 48 64 80
Channels per layer

3 layers

8 16 32 48 64 80

4 layers

0.90

0.93

0.95

Figure 2.4: Validation accuracy of candidate 1D convolutional models. Trained on dataset 4 (old
migration).

The model with 3 convolutional layers, each consisting of 80 channels and a kernel width of
2 has the highest validation accuracy at 0.963. The models with a lower number of channels per
convolutional layer consistently show a lower validation accuracy. These models likely do not have
sufficient parameters to capture the complex patterns indicating a selective sweep. The models
consisting of 4 convolutional layers overall do not perform as well as the models with fewer layers.
This is due to these models being more prone to overfitting. Figure 2.5 Shows the training and
validation accuracy of the best model for each number of convolutional layers.

0 25 50 75 100
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

2 layers

Training
Validation

0 25 50 75 100
Epochs

3 layers

Training
Validation

0 25 50 75 100
Epochs

4 layers

Training
Validation

Figure 2.5: Training and validation accuracies of best models from model architecture for each
number of convolutional layers. The models with more layers tend to overfit.

Figure 2.5 clearly illustrates that the model with 4 layers overfits, causing a lower validation
accuracy. The model with 3 layers slightly overfits as well, but maintains a greater validation
accuracy than the best model with 2 layers.

2.3.4 Effectiveness of allele frequency as input

Having selected a candidate model, the performance of this model is evaluated and compared to the
SweepNet model which uses early SNP distance fusion, unless specified otherwise. All references
to SweepNet in this comparison refer to SweepNet using early distance fusion. Table 2.3 shows
the inference and training time for regular SweepNet using the full SNP matrix and for FAST-NN
processing only the allele frequencies.

The models reported in table 2.3 are trained and tested on a shared resource, and can therefore
be prone to slight variations in execution time due to resource allocation by the server. To minimize
the influence of this on the execution time of the models, the load of the server was monitored, and
out of 10 runs the one where the lowest interfering server load was observed is reported in table
2.3. On the CPU, FAST-NN trains between 22.19x and 624.77x faster while performing inference
between 29.69x and 763.73x faster, when the sample size ranges from 64 to 1000 samples. On the
GPU, the speedups range between 1.60x and 19.60x for training, and between 5.67x and 11.22x for
testing, both increasing with the sample size. The reduced GPU speedup can be attributed to the
data transfers to/from the GPU. Due to the short execution time of FAST-NN, the communication

13

Table 2.3: Training time per epoch and inference time of SweepNet and FAST-NN for SNP matrices
of width 128 and height 64, 128, and 1000 using various data loading methods.

64 samples 128 samples 1000 samples
Model Input CPU GPU CPU GPU CPU GPU

Train Test Train Test Train Test Train Test Train Test Train Test
SweepNet images 51.25 33.85 2.09 6.12 106.27 63.81 3.26 5.9 1387 779 30.57 13.13

binary 45.33 25.91 2.19 1.11 95.5 54.1 4.27 1.88 1339 739.37 44.5 16.59
FAST-NN images 2.89 1.65 1.7 6.5 3.56 2 2.14 4.73 9.95 7.05 8.31 7.73

binary 2.31 1.14 1.31 1.08 3.19 1.35 2.16 1.64 5.94 4.25 5.4 3.41
binary 1D 2.35 1.17 1.74 1.31 2.5 1.01 1.82 1.32 2.22 1.02 1.56 1.17

Table 2.4: Speedup of training and inference compared to SweepNet using images as input for SNP
matrices of width 128 and height 64, 128, and 1000 using various data loading methods.

64 samples 128 samples 1000 samples
Model Input CPU GPU CPU GPU CPU GPU

Train Test Train Test Train Test Train Test Train Test Train Test
SweepNet images 1 1 1 1 1 1 1 1 1 1 1 1

binary 1.13 1.31 0.95 5.51 1.11 1.18 0.76 3.14 1.04 1.05 0.69 0.79
FAST-NN images 17.73 20.52 1.23 0.94 29.85 31.91 1.52 1.25 139.40 110.50 3.68 1.70

binary 22.19 29.69 1.60 5.67 33.31 47.27 1.51 3.60 233.50 183.29 5.66 3.85
binary 1D 21.81 28.93 1.20 4.67 42.51 63.18 1.79 4.47 624.77 763.73 19.60 11.22

overhead becomes a bottleneck. This unfavourable computation-to-communication ratio generally
occurs when performing small computational tasks using hardware accelerators with dedicated
memory space. Moving data in larger batches reduces the number of transfers and can increase
the GPU speedup.

Figure 2.6 shows the execution time for training and inference of SweepNet and FAST-NN.
Clearly, the FAST-NN model scales better with larger windows. This is in particular the case
when using a CPU, but for large window sizes, and especially when training, FAST-NN has a
significant benefit on the GPU as well.

0 100 200 300 400 500
Width [#SNPs]

100

101

102

Ti
m

e
[s

]

Inference

0 100 200 300 400 500
Width [#SNPs]

Training

device
GPU
CPU
model
SweepNet
FAST-NN

Figure 2.6: Training and inference times for increasing window width. Time (y-axis) is displayed
on a logarithmic scale.

Figure 2.7 shows the test accuracy of the 1D model compared to SweepNet. For datasets D1,
D3, D5, and D6, both models achieve test accuracies between 0.998 and 1.0. For the challenging
confounding factors of a severe bottleneck (D2) and old migration (D4), both models have compa-
rable performance: SweepNet achieves maximum accuracies of 0.942 and 0.964, respectively, while
FAST-NN achieves 0.944 on both.

2.3.5 Comparing to summary statistics

Section 2.3.4 demonstrates that FAST-NN has a computational advantage over SweepNet, and is
almost as accurate as SweepNet (when SweepNet uses early distance fusion), despite only processing
allele frequencies instead of raw SNP data. Both of these models demonstrate the performance of
a CNN-based approach for selective sweep classification. To put the relative performance of these

14

D1 D2 D3 D4 D5 D6
Dataset

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 a
cc

ur
ac

y

SweepNet
FAST-NN

Figure 2.7: Mean accuracy of SweepNet compared to the 1D model using only allele frequency
data over 10 training instances. Error bars indicate the best and worst models out of 10 runs.

models into perspective with classical (non-machine-learning) method, several summary statistics
for neutrality have been used to classify the datasets evaluated in this chapter. We compared
the performance of FAST-NN with the classification performance of summary statistics used for
sweep detection. Tajima’s D [54], Fu and Li’s D and F [21] and Rozas’ R2 [49] are computed using
PopGenome [48]. PopGenome is a versatile tool for statistical analysis of population genomics,
written in R. The µ statistic [1] is a summary statistic that combines each of the three signatures
of selective sweeps: localized reduction of polymorphisms, a shift in the site frequency spectrum,
and a specific pattern in linkage disequilibrium. The µ statistic is efficiently computed by the
open-source software RAiSD, which is implemented in C.

Table 2.5 shows the maximum classification accuracy attained using each of the summary
statistics, and using FAST-NN trained on 1,700 simulations. The µ statistic outperforms the other
statistics for each of the datasets, except for the severe population bottleneck, where Fu and Li’s D
and the µ statistic achieve an accuracy of 0.9215 and 0.92, respectively. FAST-NN has an accuracy
that is greater or equal to each of the summary statistics for all evaluated datasets except D1,
where FAST-NN has a single misclassification and the µ statistic has a perfect score. Table 2.6
shows the execution time of PopGenome and RAiSD, along with the inference time of FAST-NN.
When evaluating PopGenome, only the processing time of the function that computes the summary
statistic is included in the execution time. Running PopGenome computes all supported summary
statistics for testing neutrality in one run. PopGenome can run in fast mode, which speeds up
the computation significantly, but it does not support computing Rozas’ R2. RAiSD outperforms
PopGenome in terms of execution time, due to its efficient C implementation. The execution time
of RAiSD is greater than the inference time of FAST-NN on a CPU, taking an average of 1.87
seconds and 1.24 seconds, respectively. However, using FAST-NN requires training the model,
which takes an average of 3.19 seconds per epoch when training on 1,700 simulations.

Table 2.5: Classification accuracy of neutrality tests using various summary statistics, and using
FAST-NN. Each dataset consists of 1,000 neutral simulations and 1,000 simulations featuring a
selective sweep. Each simulation is classified by a window of 128 SNPs, where the window is
centered around the selective sweep, when one is present.

Dataset Tajima’s D Fu and Li’s F Fu and Li’s D Rozas’ R2 µ statistic FAST-NN
Mild population bottleneck (D1) 0.987 0.9845 0.954 0.987 1.0 0.9995
Severe population bottleneck(D2) 0.8565 0.9165 0.9215 0.861 0.92 0.9435
Recent migration (D3) 0.894 0.848 0.663 0.894 0.978 0.999
Old migration (D4) 0.706 0.7435 0.706 0.7135 0.854 0.944
Low intensity recombination hotspot (D5) 0.609 0.613 0.599 0.608 0.708 1.0
High intensity recombination hotspot (D6) 0.513 0.508 0.513 0.5135 0.9035 1.0

2.3.6 Comparing to other CNN-based methods

The FAST-NN CNN model has been benchmarked against other methods CNN-based methods,
the methods that FAST-NN is compared to are ImaGene [56], diploS/HIC [32], SweepNet [68] (as
is, without SNP distances), and the model of Nguembang Fadja et al. [43]. DiploS/HIC uses 12

15

Table 2.6: Execution time (seconds) of the tools used to compute the summary statistics in table
2.5, and execution time to perform inference using FAST-NN. Running PopGenome in fast mode
computes Tajima’s D, Fu and Li’s F, and Fu and Li’s D. Running PopGenome in normal mode
also computes these statistics, with the addition of Rozas’ R2. RAiSD computes the µ statistic.

Dataset PopGenome PopGenome (fast) RAiSD FAST-NN
Mild population bottleneck (D1) 10.44 4.00 1.87 1.22
Severe population bottleneck (D2) 10.68 4.17 2.17 1.22
Recent migration (D3) 10.23 4.01 1.79 1.19
Old migration (D4) 10.61 3.98 1.79 1.34
Low intensity recombination hotspot (D5) 10.49 4.13 1.75 1.23
High intensity recombination hotspot (D6) 10.76 4.11 1.82 1.25

summary statistics to classify selective sweeps, FAST-NN uses derived allele frequencies, and all
other methods use raw SNP data. To prevent any of the models from overfitting, each model has
been trained for 10 epochs using an extended dataset composed of 50,000 neutral simulations and
50,000 simulations containing a selective sweep.

0.998

1.000

Te
st

 a
cc

ur
ac

y

Mild bottleneck (D1)

0.98

1.00
Recent migration (D3)

0.6

0.8

1.0

Low intensity
recombination hotspot (D5)

0 40000 80000
Execution time [s]

0.92

0.93

0.94

Te
st

 a
cc

ur
ac

y

Severe bottleneck (D2)

0 40000 80000
Execution time [s]

0.6

0.8

Old migration (D4)

0 40000 80000
Execution time [s]

0.6

0.8

1.0

High intensity
recombination hotspot (D6)

Nguembang Fadja et al. (2021) ImaGene diploS/HIC SweepNet FAST-NN

Figure 2.8: Total time (preprocessing, training, and inference) and test accuracy for various CNN-
based sweep classification methods.

Figure 2.8 plots the total CPU execution time, including preprocessing, training (until the best
epoch), and inference, against accuracy. It is observed that FAST-NN has a lower execution time
than all other methods for each dataset. FAST-NN also has a higher or equal accuracy to the
other methods that were tested. The only method based on summary statistics, diploS/HIC, has
an accuracy of at least 0.935 for any dataset containing population bottlenecks (D1 and D2), an
accuracy of at least 0.938 for datasets featuring migration (D3 and D4), and has an accuracy of at
least 0.931 for datasets that feature recombination hotspots. While FAST-NN respectively scores
an accuracy of at least 0.942, 0.965, and 1.0 under these confounding factors. FAST-NN is between
4.9 and 45.9 times faster than diploS/HIC, depending on the dataset. Across all datasets, ImaGene
achieved the second shortest execution time, but it fails to train with the datasets simulating old
migration (D4) and a low-intensity recombination hotspot (D5).

2.4 Discussion and conclusion

In this chapter, the effectiveness of using allele frequencies and single nucleotide polymorphism
(SNP) pairwise distances as input to a CNN for complete hard selective sweep classification has
been demonstrated. By evaluating various datasets featuring various confounding effects, it is
shown that FAST-NN exhibits lower execution times than a number of other CNN-based classi-
fication methods, whilst scoring higher classification accuracies. This performance gain can be

16

attributed to careful model selection using a neural architecture search, and effective fusion of
derived allele frequencies and pairwise SNP distances. Allele frequency-based classification scales
better with datasets composed of a large number of samples since the amount of data is inde-
pendent of the sample size. This reduction in data allows FAST-NN to use wide input windows
whilst maintaining low execution times. Because FAST-NN does not require reordering data, no
preprocessing is required, which further increases the efficiency of the implementation. Moreover,
because the data is not rearranged in a preprocessing step, the (intermediate) results of the CNN
are translationally equivariant. This allows the integration of FAST-NN in an efficient CNN-based
selective sweep detection framework. Chapter 3 will further improve the FAST-NN model, specifi-
cally for selective sweep detection, and will demonstrate the efficiency of the network for scanning
extensive genomic regions.

17

Selective sweep detection

3.1 Introduction

Identifying which mutations in the genome lead to positive natural selection can be insightful and
is a resourceful tool in the analysis of viruses and drug treatments [7] [16]. A genetic mutation that
leads to positive natural selection can be detected by analyzing single nucleotide polymorphisms
(SNPs). Positive natural selection leads to a distinct SNP pattern, called a selective sweep. When
the mutations driving these selective sweeps are adapted by the entire population of the sampled
species, this is referred to as a complete hard selective sweep. This work focuses exclusively on
complete hard selective sweeps and any reference to selective sweeps refers to this type of selective
sweep. Ample work has been done towards improving classification models for selective sweeps,
initially through classical statistical analysis of the SNP data [53] [12] [33] [1], and more recently by
means of convolutional neural networks (CNNs) [20][56][43][68] [69]. Most of these works lay their
main focus on the classification of narrow genomic segments, labeling these segments as a selective
sweep (positive) or neutral segment (negative) [20][56][43][68]. Optimizing a model that is able to
classify a set of SNPs as selective or neutral is an important step in finding regions on real genomes
that are affected by selective sweeps, hence the need to design effective classification models.
However, often in a practical application, the goal is not to classify a single genomic segment,
but to detect where, along a real genome, a selective sweep is present. In previous methods,
preprocessing steps that may hinder this goal are suggested, such as data reordering are suggested
[20] [56] [68]. Whilst it may help a learning model classify data, reordering the data can hinder the
efficient implementation of a CNN-based method for detecting selective sweeps. Reordering data
can introduce redundant computations, especially when aiming for fine-grained detection, which
makes the method scale poorly when applied to extensive large datasets. Moreover, classification
performance is often used as the sole metric to determine the quality of a model [20, 56, 43, 68],
however, the most effective training method for models that robustly detect selective sweeps can
differ from the optimal method for classifying SNP segments.

In the field of computer vision, detection and classification are two distinct applications. When
applying classification, the goal is to categorize targets by a set of classes. The output of a classifier
is a categorical distribution indicating the probability of the target belonging to each class. In the
context of selective sweep classification, the classification model returns the probability that a
genomic segment is affected by a selective sweep. When performing detection, the goal is to locate
the position of a target, if any target is to be found in the input. The detection algorithm aims
to return the coordinates of one or multiple target(s), along with the probability distribution
associated with each target. In the context of selective sweep detection, the detection model
predicts at which SNP positions the selective sweep can be found, along with the probability that
the SNP belongs to the selective sweep. A classification model can be applied in a detection
algorithm in several ways, one of which is by processing the input in segments by means of a
sliding window [71]. When implementing this for selective sweep detection, the efficiency of the
algorithm is of major importance to the practicality of the method, since the genomes of real
species are extensive, and can contain a large number of SNPs. If the detection algorithm is
inefficient, the processing time required for fine-grained detection becomes infeasible. To illustrate,
the 1000 Genomes project gathered over 80 million SNPs from the human genome across all
sampled populations [18]. When applying inefficient fine-grained detection over this dataset, the
processing time becomes impractical. Fine-grained scanning of only a million SNP locations from
a population of 1000 individuals, using a fine-grained sliding window without any optimization,
even when accelerated using a GPU, would take over 4 days. Clearly, a more efficient method is
required to make this approach practical.

