
Diagnosing spondyloarthritis by means of 
an exhaled breath analysis 

 
By: 

Manouk Vrielink 
S2627477 

Master Thesis Health Sciences 
Science and Technology Faculty (TNW), University of Twente 

Medisch Spectrum Twente, rheumatology department 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First supervisor: 
Dr. P.M. ten Klooster 
University of Twente  
 
Second supervisor: 
Prof. Dr. J.A.M. van der Palen  
University of Twente, Medisch Spectrum Twente  
 
External supervisor:  
Prof. Dr. H.E. Vonkeman  
University of Twente, Medisch Spectrum Twente  
 
Daily supervisor:  
D. Gerritsen  
Medisch Spectrum Twente                                                                                                           28-06-2024  

 



Abstract  
Introduction: Early diagnosis and treatment of spondyloarthritis (SpA) is crucial for preventing structural 
damage and stiffness often encountered in advanced stages of the disease. Currently, diagnosis relies on 
identifying typical SpA features along with laboratory findings and imaging techniques. Nonetheless, 
diagnostic challenges exist due to the absence of diagnostic criteria and the heterogeneous presentation 
of SpA. Exhaled breath analysis of volatile organic compounds (VOCs) through an electronic nose offers a 
promising opportunity for early, non-invasive diagnosis. This technique has already demonstrated 
effectiveness in identifying various conditions. This study aimed to investigate the ability of the electronic 
nose to differentiate between healthy controls and SpA patients by means of an exhaled breath analysis.  
Methods: Data were collected between December 2021 and April 2024. All participants performed a 
breath test with the aeoNose and provided relevant demographic and medical information. Random forest 
machine learning with 10-fold cross-validation was employed to analyze the breath samples and create an 
optimal discriminating algorithm. The performance of this model was compared to that of a multivariate 
logistic regression model, which incorporated readily available clinical variables in addition to the aeoNose 
predictive values.  
Results: Breath samples of 59 SpA patients (mean±SD age 50.3±15.8 years, 61% male) were compared with 
180 healthy controls (mean±SD age 53.3±17.6 years, 42.8% male). The model that only included the 
aeoNose classification value resulted in an area under the receiver operator curve (AUC-ROC) of 0.95 (95% 
CI 0.92-0.99), a sensitivity of 95%, and a negative predictive value (NPV) of 98%. The second model,  
including solely the clinical variables age and gender, resulted in an AUC-ROC of 0.63 (95% CI 0.54-0.71), a 
sensitivity of 95%, and an NPV of 85%. Combining the clinical variables with the aeoNose classification 
value in a multivariate logistic regression model only slightly improved overall performance with an AUC-
ROC of 0.96 (95% CI 0.93-0.99), while sensitivity remained 95% and NPV 98%.  
Conclusion: The aeoNose shows promise in discriminating between SpA patients and controls with high 
diagnostic accuracy, indicating its potential use as a diagnostic tool. However, cross-validation of the 
algorithm in independent samples is necessary. Adding readily available clinical variables in a multivariate 
logistic regression model only slightly enhances performance. 
 
 

  



Introduction  
Spondyloarthritis (SpA) encompasses a heterogeneous group of musculoskeletal inflammatory diseases 

that share common clinical features, genetic susceptibility, and pathophysiological mechanisms [1]. SpA 

mainly affects young adults, with symptoms typically emerging between the ages of 20 and 40 [2]. Based 

on the Assessment in Spondyloarthritis International Society (ASAS) classification criteria and clinical 

presentation, SpA can be categorized into two primary subtypes [1]. Axial SpA (axSpA) predominantly 

affects the axial skeleton, including the spine and sacroiliac joints, whereas peripheral SpA (pSpA) is 

characterized by arthritis, enthesis, and/or dactylitis [1, 3]. Additionally, axSpA can be further categorized 

into two subgroups: axSpA with radiographic sacroiliitis, also referred to as ankylosing spondylitis (AS), and 

axSpA without radiographic sacroiliitis [4]. In this differentiation, the term radiographic sacroiliitis refers to 

erosions and/or ankylosis seen on classic X-rays of the sacroiliac joints. In early phases of spondyloarthritis, 

magnetic resonance imaging (MRI) of the sacroiliac joints may show signs of inflammation while the X-rays 

are still normal. Therefore, non-radiographic axSpA is often considered to be an early phase of radiographic 

axSpA [5-7]. Inflammatory lower back pain, morning stiffness, and sore joints are some of the most 

common complaints with SpA. Patients may also present with extra-musculoskeletal manifestations 

including uveitis, inflammatory bowel diseases, and psoriasis [8]. Although the exact pathogenesis of SpA 

is still unknown, multiple studies have shown the significant involvement of the human leukocyte antigen 

(HLA)-B27 in disease initiation, particularly in AS [9, 10]. Moreover, there is emerging evidence indicating 

the contribution of the intestinal microbiome to disease initiation [4]. In the Netherlands, the exact 

prevalence of SpA is currently unknown, with considerable variation in the reported prevalence rates 

across studies [1]. In Europe, the estimated prevalence of SpA ranges from 0.5% to 1.0% of the general 

population [11]. 

The diagnosis of SpA involves a clinical judgment based on both existing and absent features, while also 

considering alternative diagnoses. Typical SpA features include inflammatory back pain, dactylitis