Because of the variability in the evolutionary processes of genomes, the number of SNPs in

18

a genomic region is inconsistent. FAST-NN is designed to support data of variable input width,
which has the advantage that the model does not need to be altered when classifying data of
different input widths. One can train a model FAST-NN for an input of 128 SNPs, and use the
same model on data consisting of 512 SNPs. This is possible due to the global average pooling layer
in FAST-NN, which averages over the spatial dimensions after the final convolutional layer of the
model. In this architecture, the input shape to the fully connected output layer is constant, and
independent of the input shape. This design choice is also used in the SweepNet model [68]. When
using a CNN-based model for scanning genomes, the advantage of this flexibility to different input
widths is absent, since, in this case, it is assumed that the total length of the genomic sequence far
exceeds the width of one window. Hence, it is possible to choose any number of SNPs per window,
making it possible to ensure that each window has an identical number of SNPs. Using a global
average pooling layer can implicate a trade-off to a potential gain in classification performance. By
averaging the output of the final convolutional layer over the spatial dimensions, spatial information
is discarded between the final convolutional layer and the fully connected output layer. This may
restrict the ability of the model to learn global spatial patterns in the data. The receptive field
in a CNN is the range of inputs that are combined to compute a single output in a convolutional
layer [41]. Convolutional layers deeper in a network have an increasingly wide receptive field,
enabling these layers to learn increasingly global patterns. The final layer in most CNN models
is fully connected, combining data derived from all its input values. The fully connected layer
can learn global patterns in the data. By averaging over the spatial dimensions before applying
the fully connected layer, the model only learns patterns that are detectable within the receptive
field spanned by the final convolutional layer. In the context of selective sweep classification, a
wide receptive field enables the model to learn global patterns in the site-frequency-spectrum and
polymorphism density, possibly enhancing the ability to identify selective sweeps.

This work focuses on designing a CNN-based model that is optimized for implementation in a
detection framework, which can perform efficient fine-grained detection of selective sweeps. The
effect of using a model featuring a wide receptive field is explored, evaluating the performance for
various input widths. In this chapter the FAST-NN model introduced in chapter 2 is redesigned,
focusing specifically on detection performance metrics. This work features the following contribu-
tions:

• The design of a CNN architecture that outperforms the selective sweep detection perfor-
mance and precision compared to the state-of-the-art. The proposed implementation enables
fine-grained detection without significant computational overhead, allowing for practical ap-
plication of the model on real data.

• By exploring the effect of input width on different CNN-based models, it is shown that wide
inputs can improve detection true-positive-rate and precision, especially when used with a
model with a wide receptive field. The models are implemented in an efficient fine-grained
detection framework by altering the models to generate dense output, without recomputing
data from overlapping windows [66] [52].

• Through these optimizations a scan of all 22 human autosomes is performed in just over 1
minute, demonstrating the practicality of this method within the context of a real genomic
dataset.

The detection performance is evaluated for various evolutionary scenarios, demonstrating that
the model performs detection with improved robustness to genomic effects that can confound the
selective sweep. Employing the proposed efficient detection framework enables researchers to use
this method for the practical analysis of realistic genetic data.

3.2 Method

3.2.1 Efficient sliding window

To perform efficient and effective selective sweep detection along a genomic sequence, wide genomic
segments need to be classified, without significantly reducing computational efficiency. A sliding
window is a trivial method to apply a classification model for detection. However, a sliding window
that divides a genomic sequence into non-overlapping segments may not produce optimal results.
A classification model trained to classify selective sweeps is expected to perform better when more
SNPs affected by the sweep lie within the window. This is most likely to occur when the center of
the sweep aligns with the center of a window. However, if a sliding window without any overlap

19

between windows is used for detection, the center of the sweep might not lie in the center of any
of the windows. This reduces the ability of the detection method to detect the selective sweep
successfully. Instead, a sliding window with overlapping windows can be used, where increasing
the overlap increases the probability that the center of the selective sweep lies at the center of any
of the windows. This method can cause significant computational overhead when implemented
without any optimizations. In a naive implementation, each window must be processed by the CNN
model separately. This implies that, when windows with overlap are used, the classifier needs to
process the overlapping data multiple times. Moreover, when using wider inputs, the computational
complexity increases since the amount of overlap between windows increases. Detection using a
sliding window over the entire genomic sequence can be viewed as imposing a grid over the sequence
and evaluating a window centered around each gridpoint. When performing detection by imposing
a grid over the genome, processing a window centered at each gridpoint, the number of SNPs
that need to be processed is Ww ·G, where Ww is the width of the window and G is the number
of grid points. For the finest level of detection, a window can be sampled at each SNP, which
requires computing Ww · (Ws−Ww) SNPs, where Ws is the number of SNPs in the entire genomic
sequence where detection is performed. This implementation for detection becomes impractical
when using a wide window on a lengthy genomic sequence. Fortunately, convolutional layers in
a CNN are translation equivariant, this implies that identical input data at different positions
leads to identical output at different positions. Because of this property, the overlapping data that
is shared between different windows only needs to be processed once by the convolutional model,
since the output data of convolutional layers can be reused [52]. Figure 3.1 illustrates how windows

W 1 W 2 W 3

W 1 W 2 W 3

Input
channels

Figure 3.1: When using a CNN classification model on input with overlapping data, the intermedi-
ate output of one window can be reused to compute the output of the next window. This example
illustrates this for three windows of width 4, for two convolutional layers. The first layer has a
kernel size of 2 and stride of 2, the second layer has a kernel size of 2 and stride of 1.

with overlapping input data can reuse intermediate output values. One constraint to this property
arises when any of the convolutional layers or pooling layers apply a stride greater than 1, which
is the case in the illustration. In this case, the overlapping data between windows only produces
identical output if the window stride satisfies equation 3.1.

Sw· = k ·
N∏

n=0

Sn (3.1)

Here N is the number of convolutional and pooling layers, Sn is the stride of layer n, Sw is the
sliding windows stride and k is any integer number. The limitation imposed by equation 3.1 reduces
the ability to perform fine-grained detection efficiently, since a larger window stride decreases the
potential precision of the algorithm, and running the model multiple times to compensate for this
reduces the efficiency of detection and may lead to recomputing identical intermediate outputs.
Fortunately, it is possible to adjust the model architecture to allow for a dense output, meaning one
output for each input, by using dilated convolutions [66]. Dilation implies that the convolutional
kernel is not contiguous, but samples separated inputs. The second layer in the network shown in
figure 3.2 illustrates this kind of kernel. By choosing the amount of dilation based on the stride
in the original model, a dense model using dilation can be designed that is functionally identical
to a model using a stride greater than 1. Figure 3.2 shows the dense model equivalent to the
model shown in figure 3.1. The dense implementation of the model needs to perform additional

20

W 1 W 2 W 3

W 1 W 2 W 3

Figure 3.2: Dense outputs are generated By removing the stride from the first network layer.
Through dilated convolutions in the subsequent layer, outputs are generated for a sliding window
with a stride of 1. Subsampling the outputs from odd windows will give outputs identical to the
example in figure 3.1.

computations to generate the additional outputs at each layer. The number of computations
that the convolutional layers and pooling layers in a CNN need to make can be expressed using
equation 3.2. In this equation, computations from a convolutional layer and a pooling layer are
treated equally.

C = K0 ·
⌊
Ws −K0

S0
+ 1

⌋
+K1 ·

⌊
Ws −K1

S0S1
+ 1

⌋
, ...,KN−1 ·

⌊
Ws −K0∏N−1

n=0 Sn

+ 1

⌋
(3.2)

C is the number of computations, Kn is the kernel at layer n, Ws is width of the entire genomic
sequence, Sn is the stride at layer n and N is the number of layers in the model. Equation 3.2
is simplified by assuming that for all n, Kn << Ws. In the case of a realistic genomic sequence,
where up to millions of SNPs are expected, this is a reasonable assumption. Doing so, the amount
of computations can be simplified to equation 3.3.

C = K0 ·
Ws

S0
+K1 ·

Ws

S0S1
, ...,KN−1 ·

Ws∏N−1
n=0 Sn

= Ws ·
N−1∑
i=0

Ki∏i
n=0 Sn

(3.3)

When adapting the architecture of the model to generate dense output, the stride of each layer is
set to 1, which increases the number of computations in the network. The increase in computations
when converting the model to a dense model is described by equation 3.4.

Cdense

C
=

∑N−1
i=0 Ki∑N−1

i=0
Ki∏i

n=0 Sn

(3.4)

Applying equation 3.4 to the FAST-NN model from chapter 1 yields the following.

Cdense

C
=

3 + 2 + 3 + 2 + 3 + 2

3 + 2
2 + 3

2 + 2
22 + 3

22 + 2
23

=
15

7

As stated previously, the number of redundant computations performed when the efficient method
is not used depends on the number of grid points used for detection. A dense grid implies more
overlap between windows and will favour the dense output implementation. For the number of
computations to be reduced by the dense implementation, equation 3.5 needs to hold.

Ws ·
Cdense

C
< Ww ·G (3.5)

When performing detection over a genomic sequence of 10k SNPs, using a window width of 128 (the
width used for classification in chapter 2) and using the FAST-NN model, the minimum number
of gridpoints for the dense method to be more efficient is computed as follows.

G >
Ws · Cdense

C

Ww
=

10000 · 15
7

128
= 167

21

When the naive sliding window algorithm is applied for dense detection without reusing overlapping
data, the model needs to process Ww · (Ws −Ww) SNPs. When using the efficient sliding window,
each SNP position only needs to be processed once, which is a total of Ws positions. By assuming
that, for genomic data, Ws >> Ww, the efficient approach reduces the computational complexity
by the following.

Ws

Ww · (Ws −Ww)
≃ Ws

Ww ·Ws
=

1

Ww
(3.6)

Note that the computational overhead of the efficient sliding window is constant with respect to
window width, therefore, using this method, a wide input window will not impact the compu-
tational complexity of the convolutional and pooling layers. To continue the example given the
FAST-NN model, again considering a window width of 128, the net reduction in computations
using the efficient fine-grained sliding window can be computed by combining equations 3.4 and
3.6.

Cdense

C
· 1

Ww
=

15

7
· 1

128
= 0.0167

Using a window width of 128 with the FAST-NN model, the computational overhead of the con-
volutional and pooling layers is reduced by 98.3%.

3.2.2 Model selection

By virtue of the sliding window method described in section 3.2.1, when performing detection with
overlapping windows, increasing the input width does not increase the computational complexity
of the convolutional layers. To this end, it is important to consider how a model can be designed
that is able to benefit from wide inputs. In a CNN, the receptive field of a convolutional layer
describes the spatial range of input values used to compute a single output value. A convolutional
layer can only learn patterns that are detectable within the range of the receptive field. If the
receptive field of all layers within a CNN is narrow, this may limit the model’s ability to detect the
wide patterns in any of the selective sweep signatures. This can impose a bottleneck for effective
selective sweep classification. The receptive field of a convolutional layer in a CNN is described by
equation 3.7 [9].

r0 =

N∑
n=0

(
(Kn − 1)

n−1∑
i=0

Si

)
+ 1 (3.7)

Where r0 is the receptive field size at the final convolutional layer of the CNN, N is the number
of convolutional and pooling layers in the model architecture, Kn is the kernel at layer n and
Si is the stride at layer i. Applying this equation to compute the width of the receptive field
for the SweepNet model [68], the ImaGene model [56] and the model by Nguembang Fadja et al.
[43], it is found that the respective receptive fields of the final layers with respect to the input
are 7, 29 and 232. Depending on the density of the SNPs, in terms of basepairs, the receptive
fields of the former two models may not cover a large part of the region affected by the selective
sweep, limiting the model’s ability to learn and detect global patterns in the data. This is also
the case for the FAST-NN model which has a receptive field of 15. Moreover, FAST-NN and
SweepNet take the average over the spatial dimensions at the output of the convolutional layers,
removing spatial information after the convolutional layers. The ImaGene model and the model by
Nguembang Fadja et al. process the output of the convolutional layers through a fully connected
layer, enabling the models to learn spatial patterns in the outputs of the final convolutional layer.
An advantage of averaging the output of the convolutional layers over the spatial dimensions is
that the architecture of the model is independent of the input shape. The model can be used on
inputs of any width, which is convenient when classifying genomic segments of varying widths.
This flexibility is unnecessary when applying the classification models for detection since the input
width is sampled from a wider genomic sequence, which allows sampling at a fixed width. Thus, in
order to prevent the potential limitations that global average pooling and a narrow receptive field
may induce in the FAST-NN model, the receptive field of the model is increased, by increasing
the kernel sizes of the convolutional layers to 3, and by appending three additional convolutional
layers to the model, each with a kernel size of 6 and a stride of 2. The global average pooling
layer is omitted, and the output of the convolutional layers is directly passed to a fully connected
layer. To limit the number of parameters introduced by the additional convolutional layers and
the larger fully connected layer, the number of channels in each convolutional layer is reduced to
32. In order for this model to accept narrow input widths down to 32 SNPs, the appended CNN
layers apply zero-padding to the input of the layers. The receptive field of this new model is 309.
In order for this model to learn the global patterns of the selective sweep, it is necessary to use a

22

Frequency

0 1 1 0 0 0 1 0
0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 1 1 0 0

0 1 1 2 2 4 7 9

SNP data

0.4 1

Distance

SNP positions

10.4

10.4 10.610.2

1 1

1

1D convolution

Max pool + ReLU

1 1

6 convolutional + pooling layers

0.32 0.30

Fully connected

0.28 0.190.65 0.220.30

Data preparation FASTER-NN Post-processing

Average

0 kbp 100 kbp

CNN outputs

Equidistant grid on genome0 bp 100 kbp

Figure 3.3: Overview of the detection framework. In the data preparation stage, the derived
allele frequency and the SNP distances are computed. In the second stage, FASTER-NN is used
to perform classification, producing an array of classification scores corresponding to the SNP
positions. In the final stage, the dense output scores are subsampled using an equidistant grid
over the genome, and an averaging sliding window is applied to this grid to determine a final
classification score at a particular position.

wide window as input, that covers a significant genomic region. To evaluate the effectiveness of
classifying a wider input region, the detection performance is tested for various window widths.
The new model, due to its increased complexity, is more prone to overfitting on the training data.
To reduce the effects of overfitting, the models are trained with a larger training dataset, evaluating
the implications that this has on the classification and detection performance of the trained model.

3.2.3 Post-processing

When applying a sliding window with overlap to detect a selective sweep along a genome, multiple
windows likely contain SNPs lying within the region affected by the selective sweep. As such, it
can be expected that multiple neighbouring windows classify positively due to the selective sweep.
By combining the neighboring positively classified windows, it is possible to perform selective
sweep detection with increased robustness. When this method is applied, false positive detections
with erroneous positive scores, which do not have neighbouring positive classifications, will be
filtered out. Combining the classifications is done by means of an averaging sliding window over
classification outputs. The optimal width of the averaging sliding window depends on how many
consecutive classifications contain SNPs that are affected by the selective sweep. This, in turn,
depends on the width of the selective sweep (in basepairs), the input width to the classifier in
SNPs, and the density of the SNPs in terms of basepairs. Because the SNP density is affected by
confounding effects, the width of the averaging sliding window is kept constant in terms of basepairs,
not in terms of SNPs. this implies that the range of SNPs covered by the averaging window depends
on the local SNP density. The averaging sliding window width for optimal detection performance is
empirically determined. Potentially this width can be derived analytically by identifying the effect
of population parameters and confounding factors, such as recombination hotspots, on selective
sweep width.

Figure 3.3 illustrates the framework used for efficient selective sweep detection. The three-
stage approach uses a model with dilated convolutions to perform fine-grained detection. In data
preparation, the derived allele frequency and SNP distances are computed, requiring only these two
vectors to be passed to the model, decreasing the amount of data to be transferred and processed.
After obtaining the dense inference output from the model, outputs from the dense model are
sampled based on a grid on the genome that is equidistant in terms of basepairs. This implies
that the distance between each point on the grid is equal in terms of basepairs, not in terms of the
number of SNPs between them. An averaging sliding window is applied over the grid, generating
an output at each grid position. The final output is used to determine the presence of a selective
sweep within the scanned genomic region.

23

3.2.4 Detection performance metrics

There is no strict definition on how to define the precision of a selective sweep detection algorithm
since the width of the selective sweep is unknown. Previously, the success rate has been used as a
metric to evaluate detection precision in this context. This metric takes the greatest classification
score within a genomic sequence as the location where the sweep is detected. It then evaluates
how many detected selective sweeps lie within a fixed radius from the center of the selective sweep
[1][69]. One problem with this approach is that the result of this metric is highly sensitive to the
radius that is used to consider the detection a success. Since the width of the sweep is unknown,
defining a success radius that certainly corresponds to evaluating the precision of a model is not
possible. In the same works that apply the success rate, the average distance of detections to
the center of the selective sweep is used as a metric. This metric is not sensitive to a particular
threshold, however, the metric can be misleading since an erroneous detection that is located at
an outer edge of the genome has a significant negative effect on the total distance score. For this
reason, it is more insightful to compare the precision of different models by means of a density
plot. This plot uses the positions with the highest score for each detection, to calculate the density
of detections over the simulation length. The density indicates the number of highest scores per
basepair at a particular position. The density plot demonstrates how frequently selective sweeps
are detected far from the center of the sweep, and at what distance these erroneous detections are
made. Furthermore this plot gives insight into the width of the genomic region where the selective
sweep is frequently detected.

Detection performance is evaluated by scoring each simulation according to the maximum
classification output, after post-processing, along the simulated genome. The simulations are then
categorized as selective or as neutral, depending on their score. If the score is above a given
threshold, the simulation is considered to feature a selective sweep. The number of false positives
and false negatives, when applying this method, is highly sensitive to the selected threshold, and
the accuracy is likewise sensitive to this parameter. For this reason, the accuracy of a model, using
only one specific threshold, is not a good indication of the performance of a model. The optimal
threshold to evaluate the performance of the detection model will depend on the requirements of
the application. For this reason, the receiver operating characteristic (ROC) curve is used instead.
This curve evaluates the performance of the model in terms of true positive rate (TPR) and false
positive rate (FPR), at each possible threshold. From this curve, another metric, named the area
under curve (AUC), can be computed. The AUC integrates the ROC curve, providing a single
statistic indicative of the model’s ability to discriminate neutral and selective simulations, without
specifying a particular threshold.

3.3 Evaluation

3.3.1 Experimental setup

Neutral SNP data, SNP data containing a selective sweep, and data containing several different
confounding factors is generated using the simulation software ms [26], mssel (kindly provided by R.
R. Hudson), mbs [55] and msHOT [25]. The same simulation parameters used to generate the data
for chapter 2 are used. The genomes are 100 kbp in length, and for the selective simulations, the
location of the selective sweep is at 50 kbp. For training, three different datasets per evolutionary
scenario are generated, datasets consisting of 1k, 10k, and 50k neutral and selective simulations.
When training, a split of 15% of the training data is used for validation. The datasets for testing
consist of 1k neutral and 1k selective simulations. Each simulation features 128 samples. Using
these simulations, SNP matrices with a width of 32, 64, 128, 256, and 512 are extracted. For
training, the SNP matrix windows are centered around the location of the selective sweep.

Pytorch [45] is used to construct and train the neural network models. Each model is trained
for 50 epochs at a learning rate of 0.5 ·10−3, this learning rate is empirically determined and shows
reliable training of each model. The models are trained using mini-batches of batch size 8 and the
Adam optimizer is used [34]. After each epoch, the validation loss is computed. The model state
after the epoch resulting in the lowest validation loss is saved and used for inference. To evaluate
the model classification and detection performance, the ROC curve and the AUC are used. The
detection precision is evaluated by plotting the density of detected selective sweeps.

24

3.3.2 Detection performance

Since most other methods do not separately evaluate detection performance, but rather focus only
on classification metrics, the model with the best classification performance is used as a baseline.
In chapter 2 figure 2.8 shows that FAST-NN yields the best classification accuracy and has the
lowest execution time compared to other CNN-based selective sweep classification methods, hence
the FAST-NN model, and the FAST-NN model with additional CNN layers, dubbed FASTER-NN
(a reverse abbreviation of Neural Network for Robust and Efficient Tracing of Selection using Allele
Frequencies) are trained on the 6 datasets as outlined in table 2.2. Both models are trained on
each dataset using the 1K, 10K, and 50K neutral and selective training samples. Table 3.1 shows
the AUC scores for classification, for an input size of 128 DAFs of 128 samples. Figure 3.2 shows
the AUC scores for detection using the same input size.

Table 3.1: Classification AUC for both models, trained using 1k, 10k and 50k training samples
from each class

Model D1 D2 D3 D4 D5 D6
1k FAST-NN 1.0 0.960 1.0 0.984 0.904 1.0

FASTER-NN 1.0 0.971 1.0 0.989 0.858 1.0
10k FAST-NN 1.0 0.966 1.0 0.991 1.0 1.0

FASTER-NN 1.0 0.976 1.0 0.991 1.0 1.0
50k FAST-NN 1.0 0.968 1.0 0.993 1.0 1.0

FASTER-NN 1.0 0.978 1.0 0.992 1.0 1.0

Table 3.2: Detection AUC for both models, trained using 1k, 10k and 50k training samples from
each class

Model D1 D2 D3 D4 D5 D6
1k FAST-NN 1.0 0.872 1.0 0.966 0.979 1.0

FASTER-NN 1.0 0.878 1.0 0.968 0.927 1.0
10k FAST-NN 1.0 0.887 1.0 0.980 1.0 1.0

FASTER-NN 1.0 0.899 1.0 0.975 1.0 1.0
50k FAST-NN 1.0 0.894 1.0 0.982 1.0 1.0

FASTER-NN 1.0 0.907 1.0 0.978 1.0 1.0

From table 3.1 and 3.2 it can be concluded that training using a greater number of train-
ing samples always leads to better or equivalent performance compared to using fewer samples.
The performance on dataset D2 and dataset D4 is further evaluated in more detail, since the
classification and detection performance metrics on the other datasets are optimal in the current
configuration, and thus require no further optimization. The effect of varying the input width on
the performance of FAST-NN and FASTER-NN is investigated. Given the wide receptive field of
FASTER-NN, this model is expected to benefit more from processing wider samples.

Figure 3.4 illustrates the effect of the number of DAFs per input (equivalent to the input width)
on the classification performance and AUC of both models, on datasets D2 and D4. Figure 3.4
shows that the accuracy for dataset D2 using FASTER-NN is nearly unchanged when altering the
input width. For the original FAST-NN model, the accuracy drops rapidly given a wider input.
On dataset D4, the accuracy for both models increases as the input width increases. By only
evaluating the accuracy, it would appear that using wider input does not improve the performance
of either model on dataset D2. This is misleading since the AUC of FASTER-NN does increase as
the input width increases. Conclusively, the classification performance of FASTER-NN improves
on all datasets given a wider input. The classification performance of FAST-NN drops on dataset
D2, but improves on dataset D4.

Figure 3.5 shows the detection performance metrics for FAST-NN and FASTER-NN on various
input widths. The performance follows the same trend as observed when evaluating the classifica-
tion metrics. For dataset D2, the performance of the FAST-NN model drops, and the performance
of FASTER-NN improves. This result is reflected in the classification AUC for dataset D2 but
does not show in the classification accuracy for dataset D2. For dataset D4, performance scales
positively to input width for both models. Contrary to what is observed for classification, the
FAST-NN model outperforms the FASTER-NN model on dataset D4, both in terms of detection
AUC and TPR. A possible explanation for the attenuated detection performance of the FASTER-
NN model on dataset D4 is that this can be attributed to the fact that all models have been trained
with data where the center of the selective sweep is at the center of the window. In the case of
FAST-NN, this does not limit the robustness for detection, since FAST-NN implements global
average pooling over the spatial dimensions. Due to this, in combination with the narrow receptive

25

32 64 128 256 512
Window width

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Population bottleneck (D2)

32 64 128 256 512
Window width

0.94

0.95

0.96

0.97

0.98

AU
C

Population bottleneck (D2)

32 64 128 256 512
Window width

0.94

0.95

0.96

0.97

0.98

AU
C

Population bottleneck (D2)

Samples
1k
10k
50k
Model
FAST-NN
FASTER-NN

32 64 128 256 512
Window width

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Old migration (D4)

32 64 128 256 512
Window width

0.95

0.96

0.97

0.98

0.99
AU

C

Old migration (D4)

32 64 128 256 512
Window width

0.94

0.95

0.96

0.97

0.98

AU
C

Population bottleneck (D2)

Samples
1k
10k
50k
Model
FAST-NN
FASTER-NN

Figure 3.4: Accuracy and area under ROC curve (AUC) for classification of dataset 2 and 4 using
FAST-NN and FASTER-NN, trained using 1k, 10k and 50k training samples in each class.

field before the average pooling layer, FAST-NN cannot distinguish between a selective sweep in
the center or at the edge of the input. This is not the case for FASTER-NN, since this model
does not use global average pooling, but passes the output of the convolutional layers directly to a
fully connected layer. FASTER-NN can identify that all training data contains the selective sweep
located around the exact center of the input data, and is trained to only classify these samples
positively. This limits the number of inputs where the model detects the selective sweep, reducing
robust detection performance. To confirm this, both models for dataset D4 have been retrained
on 50k samples, but instead of centering the samples around the center of the selective sweep, the
input is randomly translated by an offset between -7500 and 7500 bp. Figure 3.6 shows the ROC
curve for detection of both models trained with and without random translations.

In figure 3.6, the FAST-NN model exhibits slight improvements when using randomly shifted
training data, plausibly due to the increased data variation introduced by the random translations.
The FASTER-NN model, however, improves significantly. As a result, the performance of both
models when using random translations is nearly on par, with FASTER-NN slightly outperform-
ing the FAST-NN model at an FPR below 0.04. This demonstrates that FASTER-NN is prone to
learning the position of the selective sweep on the input data, attenuating the detection perfor-
mance. Using random translations on the training data mitigates this problem. This method can
also be applied to the other datasets, potentially improving the detection performance on these
datasets as well.

3.3.3 Detection precision

For detection, the model performance is not measured only by evaluating the AUC and TPR. An
ideal detection model is also able to specify the location of the selective sweep with fine-grained

26

32 64 128 256 512
Window width

0.20

0.25

0.30

0.35

0.40

0.45

0.50
TP

R

Population bottleneck (D2)

32 64 128 256 512
Window width

0.86

0.88

0.90

AU
C

Population bottleneck (D2)

32 64 128 256 512
Window width

0.94

0.95

0.96

0.97

0.98

AU
C

Population bottleneck (D2)

Samples
1k
10k
50k
Model
FAST-NN
FASTER-NN

32 64 128 256 512
Window width

0.80

0.85

0.90

0.95

TP
R

Old migration (D4)

32 64 128 256 512
Window width

0.94

0.96

0.98
AU

C

Old migration (D4)

32 64 128 256 512
Window width

0.94

0.95

0.96

0.97

0.98

AU
C

Population bottleneck (D2)

Samples
1k
10k
50k
Model
FAST-NN
FASTER-NN

Figure 3.5: TPR at 0.05 FPR and area under ROC curve (AUC) for detection on datasets D2
and D4 using FAST-NN and FASTER-NN, trained using 1k, 10k and 50k training samples in each
class.

0.00 0.05 0.10 0.15
False Positive Rate

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Old migration (D4)

Training
Normal
Shifted
Model
FAST-NN
FASTER-NN

Figure 3.6: ROC curve for FAST-NN and FASTER-NN trained on dataset D4 with, and without,
randomly shifting training data.

precision. For each dataset containing a selective sweep density plots are generated, indicating the
density of positions where the output score of the model is greatest. High precision is indicated by
a narrow peak density at the position of the selective sweep (50 kbp), low precision will result in a
uniform density along the genomic positions. The precision is evaluated using the models trained
with 50k neutral and selective samples since these models score the greatest detection AUC and
TPR.

27

0.45 0.50 0.55
0

10

20

30

40

De
ns

ity

(a) Mild bottleneck (D1)

0.0 0.5 1.0
0

2

4

6

8

De
ns

ity

(b) Severe bottleneck (D2)0 1
0

2

4

6

8

De
ns

ity

Width
32
128
512
Model
FAST-NN
FASTER-NN

0.40 0.45 0.50 0.55 0.60
0

5

10

15

20

De
ns

ity

(c) Recent migration (D3)

0.4 0.6
0

2

4

6

8

De
ns

ity

(d) Old migration (D4)0 1
0

2

4

6

8

De
ns

ity

Width
32
128
512
Model
FAST-NN
FASTER-NN

Figure 3.7: Density plots of detections for datasets D1 through D4 using FAST-NN and FASTER-
NN for various window widths.

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

De
ns

ity

FAST-NN
FASTER-NN
FAST-NN (Shifted)
FASTER-NN (Shifted)

Figure 3.8: Density plot for of detections on dataset D4 (Old migration) with shifted training data.

Figure 3.7a through 3.7d show the density plots for the FAST-NN model and the FASTER-
NN model, for dataset D1 through D4. For FAST-NN, on datasets D1 through D4, the precision
generally drops as the input width increases. This is expected, considering that FAST-NN takes
the average over the spatial dimensions, which, as previously discussed, leads to it being unable
to distinguish the location of the selective sweep within the input. In this case, when using wider
input data, samples further from the selective sweep will be classified positively, decreasing the
precision. Similar results are observed when evaluating FASTER-N, for datasets D1, D3, and D4,

28

this model also has a lower precision when using wider inputs. For datasets D3 and D4 this effect
is less significant compared to FAST-NN. When applying the random translation over the training
samples, to ensure a high TPR, the precision of FASTER-NN drops to a score similar to that of
FAST-NN, shown in figure 3.8. In contrast to the other results, the precision of FASTER-NN for
dataset D2 increases when using wider windows. The results of datasets D1 through D4 show
that for these datasets the precision of FASTER-NN is equal to or better than the precision of
FAST-NN. Since randomly translated training samples increase the detection TPR, but decrease
precision, it is possible to use a model trained with randomly shifted samples to determine whether
a genomic sequence contains a selective sweep, and to consecutively use a model trained without
shifted samples to pinpoint the location of the selective sweep.

0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

De
ns

ity

(a) Low intensity recombination hotspot
(Dataset D5)

0.2 0.4 0.6 0.8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

De
ns

ity

(b) High intensity recombination hotspot
(Dataset D6)

0 1
0

2

4

6

8

De
ns

ity

Width
32
128
512
Model
FAST-NN
FASTER-NN

Figure 3.9: Density plots of detections on datasets D5 and D6.

The precision on datasets D5 and D6 for different input widths differs from what is observed for
other datasets. For dataset D6, the density of detections does not indicate high precision for both
models when using an input of 32 and 128 DAFs. When the input width increases to 512 DAFs
the precision of both models becomes very high. A similar pattern is observed for dataset D5,
but only when using FASTER-NN. For dataset D5, FASTER-NN has an extremely fine-grained
precision when using an input width of 128 DAFs. The precision for an input of width 32 is slightly
lower and for an input of width 512 is much lower, albeit still relatively precise compared to other
datasets. The precision of FAST-NN remains much lower for all input widths. Datasets D5 and
D6 contain simulations of a selective sweep within a recombination hotpot. The recombination
hotspot of dataset D6 has a higher intensity than the recombination hotspot of dataset D5. To
explain observed behaviour in detection precision, it can be hypothesized that there is an optimal
input width, in terms of basepairs, for classifying a selective sweep. This optimal width depends
on the simulation parameters, and would ideally capture all SNPs affected by the sweep, and no
SNPs that lie outside the affected range. When detecting a selective sweep within a recombination
hotspot, the SNP density is not only affected by the sweep but also by recombination. A higher
recombination intensity will result in a higher SNP density, and when there is a higher SNP density,
to capture the same width in terms of basepairs, a larger number of SNPs needs to be sampled.
This can explain why dataset D6 (high intensity recombination) requires a wider input than dataset
D5 (low intensity recombination) to achieve high precision.

3.3.4 Detection efficiency

When performing detection, an efficient sliding window approach is used to maximize data reuse
between windows. A dense model is implemented to ensure that all positions along the genome
are scored when using this sliding window. This model uses dilated convolutions and pooling
layers instead of layers with a stride greater than 1. Using a dense model increases the number of
computations for a single input, but can increase efficiency when computing overlapping windows
since no data needs to be reprocessed. Whether using a dense model decreases execution time
depends on the intended number of grid points. A dense model is efficient for fine-grained detection
but, compared to the regular model, may be less efficient when applied for coarse-grained detection.
The difference in execution time between the regular and dense models is evaluated. The execution
time of the dense model is independent of the number of gridpoints, since it always yields an

29

output for each possible grid position, the execution time of the regular model will increase when
performing inference over a greater number of gridpoints.

0 25 50 75 100
Gridpoints

0

50

100

150
Ti

m
e

[s
]

(a) FAST-NN

0 25 50 75 100
Gridpoints

0

20

40

60

80

Ti
m

e
[s

]
(b) FASTER-NN

0 25 50 75 100
Gridpoints

0

50

100

150

Ti
m

e
[s

]

D1
D2
D3
D4
D5
D6
Sparse
Dense

Figure 3.10: Inference time of dense models and sparse models for different numbers of gridpoints,
using a window width of 512.

Figure 3.10b shows that after a certain number of gridpoints, the dense implementation becomes
more efficient than the sparse implementation. The number of grid points depends on the width of
the sampling window and the dataset since each dataset has a different average number of SNPs
per simulation.

3.3.5 Human genome scan

To demonstrate the ability of FASTER-NN to perform fast whole-genome scans, the model is used
to scan the 22 human autosomes (from the 1000 Genomes project [18]) for purifying (negative)
selection. The FASTER-NN model is trained using simulated data that represents the human
genome. This data is generated using stdpopsim [37], which is a Python library that uses the
simulation engine SLiM [24] to simulate realistic populations. The first training dataset that is
generated is specified only on human chromosome 1, consisting of 10k neutral and 10k selective
simulations for training, and 100 simulations of each class for testing. Because stdpopsim generates
VCF files, the data needs to be converted to the file format that the dataloader of FASTER-NN
expects. Preprocessing this data required 679 seconds of execution time. Training FASTER-NN on
this dataset for 10 epochs took 397 seconds on a CPU, and resulted in a model performing at 98%
test accuracy on the simulated testing data. The model is used to scan the human chromosome
1 using a window width of 128, generating 946,100 separate scores for the 946,228 SNPs in 5.74
seconds. The post-processing of the output values slightly deviates from the process illustrated in
figure 3.3: to obtain the scores at the equidistant grid points, instead of sub-sampling outputs, all
scores nearest to a grid point, in basepair distance, are averaged. This way all scores are used to
reduce the effect of potential outliers. The resulting basepair-equidistant grid is processed using
an averaging sliding window of width 7, as illustrated in figure 3.3. The post-processed output
of the scan is shown in figure 3.11a. A second FASTER-NN model is trained on 500 neutral and
500 selective simulations, from each of the 22 human autosomes, resulting in a training set of 22k
simulations. This model should be better specified to scan all 22 autosomes, not just a single
chromosome. The model is tested on 50 neutral and 50 selective simulations from each autosome,
achieving a test accuracy of 99.4%. To evaluate the misspecification of the model trained only
on chromosome 1, this model is tested on the same test set, achieving an accuracy of 99.3%.
This suggests that the misspecification of the model trained on a single chromosome is negligible.
Converting the 12,157,787 SNPs from the VCF files into a format accepted by FASTER-NN took
2.3 hours on a CPU. Using FASTER-NN to scan the data took 66 seconds. The model trained on
all autosomes is used to scan human chromosome 1 and to scan all 22 human autosomes. It only
takes 66 seconds to scan all 22 autosomes (12,157,787 SNPs). Figure 3.11b shows the output of
the model trained on all autosomes when scanning only chromosome 1. The scores in figure 3.11a
and 3.11b are similar, suggesting that training on all autosomes did not have a major effect on the
model. Figure 3.11c shows a Manhattan plot of all 22 human autosomes.

30

a.

b.

c.

Figure 3.11: Scan of the human autosomes for purifying selection using FASTER-NN. a-b. Prob-
ability of purifying selection at each position along chromosome 1 using a FASTER-NN model
that is trained using 10,000 neutral simulations and 10,000 simulations of purifying selection (a.)
and using a FASTER-NN model trained on a dataset comprised of 500 neutral and 500 selective
simulations from each of the 22 autosomes (b.). c. Manhattan plot of the 22 human autosomes
scanned using the FASTER-NN model trained on data from all autosomes. An uncertainty of 10−6

is added to each score to bound the negative log probability of scores that are exactly 1.0, which
occurs due to limited numerical precision.

31

3.4 Conclusion and discussion

This chapter introduced FASTER-NN, a CNN model designed specifically to enable efficient and
effective selective sweep detection. FASTER-NN is based on the FAST-NN model, introduced in
chapter 2, and uses the same principle of classification using allele frequencies and pairwise SNP
distances. FASTER-NN is designed with detection using overlapping windows in mind, which,
by reusing data between windows, enables the use of very wide input windows without signif-
icantly impacting execution time. FASTER-NN is designed with a wider receptive field than
FAST-NN to enable learning wider patterns in data. By thoroughly evaluating the classification
and detection performance of FASTER-NN and FAST-NN, it is shown that FASTER-NN mostly
exhibits superior detection performance, especially when using wide input windows. Averaging
detection outputs through a basepair-equidistant grid further improves the detection performance
of FASTER-NN. By randomly shifting input data during training, FASTER-NN can avoid the
effect of over-specification on selective sweeps in the center of an input window. It is observed that
evaluating the models using detection performance metrics is more effective than solely assessing
classification performance since better classification performance is not always reflected by bet-
ter detection performance. By evaluating detection precision, it is found that window width can
significantly impact detection precision, especially when detecting selective sweeps within recom-
bination hotspots. FASTER-NN employs dilated convolutions to use an efficient sliding window
algorithm, which enables fast whole-genome scans with wide input widths. A dense scan of 22
human autosomes can be performed in just over a minute.

In this chapter, the parameters for the framework used by FASTER-NN for reducing the effect
of outliers, by averaging a basepair-equidistant grid, are determined empirically. Experimentally
it is demonstrated that using wide input windows has a positive effect on detection performance.
What remains to be uncovered is a rigorous approach to determine an effective input window width
and averaging window size. Considering that the confounding factor and simulation parameters
have a significant impact on the detection behaviour of the model, a two-step approach may be
desirable. In this approach, the confounding effects and parameters of the simulation are first
identified, and subsequently, these results are used to optimize the detection parameters. Consid-
ering the flexibility of CNN models, a two-step method may not be required. To improve detection
performance, one could train a model to classify multiple effects in a simulation simultaneously,
allowing the model to combine the information of different genomic effects. Chapter 4 explores the
ability of a CNN to classify multiple effects, in particular for recombination hotspots, considering
these have a profound effect on detection precision.

32

Recombination hotspot classification

4.1 Introduction

Genomes from various species possess localized regions of high recombination, also called recombi-
nation hotspots [47]. The increased recombination rates in these regions reduce linkage disequilib-
rium (LD) [10]. Classical likelihood-based methods have been developed to detect recombination
hotspots based on LD [60], as well as CNN-based methods [13]. Although CNN-based methods
are able to improve upon likelihood-based methods, achieving high classification accuracies, they
require processing raw SNP data, which hinders scalability to large sample sizes.

In chapters 2 and 3 it is demonstrated that using derived allele frequencies (DAF), in combina-
tion with SNP distances, is effective for classifying and detecting selective sweeps. Using the DAF
mitigates the scalability issues that CNNs processing raw SNP data face. DAF are informative
of selective sweeps, since the metric preserves information regarding the site-frequency-spectrum
and the polymorphism density. However, LD is not preserved when computing the DAF, since
the linkage of SNPs can only be measured by analyzing individual samples, thus DAF DAF-based
methods are expected to be less effective at classifying recombination hotspots.

CNN-based methods that have been proposed are focused on classifying a specific region-of-
interest using SNP data, such as selective sweeps [20][56][43][68] [69] and recombination hotspots
[13]. While the method of [13] is presented as a general framework for analyzing SNP data, it
is evaluated as a method of classifying raw SNP data to identify recombination hotspots. In
chapter 3 it is shown that the presence of a recombination hotspot can have a remarkable effect
on the detection precision of a CNN-based classification model, affecting the window-width ideal
for precise detection. In a two-step method, a recombination hotspot detection method could be
applied to inform a selective sweep detection method, allowing it to adjust the window width. A
two-step approach, however, seems redundant, since both the classification of selective sweeps and
recombination hotspots can be done using CNN models.

Instead of a two-step approach, this chapter demonstrates that a CNN-based model can be
trained to classify both selective sweeps and recombination hotspots simultaneously. Instead of us-
ing raw SNP data to preserve LD, enabling recombination hotspot classification, a hybrid approach
between a DAF-based and a raw SNP-based classification method is presented. By computing the
DAFs of multiple subsampled groups within the data, LD information is partially preserved, en-
abling hotspot classification while reducing the number of rows that need to be processed. This
chapter makes the following contributions:

• It is demonstrated that selective sweeps and recombination hotspots can be classified using
a single model, making a two-step approach obsolete.

• By using a hybrid approach between DAF-based classification and raw SNP-based classifica-
tion, scalability is improved, preserving the ability to classify recombination hotspots.

• The effect of reordering samples before subsampling DAF groups is explored, demonstrating
slight improvements in recombination hotspot classification, especially when using few DAF
groups.

The combined classification performance of the new model is tested on datasets featuring re-
combination hotspots with low and high recombination rates (D5 and D6 from table 2.2, respec-
tively). Using grouped DAFs substantially improves recombination hotspot classification compared
to FASTER-NN, even when reducing the number of rows from 128 to 8, significantly reducing com-
putational complexity, and improving the scalability of the method to large datasets.

33

4.2 Method

4.2.1 Grouped DAF model design

Linkage disequilibrium (LD) is a measure of correlation between mutations of different alleles. In a
purely neutral scenario, it is assumed that allele mutation rates are fully independent. LD occurs
when this independence is perturbed. Measuring the correlation between mutations of alleles
requires observing multiple samples. Derived allele frequencies (DAFs) do not retain information
regarding LD since all samples are combined. Recombination hotspots are identified by the measure
of LD, making DAF-based models unsuitable for recombination hotspot classification. However,
processing raw samples leads to scaling issues when processing whole genomes for a large number
of samples. To mitigate the scalability issue, whilst retaining most of the LD information, a hybrid
approach is proposed. By subsampling groups of samples from the raw SNP data, and computing
separate DAFs for each subsampled group, information regarding linkage between SNPs is partially
conserved. The information on LD is conserved in the difference between DAFs from different
subgroups.

Given that the combination of information regarding DAFs of different subgroups yields in-
sight into LD, and thus improves the ability to identify recombination hotspots, a CNN-based
model is designed that combines these subgroups at multiple stages in the network. Considering
the subsampling of rows to generate the subgroups is random, the subgroups should be processed
in a manner that is invariant to the order of the groups. As such, each subgroup is processed
identically by considering the subgroups as a batch dimension. Likewise, the operation to combine
the subgroups should be invariant to the order of the groups, which can be done by using pooling
operations. Figure 4.1 shows the Grouped Pooling Block that is designed to perform the combi-
nation of the subgroups. The block uses both average and max pooling to combine channels from
different DAF groups. The averaged and max pooled channels are concatenated to the channels
of each DAF group, adding additional channels to the output of the Grouped Pooling Block. To
limit the number of additional channels, a fixed group of P channels is selected for pooling. For
an input composed of C channels, this results in an output of C + (2 · P) channels. The Grouped

Av
er

ag
e

po
ol

in
g

(CxHG)

M
ax

po
ol

in
g

C
on

ca
te

na
teB

ro
ad

-
ca

st
B

ro
ad

-
ca

st

(CPxHG)Se
le

ct
 P

ch
an

ne
ls

(CPx1) (CPxHG)

(CPx1) (CPxHG)

Figure 4.1: Diagram of the Grouped Pooling Block. This block uses average pooling and max
pooling to combine information between groups, allowing for the model to learn patterns between
different (groups of) samples. C is the number of input channels, from which P channels are
selected for pooling. Dimensions between parentheses indicate the data shape between each node.

Pooling Block extends the FASTER-NN architecture, by placing one block after each convolutional
layer, except the final layer. After the final convolutional layer, before the fully connected layer,
the groups are combined using global average pooling over the group dimension. Setting P to 4
channels for pooling by the Grouped Pooling Block was empirically determined to give satisfac-
tory results while limiting the additional computational complexity, as it only adds 8 additional
channels. Batch normalization [27] is applied after each convolutional layer, as it is observed that
this significantly reduces training time.

4.2.2 Sample reordering

Various previous works have addressed the fact that reordering raw SNP data can lead to improved
performance for selective sweep classification [68][20] [56]. By reordering data, specific features of

34

selective sweeps can be made more pronounced. By reordering columns, information is added along
the vertical axis of the SNP matrix, which is otherwise uninformative. However, as discussed in
chapter 3, reordering data based on a full SNP matrix introduces a window-based preprocessing
step, that hinders data reuse for efficient fine-grained detection. Nevertheless, examining the effect
of reordering on the performance of a model can inform about the potential performance gain that
can be achieved through reordering.

When processing SNP data using subsampled DAF groups, the effectiveness of preserving
information regarding LD depends on the uniqueness of each group. If the distribution of samples
in each group is a perfect representation of the distribution of all samples, the DAF of each group
is identical. In this case, using DAF groups should be not more effective than using a single DAF
for the entire population. Maximizing the difference between the samples in each group maximizes
the difference in DAF between the groups, retaining more information on LD. To increase the
difference between DAF groups, the rows in the SNP matrix can be reordered based on a matrix
that determines the difference between each row. To implement this, the first row in a SNP
matrix is used as a reference, and the hamming distance from the first row to each other row
is computed. The rows are then sorted, placing the rows most similar to the reference row at
the top of the matrix, and the most distant rows at the bottom. When sampling the subgroups
to compute DAFs, the consecutive rows are grouped together, ensuring that rows with similar
hamming distances are combined.

4.2.3 Multi-label classification

Even though different genomic effects, such as selective sweeps and recombination hotspots, can
lead to similar patterns in SNP data, and can affect the ability of a CNN-based model to detect
specific effects, the detection of these genomic effects is currently done using separate models.
This is suboptimal because it requires performing inference over the same data multiple times to
identify multiple genomic effects. Moreover, since the patterns that these genomic effects impose
on the SNP data are related, creating a classifier that can generate both scores simultaneously
could perform better in differentiating between the two genomic effects. Multi-label classification
is used to enable the classification of multiple effects using a single model. To classify N genomic
effects, the model has 2 ·N outputs, which are reduced to N classification scores using the softmax
function on a (2, N) output matrix. To train the model, backpropagation is performed once for
each pair of outputs using the combined loss of both outputs. For combined selective sweep and
recombination hotspot classification, each model in this chapter has 2 pairs of outputs, one for
scoring the presence of a selective sweep, and one for scoring the presence of a recombination
hotspot.

4.3 Evaluation

4.3.1 Experimental setup

The datasets that are generated contain raw SNP data from 128 samples, with a width of 512
SNPs, resulting in SNP matrices of 128 × 512 SNPs. Each dataset features four classes: neutral
windows, windows featuring a recombination hotspot, windows featuring a selective sweep, and
windows containing a selective sweep within a recombination hotspot. Training datasets contain
50,000 windows from each class and testing datasets contain 1,000 windows from each class. Each
window has two labels to indicate the presence of a selective sweep and a recombination hotspot.
The selective sweep and recombination hotspots are located in the center of each region. From
the training dataset, 15% of the data is used for validation. One training and testing dataset
is generated with high intensity recombination hotspots, and one training and testing dataset is
generated with low intensity recombination hotspots.

Each CNN is implemented in Pytorch [45], and trained for 10 epochs at a learning rate of
0.5 · 10−3. For training a batch size of 8 and the Adam optimizer is used [34]. The rows of the
SNP matrices are randomly shuffled during training (unless reordering is applied). When training,
a model is saved after the epoch with the highest validation accuracy.

4.3.2 Combined classification performance

SweepNet (with SNP distances), FAST-NN, FASTER-NN, and six variations of Grouped Pooling
Blocks extended FASTER-NN are trained. Three variations of the extended FASTER-NN model

35

use 8, 32 and 128 groups without reordering, and three use the same number of groups but with
reordering. Henceforth, the models without and with reordering are referred to as FASTER-NN-G-
N and FASTER-NN-R-G-N, respectively, where N denotes the number of groups that the models
use. Each model is trained and tested once for each dataset. Table 4.1 shows the classification
accuracies of the models on both datasets, as well as the inference time of each model. When
determining the accuracy of the multi-label classification models, a prediction is only counted as
correct when both labels are correctly predicted. The accuracies clearly show the effect of using
grouped DAFs for combined selective sweep and recombination hotspot classification. Using a
larger number of groups increases the accuracy, at the cost of additional execution time. Using
reordering has a positive effect on the classification accuracy when using 8 groups, but has no
significant effect when using 32 or 128 groups.

Table 4.1: Classification accuracy of each model on datasets using low intensity and high intensity
recombination hotspots, and CPU inference time of each model.

Model
Accuracy low recombination rate Accuracy high recombination rate CPU Inference

time (seconds)No reordering Reordering No reordering Reordering
SweepNet 0.878 - 0.997 - 1065.7
FAST-NN 0.873 - 0.964 - 8.0
FASTER-NN 0.865 - 0.968 - 7.0
FASTER-NN-G-8 0.963 0.976 1.00 1.00 18.2
FASTER-NN-G-32 0.989 0.989 1.00 1.00 65.8
FASTER-NN-G-128 0.994 0.992 1.00 1.00 250.5

To further examine which genomic patterns the models fail to classify correctly, figure 4.2 plots
the confusion matrix for each model on the low recombination dataset. The high recombination
dataset confusion matrices are not shown since most classifiers have (near) perfect accuracy on
this dataset. From the confusion matrices, it becomes clear that the models are almost exclusively
confusing the neutral genomic regions and the genomic regions that contain only a recombination
hotspot. The models that have a higher classification accuracy feature an improved ability to
distinguish these regions. Interestingly, the presence of a selective sweep makes it easier for the
models to identify the presence of a recombination hotspot.

4.4 Discussion and conclusion

The flexible nature of CNN-based models makes it possible to combine classifying multiple genomic
effects through a single CNN, this makes it unnecessary to perform inference over the same data
using multiple models. It has been demonstrated that, through multi-label classification, a single
model can be used to effectively classify the presence of a selective sweep and a recombination
hotspot. The combined effect of a recombination hotspot and a selective sweep is not fully under-
stood from a theoretical point of view, however, in chapter 3 it is shown that the presence of a
recombination hotspot can affect the optimal window width for precise selective sweep detection.
By enabling a model to classify both a selective sweep and a recombination hotspot simultane-
ously, the presence of the recombination hotspot can potentially be taken into account by the
model, enabling precise detection that is robust to the presence of a recombination hotspot.

By processing grouped DAFs consisting of various numbers of samples it is shown that informa-
tion regarding LD can be partially retained while reducing the number of rows to be processed by
the CNN. The accuracy of the model is improved when using a larger number of groups, but this
also generates a greater amount of data to store and process, increasing execution time. Nonethe-
less, by reducing a SNP matrix from 128 raw samples to 32 DAFs the classification accuracy
decreases by only 0.5% whereas execution is 3.8x faster when performing CPU inference. The
grouped DAF method demonstrates a hybrid method between allele frequency-based classification
and raw SNP-based classification. This is a step towards scalable recombination hotspot classi-
fication using CNN-based models, and can potentially improve the robustness of selective sweep
detection using CNNs.

36

Ne
ut

ra
l

Se
l

HS
Se

l+
HS

836 0 164 0

0 1000 0 0

325 0 675 0

0 0 0 1000

SweepNet
758 0 242 0

0 1000 0 0

267 0 733 0

0 0 0 1000

FAST-NN
704 0 296 0

0 1000 0 0

246 0 754 0

0 0 0 1000

FASTER-NN

Ne
ut

ra
l

Se
l

HS
Se

l+
HS

910 0 90 0

0 1000 0 0

59 0 941 0

0 0 0 1000

FASTER-NN-G-8
980 0 20 0

0 1000 0 0

23 0 977 0

0 1 0 999

FASTER-NN-G-32
987 0 13 0

0 1000 0 0

10 0 990 0

0 0 0 1000

FASTER-NN-G-128

Neutral Sel HS Sel+HS

Ne
ut

ra
l

Se
l

HS
Se

l+
HS

940 0 60 0

0 1000 0 0

35 0 965 0

0 0 0 1000

FASTER-NN-R-G-8

Neutral Sel HS Sel+HS

971 0 29 0

0 1000 0 0

14 0 986 0

0 0 0 1000

FASTER-NN-R-G-32

Neutral Sel HS Sel+HS

990 0 10 0

0 1000 0 0

21 0 979 0

0 0 0 1000

FASTER-NN-R-G-128

Figure 4.2: Confusion matrices for each model, where FASTER-NN-R denotes the grouped
FASTER-NN model with reordering, and G-x denotes the grouped FASTER-NN model using
x groups.

37

Hardware acceleration

5.1 Introduction

Selective sweep detection algorithms using CNNs to process raw SNP data or derived allele frequen-
cies (DAF) outperform summary statistics-based selective sweep detection methods based on one
or multiple signatures of selective sweeps [69][68]. In chapter 2 it is demonstrated that FAST-NN
outperforms existing CNN-based detection algorithms, both in terms of accuracy and in terms of
execution time. In chapter 3, by transforming FAST-NN to use dilated convolutions and employ-
ing data reuse to prevent redundant computations, selective sweep detection is further accelerated.
This enables the use of these models for whole-genome scans at full precision within a reduced
amount of time. Despite these optimizations, scanning a large number of genomic datasets can
take a considerable amount of time. While selective sweep detection methods based on summary
statistics have been accelerated using reconfigurable hardware [5][6][15], conventional CNN-based
models designed for selective sweep detection have not been accelerated using FPGAs. By reduc-
ing the execution time of CNN-based models through hardware acceleration, the execution time
to perform fine-grained detection, which increases detection precision, is more feasible.

FPGA accelerated convolutional neural network (CNN) architectures fall into one of two cate-
gories. Architectures either use large matrix-multiplication accelerators that are used as a shared
resource by multiple layers within the network, or architectures pipeline all network layers, uti-
lizing dedicated processing elements for each layer. When implementing the former approach the
applications employ a systolic array to perform large matrix multiplications. The systolic array
dynamically loads weights during runtime from external memory, and as such, can perform the
computations required by different layers in the network architecture [67]. This type of implemen-
tation has the benefit of being flexible to almost any network architecture. However, it reduces
throughput, since weights have to be loaded in from external memory, and the parallel execution of
network layers is limited due to the systolic array being shared by multiple layers. A fully pipelined
implementation employs dedicated accelerators for each layer in the network, each accelerator can
be designed to specifically fit the requirements of a single layer in the network. This approach offers
higher throughput since all layers in the CNN can process data in parallel [57]. The downside of
this approach is that it lacks the flexibility of a general-purpose systolic array-based accelerator,
and due to the limited number of resources on an FPGA, only small networks can be implemented
in this manner.

Since floating-point operations require a considerable amount of resources on an FPGA com-
pared to fixed-point operations, a neural network is converted to a quantized neural network (QNN)
before it is implemented in an accelerator [65][22]. A quantized neural network stores weights and
activations of a network as fixed-point numbers instead of floating-point numbers. Likewise, the
arithmetic operations performed by the neural network are done on fixed-point numbers, decreas-
ing the computational load and FPGA resource utilization required to perform the computations.
Because of the discretization of the floating-point number in the process of quantization, there
is a loss of precision that affects the output of the neural network [36]. Since no FPGA-based
implementation of a CNN model for selective sweep classification exists, it is unclear what the
effect of precision loss due to quantization is on the classification accuracy of the neural network.

FPGAs as hardware accelerators can offer high application-specific parallelization, but are con-
strained by the number of available hardware resources, and generally possess limited I/O band-
width. FAST-NN performs selective sweep classification using DAFs and pairwise SNP distances,
which is a compact representation of SNP data, with a constant data size per SNP position. De-
signing a model that implements a compact data format is informed by the fact that such a model
is highly suitable to implement on an FPGA. Leveraging this compact data format, FAST-NN
requires relatively few resources to implement its 1D CNN on an FPGA. Moreover, the use of

38

DAFs instead of raw SNP data decreases the amount of data that needs to be transferred to the
FPGA, mitigating the I/O bandwidth as a potential bottleneck.

FAST-NN is implemented on an FPGA, achieving highly efficient selective sweep detection.
The FPGA implementation of the FAST-NN model features the following contributions:

• Due to the small size of the FAST-NN model, partly realized by using a compact data format
to represent SNP data, the amount of hardware resources required to realize the model on an
FPGA is reduced. Hence, the FAST-NN model can fit on an FPGA at an 8-bit quantization
precision. The 8-bit quantized version of the FAST-NN model is trained using QAT, which
reduces the accuracy of the model by 0% for five tested datasets and 2.4% for one tested
dataset.

• By using allele frequencies as a compact data format, a fine-grained detection algorithm that
reuses data can be designed using only 1D convolutions. Due to the small size of this model,
a fully pipelined hardware implementation of this model can be implemented on an FPGA,
at an initiation interval of one at a clock frequency of 90 MHz. The hardware implementation
leverages parallel processing of all layers in the CNN, and through a streaming architecture
without any dataloading constraints, can load one SNP position per clock cycle. Scanning
chromosome 1 of the human genome, hardware acceleration enables a theoretical speedup of
546x compared to a CPU implementation in Pytorch.

This work demonstrates that whole-genome scans using DAFs can be accelerated with FPGAs. The
nature of genomic data makes FPGAs particularly suitable for this purpose. Scanning a genome
requires convolutions over very wide input data (up to millions of SNPs), with a small amount
of data per column. This makes a streaming FPGA architecture suitable for this application
since it requires limited I/O but can benefit from high throughput and parallelism. The hardware
architecture proposed in this chapter is specific to the model architecture that is implemented.
In this chapter, it is only realized for the FAST-NN model architecture. The hardware design,
however, can be adapted to other CNN architectures. Implementing the FASTER-NN model in
this hardware architecture would require changing the number of layers, layer hyperparameters,
and buffer lengths in the hardware design, but the component design and streaming architecture
are identical.

5.2 Related work

In previous work, FPGA architectures have been designed that accelerate 2D CNNs in a pipelined
manner for low latency inference [63] [28]. Data reuse in streaming architectures for 2D CNNs can
be optimized by the use of line buffers [63]. Streaming dilated 2D convolutional neural networks
have been further improved through optimizations in buffer memory arrangement [19]. Other
works focus on accelerating 1D CNN models, both using a systolic array [61] and by streaming the
input data [39].

Because it requires processing large datasets, FPGAs have widely been deployed in the accel-
eration of bioinformatics applications. In the analysis of phylogenetics FPGAs have been used to
accelerate both the computation of the phylogenetic parsimony function [31][30][4] and the phy-
logenetics likelihood function [2][70][42]. Within the field of population genetics, multiple works
have used FPGAs for accelerated detection of epistasis [64][44], and for accelerated computation
of linkage disequilibrium (LD) [11].

The µ statistic, as used in the RAiSD selective sweep detection algorithm [1] combines the
three known selective sweep signatures as a single metric. Through a streaming-based algorithm,
an FPGA is implemented to accelerate the computation of the µ statistic [5]. Matching of SNP
patterns to a pool of previously processed patterns is used to reduce processing time. Through
Out-of-Core processing, memory requirements to run this detection algorithm are reduced. This
implementation is further optimized by employing an optimized hashing algorithm to accelerate
matching to known SNP patterns [6].

Since LD patterns as a standalone signature cannot predict the presence of a selective sweep,
OmegaPlus [3] computes the ω statistic, which relates the LD patterns to the probability of de-
tecting a selective sweep. Computing the ω statistic has been accelerated using an FPGA in a
pipelined manner using floating point operations [15]. By combining this implementation with
FPGA-based LD processing implementations, detecting selective sweeps using LD can be fully
executed on reconfigurable hardware.

Previous work has focused on using FPGAs to accelerate the detection of selective sweeps
using the classically known metrics that indicate selective sweeps. However, as mentioned in

39

chapter 2 and 3, convolutional neural network (CNN) based methods have demonstrated superior
performance when it comes to selective sweep classification. As of now, almost no research has
been done to accelerate a CNN-based model specifically for selective sweep detection on an FPGA
platform. One implementation of a selective sweep classification model through a spiking CNN
has been proposed [14]. Because the FAST-NN model from chapter 2 is relatively small, and only
uses 1D convolution, it can be deployed to an FPGA in a fully pipelined manner using a streaming
architecture.

5.3 Architecture

5.3.1 Quantization

During quantization, the weights and activations, with activations referring to the outputs of each
layer in the network, are transformed from floating-point values to fixed-point values. The goal
of quantization is to decrease the amount of data required to store the weights of a network and
to reduce the computational resources required to perform inference, allowing for a more compact
hardware design. Since quantization discretizes the weights and activations, it inevitably introduces
a quantization error. In order to minimize the quantization error, it is essential that the weights and
activations are scaled to an appropriate range. When performing n-bit quantization, the quantized
integer can store 2n values. Given that a group of weights or activations span the range [a, b],
the values must be scaled such that they range from −2n−1 to 2n−1 − 1 in the case of a signed
integer, and from 0 to 2n−1 in the case of an unsigned integer. In case the values represented by a
signed integer are not symmetric around 0, or in case the values represented by an unsigned integer
contain negative values, a bias can be added after scaling. This bias is called the zero point and
is the integer value that, when a previously quantized number is dequantized, equals 0. Following
these requirements, computing the fixed-point representation of a floating-point number is done
using equation 5.1.

xq = clip(round(x · s− z)) (5.1)

The clip function clips a value to the range of numbers the fixed-point integer can represent (e.g.
-128 to 127 for an 8-bit signed integer). Equation 5.2 denotes the scaling factor, and equations 5.3
and 5.4 denote zero point for quantization to signed and unsigned integers respectively.

s =
2n − 1

b− a
(5.2)

z = round(b · s) + 2n−1 (5.3)

z = round(b · s) (5.4)

The zero point z is rounded to ensure that a floating-point value of 0 is converted without any
quantization error, which is important since a neural network often has an abundance of zero-
valued activations. This quantization scheme is called affine quantization since it performs an
affine transformation on the floating-point numbers. The special case where the z equals 0 is
called symmetric quantization. Performing computations using symmetrically quantized values is
more efficient because the zero point does not need to be taken into account [65].

To apply quantization to a neural network, the quantization parameters, s and z, need to be
determined. The weights of the model are known before inference, so these can be quantized
without additional steps. The activations of layers, however, depend on the input data. Therefore
these quantization parameters cannot be based on the model itself, instead, these must be deter-
mined based on input data. Two common approaches exist to determine these values, dynamic
quantization and static quantization [22]. When applying dynamic quantization, the quantization
parameters s and z are dynamically adjusted to the data that is being passed through the network.
To accomplish this, z and s are determined on the fly for each batch that is passed through a net-
work layer. Dynamic quantization requires dynamically computing s and z for each batch, which,
in turn, requires floating-point arithmetic. For this reason, dynamic quantization is not suitable for
implementation on an FPGA. Static quantization on the other hand does not require floating-point
arithmetic during inference. It calibrates the quantization parameters by observing the ranges of
activations when running the model on training data and saves these parameters to use during
inference. Static quantization can be improved through Quantization Aware Training (QAT). Dur-
ing QAT, the model trains while emulating the effect of quantization, allowing the weights of the
model to become more robust to these effects. QAT typically reduces the performance degradation
caused by quantization [36].

40

Since QAT generally results in a quantized model with the lowest loss of accuracy, the FAST-NN
model is quantized using static quantization and trained using QAT. Weights in a neural network
tend to be symmetrically distributed around 0, therefore symmetric quantization to signed integers
is used to quantize the model weights. For the CNN layers that implement ReLU activations,
the outputs are guaranteed to be distributed above 0. Thus, the activations of these layers are
symmetrically quantized to unsigned integers. Finally, quantization and dequantization layers,
also referred to as stubs, are added to the input and output of the network, in order to convert
the floating-point inputs to quantized inputs, and the quantized outputs to floating-point outputs.
The top diagram in figure 5.1 depicts the resulting system as it is implemented in Pytorch.

5.3.2 Buffer design

As mentioned previously, in 2D streaming CNN implementations on FPGAs, line buffers have
been used in order to optimize data reuse [63]. These buffers are required to ensure that data
in adjacent rows is simultaneously available. Because FAST-NN uses 1D convolution, it does not
need to synchronize data access of input rows. To achieve an initiation interval of one clock cycle,
each layer in the design must produce one output per cycle, and the input to the system needs
to sustain one SNP position per cycle. One SNP position in the FAST-NN model comprises two
32-bit floating point values, the DAF and the SNP distance at that position. To enable each layer
to compute one output per cycle, the input buffer to each layer should fit the kernel width of the
corresponding layer. Since dilated convolutions are used, the kernel size can be computed using
equation 5.5.

K = K0 ·D − (D − 1) (5.5)

Where D is the dilation of the kernel, and K0 is the width of the kernel without dilation. Since the
convolutional operation needs to access multiple values stored in the buffer at once, the buffers are
implemented as multi-access shift registers of K depth, with a width of C quantized activations,
where C is the number of input channels to the network layer. This buffer design is inspired by the
approach of Liu et al. [39], which proposed a buffer design for a 1D CNN to process real-time non-
concurrently available data. The bottom diagram in figure 5.1 depicts the resulting architecture,
including the required buffer sizes. Through this design, one window of 128 SNP positions is
classified in each cycle, where each cycle the new window is the previous window shifted by one
SNP position.

5.3.3 Component design

Figure 5.2 shows the design of several of the functional components in the CNN. Since the fully
connected layer can be generalized as a convolutional layer, it is not separately depicted. As the
FAST-NN network only uses pooling layers with two inputs, the pooling component takes two
inputs from the input buffer and propagates the greatest of the two. The quantization stub scales
the input by the scaling factor, and since the input is exclusively positive, no zero point needs to be
added. A value of 0.5 is added before the conversion to ensure correct rounding when converting
to an integer. The dequantization stub first converts the outputs to floating-point values and then
multiplies the resulting values by a scaling factor to transform the values to the expected output
range.

The convolutional layers (and similarly the fully connected layers) comprise two main ele-
ments. Firstly, the convolutional operation is performed by multiplying the input values by the
corresponding weights and accumulating the result. To prevent overflowing during accumulation,
the accumulator has a width of 64 bits. Following the multiply-accumulation, the activations need
to be requantized according to the activation scaling factor of the corresponding layer. To per-
form requantization, the scaling by the weights and the activation of the previous layer need to be
undone, and the activation of the current layer needs to be applied. This can be done in a single
operation through a requantization factor that can be computed beforehand. This factor is defined
in equation 5.6.

sr =
sa

sw · si
(5.6)

Here, sa is the scaling factor of the activation of the current layer, sw is the scaling factor of the
weight used in the matrix multiplication, and si is the activation scaling factor of the previous
layer. sr is a floating-point value, so to ensure that the requantization component does not need
to do floating-point arithmetic, sr is quantized to a 16-bit unsigned integer. A scaling factor of 216

is chosen since sr is always less than 1, and the scaling can be undone simply by bit-shifting. The
bias is then scaled by the same factor and added to the rescaled activation. After this, the scaling

41

Q
ua

nt
iz

ed
C

on
v-

1D
 +

 R
eL

U

Q
ua

nt
iz

ed
FC

 (C
N

 x
 3

2)

+
R

eL
U

Av
er

ag
in

g
C

on
v-

1D

Q
ua

nt
iz

ed
FC

 (3
2

x
2)

(CNxWN) (32xWN) (32xWout)(Input shape: CixWi,c)

Input (2xW0)

Q
ua

nt
iz

at
io

n
st

ub

D
eq

ua
nt

iz
at

io
n

st
ub

Output (2xWout)

Input (2)

Quantized
Conv-1D

Quantized
Pool-1D

Quantize

Quantized
FC

Averaging
Conv-1D

Quantized
FC Dequantize

8-
bi

t *
 C

i *
 K

i,c

8-
bi

t *
 C

i *
 K

i,p

8-
bi

t *
 C

N

8-
bi

t *
 3

2
* K

ap

8-
bi

t *
 3

2

Output (2)

Repeat N times

Q
ua

nt
iz

ed
Po

ol
-1

D

(CixWi,p)

Repeat N times

ri,c ri,p rfc rap rfc

Figure 5.1: Functional block diagram of quantized CNN model in Pytorch (top) and block diagram
of quantized CNN model as implemented in C++ and Vitis HLS, depicting functional blocks and
memory buffers. The Python implementation processes a full input matrix at once, passing the
complete output of one functional element to the next. The C++ and HLS functions compute
the result of one matrix column per operation, pipelining the consecutive operations of the CNN.
Multiple values are loaded from the shift-register buffers at once, denoted by the variable rx. For
FAST-NN, ri,c and ri,p are always 2, rfc is 1, and rap depends on the DAF window width that the
model assumes. A low-level implementation description of the (de-)quantization, convolutional,
and pooling functions are shown in figure 5.2.

is undone by shifting 16 bits, and (if the activation quantization is not symmetric) the zero-point is
subtracted. This is only the case for the final fully-connected layer. The ReLU activation function
is implemented as a multiplexer which selects 0 if the activation is less than 0.

5.4 Implementation

Pytorch version 2.3 [45] is used to implement the quantized version of the dense FAST-NN model
and to perform QAT. The FAST-NN model is trained from scratch using QAT. 8-bit precision is
chosen for quantization, estimating that an 8-bit FAST-NN model will fit on the target device,
whilst retaining high precision to introduce little to no performance loss.

The quantized parameters are exported to C++-style arrays, such that they can be imported
by a C++ model. The CNN model is written from scratch in C++. To ensure that the HLS tool
is able to optimize the hardware synthesis based on the C++ code, the layers in the network are
called sequentially from the top-level function. Each layer is written such that the loops in the
function can be fully unrolled, meaning that only the innermost loop contains operations. Each
layer in the network only takes two parameters, which are the input stream and output stream
variables. These variables communicate the input and output between layers. The buffers of the
network layers are locally contained within each layer as a static variable.

To achieve an initiation interval of 1, the layers in the model use the HLS pipeline pragma,
with an II of 1, this automatically unrolls all the loops to achieve the desired initiation interval.
The top-level function uses the HLS dataflow pragma, enabling the top-level function to start
processing one input per clock cycle. Synthesis shows that the design can run at an initiation
interval of 1, with a total latency of 66 cycles. The quantization of the input introduces the most
latency out of all model layers, with a latency of 15 cycles.

The Vitis HLS design targets an Ultrascale+ XCU250 FPGA on an Alveo U250 board. The
design utilizes all four Super Logic Regions (SLRs). A total of 114,324 flip-flops are used and a
total of 470,563 LUTs are implemented. The design utilizes 12,281 DPSs, which is nearly all DSPs
available on the board. Table 5.1 gives a full overview of the resource utilization on the FPGA,
aggregating the resources used on each SLR. Most DSPs are required by the 80 by 80 channel
convolutional layers. Using convolutional layers with a reduced number of channels can drastically

42

W [0]W [0]

In [0]In [0]In [0]

In [0]In [0]In [dilation-1]

Matrix
Mul

W [0]

W [0]W [0]

Matrix
Mul

W [1]

Cin Convolutional
output (int64)

(uint8 [Cin])

(int8 [Cin])

Rescaling factor
(uint16)

bias
(int32)

1D convolution (per output channel)

Requantization + bias

0

1 0

>>

16

Zero-point
(int8)

In [0]

In [dilation-1]

1D pooling (per channel)

>

(uint8)

(uint8)

/

Scaling
factor 0.5

float to
uint8

Output
(uint8)

Input
(float)

uint8 to
float

Input
(uint8)

Scaling
factor

Dequantization (per input)

Quantization (per input)

Output
(float)

Output
(uint8)

Output
(uint8)

sel< 0

Figure 5.2: Dataflow diagram of 1D convolution, 1D pooling, quantization and dequantization as
implemented in C++ and Vitis HLS. The 1D convolution is split into two segments, the convolu-
tional operation itself and the requantization operation, where the bias is added. Requantization
is needed to adjust the scaling factor and zero-point of the result for the next CNN layer. For
layers with a zero-point of 0, the zero-point subtractor is omitted. For layers without a ReLU at
the output, the multiplexer is omitted.

43

Table 5.1: Aggregated resources utilization of FAST-NN accelerator using all four SLRs.

Resource Required Available Utilization
LUT 470563 1728000 27%
FF 114324 3456000 3.3%
DSP 12281 12288 99.9%
BRAM 0 5376 0%
URAM 0 1280 0%
CLB 89120 216000 41.3%

decrease the required number of DSPs. The large convolutional layers also limit the maximum
clock speed of the design. The large number of multiply-accumulates that need to be processed in
one cycle imposes a maximum fanout of 31, which takes 11.06 ns to complete. The design can run
at a clock frequency of 90 MHz, producing one output every 11.11 ns. Each output corresponds
to the classification on one window of 128 SNP positions.

5.5 Evaluation

5.5.1 Accuracy of quantized neural network

For each of the 6 datasets, further expanded on in table 2.2, a quantized version of FAST-NN
and a floating-point version of the network is trained for 10 epochs. The quantized models are
trained using QAT. The samples in the training and testing datasets have a width of 128 SNPs,
and the DAFs are computed using a population of 128 samples. The training set consists of 1000
neutral and 1000 selective training samples, where 15% of the samples are used for validation.
The network is saved after the epoch with the greatest validation accuracy. After training the
models, each model is tested on 1000 neutral and 1000 selective test samples. Table 5.2 compares
the accuracy of the quantized model to the accuracy of the floating-point model. For all datasets
except D4, the difference in accuracy is negligible. For dataset D4, the quantized model has a
slightly lower accuracy compared to the floating-point model.

Table 5.2: Accuracy of 8-bit quantized model and single-precision floating-point model for each
dataset at a window width of 128.

Accuracy
Dataset Quantized Normal
D1 1.0 1.0
D2 0.945 0.944
D3 0.999 0.999
D4 0.920 0.944
D5 1.0 1.0
D6 1.0 1.0

5.5.2 Estimated inference speed on FPGA

The implementation can run at a clock speed of 90 MHz, processing one SNP location per cycle,
and producing one output per cycle. To sustain this, the FAST-NN model requires an input of two
32-bit floating-point values per clock cycle. This equals an input data rate of 0.72 GB/s, which
is not a bottleneck considering the DDR4 memory of the Alveo U250 has a theoretical maximum
bandwidth of 77 GB/s [8].

Given the inference speed per SNP location of the accelerated FAST-NN implementation, the
required time to perform detection on a genomic dataset can be estimated. Scanning human
chromosome 1 requires processing 946,228 SNPs, and scanning all 22 human autosomes requires
processing 12,157,787 SNPs. This is estimated to take 10.5 and 135 milliseconds to process, respec-
tively, using the accelerated FAST-NN model. For reference, the FASTER-NN model is bench-
marked in chapter 3. This model has a lower execution time than the FAST-NN model on a CPU,
and takes 5.74 and 66 seconds to scan chromosome 1 and all 22 autosomes, respectively, on a CPU.

The classification speed of the FAST-NN model, as measured in chapter 2, is used as a reference
to compare to the classification inference speed of the accelerated FAST-NN model. To perform
classification using the accelerated FAST-NN model, the classification windows can be continuously

44

streamed to the accelerator by cascading the data of each input. To determine the classification
output at the center of each window, the stream of outputs from the accelerator needs to be
sub-sampled at a rate of 1 sample for every W outputs, where W is the width of the input window.

Table 5.3 shows the inference time of a CPU, GPU, and FPGA device running the FAST-NN
model to classify 1000 neutral and 1000 selective DAF vectors. A single Intel Xeon CPU core at
2.1GHz running Ubuntu 20.04 and an Nvidia A40 GPU were used for benchmarking. The CPU and
GPU implementations were realized using Pytorch version 2.3 [45], which supports a CPU backend
and a CUDA (GPU) backend. The CUDA backend uses CUDA version 11.8 and is designed using
the cuDNN (version 8.7) library, which is a CUDA library for accelerating deep neural networks.
The FPGA inference speed estimation is computed by integrating the time to process every input
window and adding the latency of 66 cycles. While the CPU inference time scales linearly with the
window width, the GPU execution time is more-or-less constant with respect to window width,
and has an outlier at a window width of 128, which runs significantly slower. The lack of linearity
in the GPU timing is likely due to the jitter caused by the GPU being used as a shared resource,
hindering the accurate timing of processes with a short execution time.

Table 5.3: Classification inference time of 2000 simulations using for input widths. *Execution
time of FPGA is estimated based on the simulated throughput.

Window
width

Execution time (ms)
CPU GPU FPGA*

32 823 863 0.7
64 935 862 1.4
128 1010 1320 2.8
256 1144 894 5.7
512 1576 901 11.4

The CPU and GPU implementations load the data in batches, requiring multiple memory
transfers, whilst the FPGA model assumes that all data is already loaded on the DDR4 memory
of the Alveo board, and can be accessed without any latency. Table 5.3 describes a best-case
scenario for the FPGA where the data can be loaded as a continuous data stream and data loading
does not pose a bottleneck. To evaluate the impact of a more realistic scenario for the FPGA, an
alternative data loading pipeline, where the data in the DDR4 memory is first buffered to on-chip
BRAM and subsequently processed by the accelerator, is explored. The bandwidth for loading data
from the DDR4 memory depends on the amount of data that can be loaded per transaction, which
is limited by the BRAM buffer size. The DDR4 bandwidth for various buffer sizes is extrapolated
from the work done by Lu et al. [40]. In this work, the bandwidth of a single DDR4 bank on
the Alveo U200, at a frequency of 100 MHz, is presented for various data sizes. This is close to
the bandwidth of a single bank on the Alveo U250 at a frequency of 90 MHz. The data loading
bandwidth of the DDR4 memory increases when loading the data in larger chunks, which requires
a larger BRAM buffer. Figure 5.3a shows the speedup of the FPGA implementation compared
to the CPU implementation for different BRAM buffer sizes and for datasets of various window
widths, where a larger window width increases the amount of memory that needs to be transferred
per window. The smallest BRAM buffer that is evaluated is 1kB, and the largest buffer is 256 kB,
which requires implementing 2 and 128 BRAM banks, respectively, out of the 500 available BRAM
banks per SLR.

The total execution time of the CPU is dominated by the data loading time. The execution
time for a dataset with a window width of 64 is 0.94 seconds, and the total execution time for a
window width of 512 is 1.58 seconds. As a result, figure 5.3a shows that the speedup for narrow
windows is very high, but it plateaus for wider windows. This is because for smaller windows the
computation time becomes negligible compared to the data loading time. The CPU needs to load
data from external memory, imposing a constant additional data loading time, which is not present
when evaluating the FPGA execution time. To evaluate the FPGA performance compared to a
best-case scenario for the CPU execution time, the window width-invariant component of the CPU
execution time is subtracted from the total execution time. To eliminate this component, a linear
regression model is fitted to the CPU timing data, illustrated in figure 5.3b. The intercept of the
linear regression model is subtracted from the CPU execution time, and the speedup of the FPGA
execution time is compared to the linear component of the CPU execution time, shown in figure
5.3c. The FPGA design can achieve a speedup of up to 60x when compared to this reduced CPU
execution time. Because the measured execution times on the GPU do not scale linearly with the
window width, the linear regression-based analysis is not performed for the GPU. Performing a

45

4 32 256
BRAM size (kB)

200

400

600

800

1000

Sp
ee

du
p

32

64

128
256
512

(a) Speedup of FPGA with re-
spect to total CPU execution
time, for various input window
widths (annotated).

32 128 256 512
Window width

800

1000

1200

1400

1600

Ex
ec

ut
io

n
tim

e
(m

s)

(b) Linear regression of CPU ex-
ecution time for various input
window widths.

4 32 256
BRAM size (kB)

45

50

55

60

Sp
ee

du
p

(c) Speedup of FPGA with re-
spect to linear component of
CPU execution time.

Figure 5.3: FPGA speedup with respect to CPU execution time, before and after adjusting the
CPU execution time by removing the CPU execution time offset through linear regression.

more thorough analysis where window widths exceeding 512 are tested could give more insight into
the scaling of the GPU implementation with respect to window width.

The bottleneck of the hardware design with regard to resources and timing is the 80-channel
to 80-channel 1D convolutional layers. These operations account for most of the required DSPs of
the design, and the multiply-accumulates in these convolutional layers pose a timing bottleneck.
By limiting the number of input and output channels for the convolutional layers, the number of
multiply-accumulates per convolutional layer is reduced. This may negatively affect the accuracy
of the model but reduces resource requirements and shortens the critical path, allowing a higher
clock frequency. In addition to this, using an initiation interval greater than 1 can reduce the
required number of resources. By reducing the resource requirements, smaller, more affordable
FPGA devices can fit the FAST-NN design. This presents a trade-off between model accuracy,
throughput, and resource requirements.

5.6 Conclusion and discussion

The state-of-the-art uses CNNs for selective sweep classification, but these models are compu-
tationally more expensive than summary statistics-based methods. Chromosomes often contain
millions of SNPs, and fine-grained detection using a CNN on realistic genetic datasets can be time-
consuming. In this chapter, the compact allele frequency data format, and the small network size
of FAST-NN, are leveraged to synthesize a fully-pipelined streaming architecture for a FAST-NN
accelerator. A hardware accelerator is designed, which, due to the streaming implementation of
the CNN-based detection method, lends itself well to a streaming architecture in hardware. Data
reuse is exploited allowing for fine-grained selective sweep detection with minimal additional pro-
cessing. Due to the compact data format of allele frequencies, a fully-pipelined CNN architecture
of FAST-NN fits on a single FPGA device, even when using a high-precision quantization scheme
of 8 bits. By using QAT, the classification performance is not severely affected by quantization
error, while inference speed is significantly reduced.

In future work, a co-design of the network architecture and the hardware architecture, where
the hyperparameters of the network are constrained by the resources and timing requirements of
the hardware design, can alleviate current timing bottlenecks and high DSP utilization. Moreover,
by investigating the effect of lower precision quantization on the accuracy of FAST-NN, resource
requirements may be reduced without significantly reducing classification performance.

46

Discussion and conclusion

Single nucleotide polymorphisms (SNPs) are processed to classify the presence of a selective sweep,
which is an indication of positive natural selection. Summary statistics-based methods have re-
cently been outperformed by deep learning-based approaches, in particular by convolutional neural
networks (CNNs). Many existing CNN models for selective sweep classification process raw or re-
ordered, but uncompressed, SNP data. Despite the high classification accuracy of CNN-based
methods, they are not widely adopted, in part due to the increase in execution time compared
to summary statistics-based classification. The computational complexity of CNNs scales linearly
with the height and width of the input data, and modern datasets in population genomics can
be composed of thousands of samples (height) and millions of SNPs (width). There is a demand
for efficiently processing SNP data using CNNs without compromising classification performance.
Summary statistics for selective sweeps classically identify three signatures in SNP data: a shift in
the site-frequency-spectrum (SFS) towards low and high allele frequencies, a local decrease in the
density of polymorphisms, and a pattern in linkage disequilibrium (LD) showing increased linkage
disequilibrium at either side of the beneficial mutation site and lower linkage disequilibrium across
the site of the beneficial mutation. Two of the signatures, namely the shift in (SFS) and decrease in
density of polymorphisms can be represented in a vector format that is size-invariant to the sample
size. Using allele frequencies and pairwise SNP distances as a compact data representation, a 1D
CNN architecture search is performed. By selecting the model with the highest classification accu-
racy, the FAST-NN architecture is chosen. This model outperforms the classification accuracies of
published 2D CNN models that use either raw SNP data or summary statistics. This demonstrates
that CNN-based classification for positive selection can be be made scalable, without compromis-
ing performance, by using a compact data format of derived allele frequencies and pairwise SNP
distances. FAST-NN is almost as accurate as a 2D CNN model that processes raw SNP data and
pairwise SNP distances but has a significantly lower execution time than any 2D CNN model. This
makes FAST-NN highly suitable as a practical tool for selective sweep classification, especially on
large datasets.

FAST-NN is designed for optimizing selective sweep classification accuracy. Most practical ap-
plications of selective sweep classification focus on localizing selective sweeps on genomic data. Se-
lective sweep detection methods usually use a grid-based approach for localizing selective sweeps. In
a grid-based approach, a window on the genome is evaluated at each gridpoint, separated by a fixed
basepair distance. A grid-based approach can be an effective way to perform a coarse-grained scan,
however, for fine-grained detection a grid-based detection approach introduces redundant computa-
tions due to overlapping windows between grid points. Leveraging the translational equivariance of
CNNs, intermediate computations on overlapping data between windows can be reused, eliminat-
ing redundant computations. However, data reuse is not possible when window-wide preprocessing
or data rearrangement is applied, since overlapping data is not identical between windows when
this is done. By using dilated convolutions any CNN-based classification model can be transformed
to efficiently perform fine-grained detection, fully reusing all intermediate computations between
windows. When data reuse is applied for fine-grained detection, the computational complexity of
detection becomes nearly constant with respect to the width of each classified window. Consid-
ering this, FASTER-NN is designed, which has a wider receptive field than FAST-NN. The dense
output of FASTER-NN is post-processed by averaging classifications on a basepair-equidistant grid
around each position. Post-processing filters out outliers and ensures a fixed evaluated width, in
terms of basepairs, per classification. The efficient detection framework in which FASTER-NN is
deployed allows fine-grained genome-wide scans for selective sweeps at a reduced execution time
compared to a grid-based approach. Moreover, FASTER-NN has a higher detection true positive
rate (TPR) and precision than FAST-NN. By investigating the impact of window width on the
detection and classification performance of FAST-NN and FASTER-NN, it is found that using wide

47

windows of up to 512 SNPs results in better classification and detection performance, especially
for FASTER-NN. By using wide input windows with a model that has a large receptive field, post-
processing using a basepair-equidistant grid, and by leveraging data reuse for dilated convolutions,
the efficiency and effectiveness for the detection of selective sweeps is optimized. It is found that
the input window width has a profound effect on the detection precision of selective sweeps in the
presence of a recombination hotspot, where a specific window width enables very precise detection
and another window width causes the precision to drop drastically.

When training the FAST-NN and FASTER-NN models, for each confounding factor one model
is trained to mitigate the adverse effect that the confounding factor has on classification and
detection performance. In realistic datasets, for example when scanning real genomes, one can
expect various confounding factors to be present throughout the data. To effectively scan such
a dataset, it is desirable to have one model that is trained to robustly detect selection in the
presence of a variety of confounding factors. In future work, one can train a model that is robust
to many confounding factors, and perform an architecture search to identify if this requires a more
complex architecture. Regardless of whether a model is trained to be robust against one, or many,
confounding factors, training a model requires simulated data that behaves similarly to the real
data under neutral and selective conditions. The effectiveness of the model is highly dependent
on the quality of the simulated data. If the model is misspecified, because the simulation tool is
imperfect, or because the simulation parameters are incorrect, this can affect the ability of the
model to perform as expected on real data. Training a model that can classify selective sweeps,
independent of the simulation parameters, could improve robustness to the misspecification of
training data, and make a model more versatile. In future work, the sensitivity of FAST-NN and
FASTER-NN to simulation parameters can be explored, and the training data can be extended to
decrease sensitivity to simulation parameters.

Population effects and genomic effects can confound the signature effects of selective sweeps.
The presence of a confounding factor can thus influence the likelihood of a false positive. Moreover,
the presence of a confounding factor can affect the optimal window width for selective sweep
detection, by affecting the polymorphic density, as is demonstrated when analyzing the precision
of selective sweep detection in the presence of recombination hotspots. It is therefore valuable
to consider the presence of confounding factors when attempting to detect selective sweeps. Due
to the versatility of CNNs, if the model has sufficient complexity it can classify multiple genomic
effects simultaniously, performing inference once. To investigate this, FASTER-NN is extended,
outputting two classification scores, one scoring the presence of a selective sweep and one scoring
the presence of a recombination hotspot. The allele frequency-based FASTER-NN model is not
able to perform well on classifying recombination hotspots, due to the fact that recombination
hotspots are mostly detectable through their signature in LD. Compressing the raw SNP data into
allele frequencies removes linkage information between SNPs. To partially conserve LD, samples
are subdivided into equally sized groups, and from each group, the DAF is computed. Each DAF
group is separately processed, and through a Grouped Pooling Block, the intermediate results of
each DAF group are combined, allowing the model to identify LD patterns. By dividing the data
into a larger number of groups, more information regarding LD is conserved, but the processing
time increases. Using grouped DAF, it is demonstrated that selective sweeps and recombination
hotspots can be classified accurately and simultaneously. In addition, insight is given into the
importance of LD for classifying recombination hotspots, and a heuristic hotspot classification
approach is designed, that can reduce inference time compared to processing raw SNP data. From
the results it is not clear whether classifying the confounding factor improves the ability to classify
a selective sweep, since, in the case of the recombination hotspot, the simulations with a selective
sweep are correctly classified by each model. Potentially, multi-label classification can be extended
to classifying various confounding factors simultaneously, in addition to selective sweeps. Chapter
4 has focused on the combined classification of two genomic effects, the analysis of multi-label
classification on detection performance is left for future work. Additionally, in chapter 3, it is
shown that, in the presence of a recombination hotspot, the post-processing window width has
a profound effect on the detection precision of FASTER-NN. In future work, the presence of
confounding factors can be used to optimize the post-processing algorithm for selective sweep
detection.

FPGAs can be implemented to accelerate specific algorithms by leveraging high parallelism in
custom hardware architectures. Accelerating CNNs using FPGAs is challenging due to the large
number of parameters that need to be stored on stored on-chip, and large number of multiplica-
tions and additions performed in its matrix multiplications. Fortunately, using the compact allele
frequency data representation, the FAST-NN model only required 1D convolutions, reducing the
number of parameters and the size of the matrix multiplications compared to 2D convolutions. The

48

dense detection algorithm can be implemented as a streaming architecture on an FPGA, fitting
an 8-bit quantized FAST-NN model. The accelerated FAST-NN model can generate one inference
per clock cycle. The accuracy of the quantized FAST-NN model is equal to the floating points
model for all datasets except one. Using the accelerated FAST-NN model, whole-genome scans
can be executed faster than when using conventional hardware, such as a CPU or GPU, with
limited impact on the classification accuracy. The current hardware implementation of FAST-NN
is specific to the exact architecture of FAST-NN, and changing the model architecture requires
adjusting the hardware architecture. In future work, coarse-grained reconfigurable architectures,
such as those available on the Versal adaptive SoC, can be explored, allowing for a more flexible
hardware implementation.

Conclusively, to use CNNs for scalable analysis of SNP data, it is quintessential to understand
the underlying information in the data that can serve as evidence for a selective sweep. For selective
sweeps, the SNP data can be reduced to allele frequencies and pairwise SNP distances, preserving
most information required to perform selective sweep classification. This compression only has a
minor impact on the separability of neutral data and selective data. Through this compact data
format, selective sweeps can be classified in a scalable manner without sacrificing robustness. By
viewing selective sweep localization as a detection problem rather than a classification problem,
and by leveraging data reuse between overlapping classification windows, a detection method is
designed that allows for effective and efficient fine-grained detection. This method is accelerated
further through hardware acceleration on reconfigurable hardware. FASTER-NN and FAST-NN
can analyse genomic data to identify regions affected by positive natural selection with higher
accuracy and lower execution time than existing published methods. Verifying the effectiveness of
these models is challenging, since simulated data is used for training and testing, and no labeled
data sampled from real populations is available. The application of the proposed models for real
case studies will be required to demonstrate the effectiveness of these models on real data.

49

Bibliography

[1] N. Alachiotis and P. Pavlidis. RAiSD detects positive selection based on multiple signatures
of a selective sweep and SNP vectors. Commun Biol, 1:79, 2018.

[2] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis. Exploring fpgas for accelerating
the phylogenetic likelihood function. In 2009 IEEE International Symposium on Parallel
Distributed Processing, pages 1–8, 2009. doi: 10.1109/IPDPS.2009.5160929.

[3] N. Alachiotis, A. Stamatakis, and P. Pavlidis. OmegaPlus: a scalable tool for rapid de-
tection of selective sweeps in whole-genome datasets. Bioinformatics, 28(17):2274–2275, 07
2012. ISSN 1367-4803. doi: 10.1093/bioinformatics/bts419. URL https://doi.org/10.

1093/bioinformatics/bts419.

[4] Nikolaos Alachiotis and Alexandros Stamatakis. Fpga acceleration of the phylogenetic par-
simony kernel? In 2011 21st International Conference on Field Programmable Logic and
Applications, pages 417–422, 2011. doi: 10.1109/FPL.2011.83.

[5] Nikolaos Alachiotis, Charalampos Vatsolakis, Grigorios Chrysos, and Dionisios Pnev-
matikatos. Accelerated inference of positive selection on whole genomes. In 2018 28th Inter-
national Conference on Field Programmable Logic and Applications (FPL), pages 202–2027,
2018. doi: 10.1109/FPL.2018.00041.

[6] Nikolaos Alachiotis, Charalampos Vatsolakis, Grigorios Chrysos, and Dionisios Pnev-
matikatos. Raisd-x: A fast and accurate fpga system for the detection of positive selection
in thousands of genomes. ACM Trans. Reconfigurable Technol. Syst., 13(1), dec 2019. ISSN
1936-7406. doi: 10.1145/3364225. URL https://doi.org/10.1145/3364225.

[7] M. T. Alam, D. K. de Souza, S. Vinayak, S. M. Griffing, A. C. Poe, N. O. Duah, A. Ghansah,
K. Asamoa, L. Slutsker, M. D. Wilson, J. W. Barnwell, V. Udhayakumar, and K. A. Koram.
Selective sweeps and genetic lineages of Plasmodium falciparum drug -resistant alleles in
Ghana. J Infect Dis, 203(2):220–227, Jan 2011.

[8] Alveo U200 and U250 Data Center Accelerator Cards Data Sheet (DS962). AMD, 06 2023.

[9] Andreacute; Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolutional
neural networks. Distill, 4(11), November 2019. ISSN 2476-0757. doi: 10.23915/distill.00021.
URL http://dx.doi.org/10.23915/distill.00021.

[10] N. Arnheim, P. Calabrese, and M. Nordborg. Hot and cold spots of recombination in the
human genome: the reason we should find them and how this can be achieved. Am J Hum
Genet, 73(1):5–16, Jul 2003.

[11] Dimitrios Bozikas, Nikolaos Alachiotis, Pavlos Pavlidis, Evripides Sotiriades, and Apostolos
Dollas. Deploying fpgas to future-proof genome-wide analyses based on linkage disequilibrium.
In 2017 27th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–8, 2017. doi: 10.23919/FPL.2017.8056814.

[12] J. M. Braverman, R. R. Hudson, N. L. Kaplan, C. H. Langley, and W. Stephan. The hitchhik-
ing effect on the site frequency spectrum of DNA polymorphisms. Genetics, 140(2):783–796,
Jun 1995.

[13] J. Chan, V. Perrone, J. P. Spence, P. A. Jenkins, S. Mathieson, and Y. S. Song. A Likelihood-
Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks.
Adv Neural Inf Process Syst, 31:8594–8605, Dec 2018.

50

https://doi.org/10.1093/bioinformatics/bts419
https://doi.org/10.1093/bioinformatics/bts419
https://doi.org/10.1145/3364225
http://dx.doi.org/10.23915/distill.00021

[14] Federico Corradi, Zhanbo Shen, Hanqing Zhao, and Nikolaos Alachiotis. Accelerated spiking
convolutional neural networks for scalable population genomics. In Proceedings of the 14th
International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies,
HEART ’24, page 53–62, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN 9798400717277. doi: 10.1145/3665283.3665285. URL https://doi.org/10.1145/

3665283.3665285.

[15] Reinout Corts, Niek Sterenborg, and Nikolaos Alachiotis. Accelerated ld-based selective sweep
detection using gpus and fpgas. In 2022 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 196–205, 2022. doi: 10.1109/IPDPSW55747.
2022.00044.

[16] Natasja G. de Groot and Ronald E. Bontrop. The hiv-1 pandemic: does the selective sweep in
chimpanzees mirror humankind’s future? Retrovirology, 10(1):53, May 2013. ISSN 1742-4690.
doi: 10.1186/1742-4690-10-53. URL https://doi.org/10.1186/1742-4690-10-53.

[17] Michael DeGiorgio, Christian D. Huber, Melissa J. Hubisz, Ines Hellmann, and Rasmus
Nielsen. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics,
32(12):1895–1897, 02 2016. ISSN 1367-4803. doi: 10.1093/bioinformatics/btw051. URL
https://doi.org/10.1093/bioinformatics/btw051.

[18] A. Auton et al. A global reference for human genetic variation. Nature, 526(7571):68–74,
Oct 2015. ISSN 1476-4687. doi: 10.1038/nature15393. URL https://doi.org/10.1038/

nature15393.

[19] Dionysios Filippas, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. Streaming di-
lated convolution engine. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
31(3):401–405, 2023. doi: 10.1109/TVLSI.2022.3233882.

[20] Lex Flagel, Yaniv Brandvain, and Daniel R Schrider. The Unreasonable Effectiveness of
Convolutional Neural Networks in Population Genetic Inference. Molecular Biology and
Evolution, 36(2):220–238, 12 2018. ISSN 0737-4038. doi: 10.1093/molbev/msy224. URL
https://doi.org/10.1093/molbev/msy224.

[21] Yun-Xun Fu and Wen-Hsiung Li. Coalescing into the 21st century: An overview and prospects
of coalescent theory. Theoretical Population Biology, 56(1):1–10, 1999.

[22] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt
Keutzer. A survey of quantization methods for efficient neural network inference, 2021.

[23] T. Ryan Gregory. Understanding natural selection: Essential concepts and common miscon-
ceptions. Evolution: Education and Outreach, 2(2):156–175, Jun 2009. ISSN 1936-6434. doi:
10.1007/s12052-009-0128-1. URL https://doi.org/10.1007/s12052-009-0128-1.

[24] Benjamin C Haller and Philipp W Messer. SLiM 3: forward genetic simulations beyond the
Wright–Fisher model. Molecular biology and evolution, 36(3):632–637, 2019.

[25] Garrett Hellenthal and Matthew Stephens. msHOT: modifying Hudson’s ms simulator to in-
corporate crossover and gene conversion hotspots. Bioinformatics, 23(4):520–521, 12 2006.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btl622. URL https://doi.org/10.1093/

bioinformatics/btl622.

[26] Richard R. Hudson. Generating samples under a Wright–Fisher neutral model of genetic vari-
ation . Bioinformatics, 18(2):337–338, 02 2002. ISSN 1367-4803. doi: 10.1093/bioinformatics/
18.2.337. URL https://doi.org/10.1093/bioinformatics/18.2.337.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https://

proceedings.mlr.press/v37/ioffe15.html.

[28] Mengfei Ji, Zaid Al-Ars, Peter Hofstee, Yuchun Chang, and Baolin Zhang. Fpqnet: Fully
pipelined and quantized cnn for ultra-low latency image classification on fpgas using opencapi.
Electronics, 12(19), 2023. ISSN 2079-9292. doi: 10.3390/electronics12194085. URL https:

//www.mdpi.com/2079-9292/12/19/4085.

51

https://doi.org/10.1145/3665283.3665285
https://doi.org/10.1145/3665283.3665285
https://doi.org/10.1186/1742-4690-10-53
https://doi.org/10.1093/bioinformatics/btw051
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1007/s12052-009-0128-1
https://doi.org/10.1093/bioinformatics/btl622
https://doi.org/10.1093/bioinformatics/btl622
https://doi.org/10.1093/bioinformatics/18.2.337
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://www.mdpi.com/2079-9292/12/19/4085
https://www.mdpi.com/2079-9292/12/19/4085

[29] Lin Kang, Guijuan He, Amanda K. Sharp, Xiaofeng Wang, Anne M. Brown, Pawel Micha-
lak, and James Weger-Lucarelli. A selective sweep in the spike gene has driven sars-cov-2
human adaptation. Cell, 184(17):4392–4400.e4, 2021. ISSN 0092-8674. doi: https://doi.org/
10.1016/j.cell.2021.07.007. URL https://www.sciencedirect.com/science/article/pii/

S0092867421008333.

[30] Server Kasap and Khaled Benkrid. A high performance fpga-based core for phylogenetic
analysis with maximum parsimony method. In 2009 International Conference on Field-
Programmable Technology, pages 271–277, 2009. doi: 10.1109/FPT.2009.5377652.

[31] Server Kasap and Khaled Benkrid. High performance phylogenetic analysis with maximum
parsimony on reconfigurable hardware. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 19(5):796–808, 2011. doi: 10.1109/TVLSI.2009.2039588.

[32] Andrew D Kern and Daniel R Schrider. diploS/HIC: an updated approach to classifying
selective sweeps. G3: Genes, Genomes, Genetics, 8(6):1959–1970, 2018.

[33] Y. Kim and R. Nielsen. Linkage disequilibrium as a signature of selective sweeps. Genetics,
167(3):1513–1524, Jul 2004.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[35] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J.
Inman. 1d convolutional neural networks and applications: A survey. Mechanical Sys-
tems and Signal Processing, 151:107398, 2021. ISSN 0888-3270. doi: https://doi.org/10.
1016/j.ymssp.2020.107398. URL https://www.sciencedirect.com/science/article/pii/

S0888327020307846.

[36] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference:
A whitepaper, 2018.

[37] M. Elise Lauterbur, Mariz Izabel A. Cavassim, Ariella L. Gladstein, Graham Gower, et al.
Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations.
bioRxiv, 2022. doi: 10.1101/2022.10.29.514266. URL https://www.biorxiv.org/content/

early/2022/10/31/2022.10.29.514266.

[38] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[39] Xinyu Liu, Gaole Sai, and Shengyu Duan. Hardware acceleration for 1d-cnn based real-time
edge computing. In Shaoshan Liu and Xiaohui Wei, editors, Network and Parallel Computing,
pages 192–204, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-21395-3.

[40] Alec Lu, Zhenman Fang, and Lesley Shannon. Demystifying the soft and hardened memory
systems of modern fpgas for software programmers through microbenchmarking. ACM Trans.
Reconfigurable Technol. Syst., 15(4), jun 2022. ISSN 1936-7406. doi: 10.1145/3517131. URL
https://doi.org/10.1145/3517131.

[41] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective re-
ceptive field in deep convolutional neural networks, 2017.

[42] Pavlos Malakonakis, Andreas Brokalakis, Nikolaos Alachiotis, Evripides Sotiriades, and Apos-
tolos Dollas. Exploring modern fpga platforms for faster phylogeny reconstruction with raxml.
In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE),
pages 97–104, 2020. doi: 10.1109/BIBE50027.2020.00024.

[43] Arnaud Nguembang Fadja, Fabrizio Riguzzi, Giorgio Bertorelle, and Emiliano Trucchi. Iden-
tification of natural selection in genomic data with deep convolutional neural network. Bio-
Data Mining, 14(1):51, Dec 2021. ISSN 1756-0381. doi: 10.1186/s13040-021-00280-9. URL
https://doi.org/10.1186/s13040-021-00280-9.

[44] J. nguez, L. Wienbrandt, J. C. ssens, D. Ellinghaus, M. Schimmler, and B. Schmidt. Paral-
lelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems.
IEEE/ACM Trans Comput Biol Bioinform, 12(5):982–994, 2015.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, et al. Pytorch: An imperative style,
high-performance deep learning library, 2019.

52

https://www.sciencedirect.com/science/article/pii/S0092867421008333
https://www.sciencedirect.com/science/article/pii/S0092867421008333
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.biorxiv.org/content/early/2022/10/31/2022.10.29.514266
https://www.biorxiv.org/content/early/2022/10/31/2022.10.29.514266
https://doi.org/10.1145/3517131
https://doi.org/10.1186/s13040-021-00280-9

[46] P. Pavlidis, D. ivkovic, A. Stamatakis, and N. Alachiotis. SweeD: likelihood-based detection
of selective sweeps in thousands of genomes. Mol Biol Evol, 30(9):2224–2234, Sep 2013.

[47] Thomas D. Petes. Meiotic recombination hot spots and cold spots. Nature Reviews Genetics,
2(5):360–369, May 2001. ISSN 1471-0064. doi: 10.1038/35072078. URL https://doi.org/

10.1038/35072078.

[48] B. Pfeifer, U. Wittelsburger, S. E. Ramos-Onsins, and M. J. Lercher. PopGenome: an efficient
Swiss army knife for population genomic analyses in R. Mol Biol Evol, 31(7):1929–1936, 2014.

[49] Sebastian E. Ramos-Onsins and Julio Rozas. Statistical Properties of New Neutrality Tests
Against Population Growth. Molecular Biology and Evolution, 19(12):2092–2100, 2002.

[50] S. Schaffner and P. Sabeti. Evolutionary Adaptation and Positive Se-
lection in Humans. https://www.nature.com/scitable/topicpage/

evolutionary-adaptation-in-the-human-lineage-12397/, 2008.

[51] Stephan C. Schuster. Next-generation sequencing transforms today’s biology. Nature Methods,
5(1):16–18, Jan 2008. ISSN 1548-7105. doi: 10.1038/nmeth1156. URL https://doi.org/

10.1038/nmeth1156.

[52] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional networks,
2014.

[53] J. M. Smith and J. Haigh. The hitch-hiking effect of a favourable gene. Genet Res, 23(1):
23–35, Feb 1974.

[54] F Tajima. Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics, 123(3):585–595, 1989.

[55] Kosuke M. Teshima and Hideki Innan. mbs: modifying hudson’s ms software to generate
samples of dna sequences with a biallelic site under selection. BMC Bioinformatics, 10(1):
166, May 2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-166. URL https://doi.org/

10.1186/1471-2105-10-166.

[56] Luis Torada, Lucrezia Lorenzon, Alice Beddis, Ulas Isildak, Linda Pattini, Sara Mathieson,
and Matteo Fumagalli. Imagene: a convolutional neural network to quantify natural selection
from genomic data. BMC Bioinformatics, 20(9):337, Nov 2019. ISSN 1471-2105. doi: 10.
1186/s12859-019-2927-x. URL https://doi.org/10.1186/s12859-019-2927-x.

[57] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’17, page 65–74, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450343541. doi: 10.1145/3020078.3021744. URL
https://doi.org/10.1145/3020078.3021744.

[58] Sjoerd van den Belt, Hanqing Zhao, and Nikolaos Alachiotis. Scalable CNN-based classification
of selective sweeps using derived allele frequencies. Bioinformatics, 2024. doi: 10.1093/
bioinformatics/btae385. In press.

[59] P. M. Visscher, M. A. Brown, M. I. McCarthy, and J. Yang. Five years of GWAS discovery.
Am J Hum Genet, 90(1):7–24, Jan 2012.

[60] J. D. Wall and L. S. Stevison. Detecting Recombination Hotspots from Patterns of Linkage
Disequilibrium. G3 (Bethesda), 6(8):2265–2271, Aug 2016.

[61] Lai Wei, Dongsheng Liu, Jiahao Lu, Lingsong Zhu, and Xuan Cheng. A low-cost hard-
ware architecture of convolutional neural network for ecg classification. In 2021 9th In-
ternational Symposium on Next Generation Electronics (ISNE), pages 1–4, 2021. doi:
10.1109/ISNE48910.2021.9493657.

[62] Hannah Weigand and Florian Leese. Detecting signatures of positive selection in non-model
species using genomic data. Zoological Journal of the Linnean Society, 184(2):528–583, 04
2018. ISSN 0024-4082. doi: 10.1093/zoolinnean/zly007. URL https://doi.org/10.1093/

zoolinnean/zly007.

53

https://doi.org/10.1038/35072078
https://doi.org/10.1038/35072078
https://www.nature.com/scitable/topicpage/evolutionary-adaptation-in-the-human-lineage-12397/
https://www.nature.com/scitable/topicpage/evolutionary-adaptation-in-the-human-lineage-12397/
https://doi.org/10.1038/nmeth1156
https://doi.org/10.1038/nmeth1156
https://doi.org/10.1186/1471-2105-10-166
https://doi.org/10.1186/1471-2105-10-166
https://doi.org/10.1186/s12859-019-2927-x
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1093/zoolinnean/zly007
https://doi.org/10.1093/zoolinnean/zly007

[63] Paul N. Whatmough, Chuteng Zhou, Patrick Hansen, Shreyas Kolala Venkataramanaiah, Jae
sun Seo, and Matthew Mattina. Fixynn: Efficient hardware for mobile computer vision via
transfer learning, 2019.

[64] Lars Wienbrandt, Jan Christian Kässens, Jorge González-Domı́nguez, Bertil Schmidt, David
Ellinghaus, and Manfred Schimmler. Fpga-based acceleration of detecting statistical epis-
tasis in gwas. Procedia Computer Science, 29:220–230, 2014. ISSN 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2014.05.020. URL https://www.sciencedirect.com/science/

article/pii/S1877050914001975. 2014 International Conference on Computational Science.

[65] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer
quantization for deep learning inference: Principles and empirical evaluation, 2020.

[66] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions, 2016.

[67] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’15, page 161–170, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450333153. doi: 10.1145/2684746.2689060. URL https://doi-org.ezproxy2.utwente.

nl/10.1145/2684746.2689060.

[68] Hanqing Zhao, Pavlos Pavlidis, and Nikolaos Alachiotis. Sweepnet: A lightweight cnn archi-
tecture for the classification of adaptive genomic regions. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’23, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701900. doi: 10.1145/3592979.3593411. URL
https://doi.org/10.1145/3592979.3593411.

[69] Hanqing Zhao, Matthijs Souilljee, Pavlos Pavlidis, and Nikolaos Alachiotis. Genome-
wide scans for selective sweeps using convolutional neural networks. Bioinformatics, 39
(Supplement 1):i194–i203, 06 2023. ISSN 1367-4811. doi: 10.1093/bioinformatics/btad265.
URL https://doi.org/10.1093/bioinformatics/btad265.

[70] Stephanie Zierke and Jason D. Bakos. Fpga acceleration of the phylogenetic likelihood function
for bayesian mcmc inference methods. BMC Bioinformatics, 11(1):184, Apr 2010. ISSN 1471-
2105. doi: 10.1186/1471-2105-11-184. URL https://doi.org/10.1186/1471-2105-11-184.

[71] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in
20 years: A survey, 2023.

54

https://www.sciencedirect.com/science/article/pii/S1877050914001975
https://www.sciencedirect.com/science/article/pii/S1877050914001975
https://doi-org.ezproxy2.utwente.nl/10.1145/2684746.2689060
https://doi-org.ezproxy2.utwente.nl/10.1145/2684746.2689060
https://doi.org/10.1145/3592979.3593411
https://doi.org/10.1093/bioinformatics/btad265
https://doi.org/10.1186/1471-2105-11-184

	Introduction
	Selective sweep classification
	Introduction
	Method
	Data representation
	Model architecture and selection
	Memory-efficient data formatting

	Evaluation
	Experimental setup
	Effectiveness of including SNP positions
	Model architecture search
	Effectiveness of allele frequency as input
	Comparing to summary statistics
	Comparing to other CNN-based methods

	Discussion and conclusion

	Selective sweep detection
	Introduction
	Method
	Efficient sliding window
	Model selection
	Post-processing
	Detection performance metrics

	Evaluation
	Experimental setup
	Detection performance
	Detection precision
	Detection efficiency
	Human genome scan

	Conclusion and discussion

	Recombination hotspot classification
	Introduction
	Method
	Grouped DAF model design
	Sample reordering
	Multi-label classification

	Evaluation
	Experimental setup
	Combined classification performance

	Discussion and conclusion

	Hardware acceleration
	Introduction
	Related work
	Architecture
	Quantization
	Buffer design
	Component design

	Implementation
	Evaluation
	Accuracy of quantized neural network
	Estimated inference speed on FPGA

	Conclusion and discussion

	Discussion and conclusion

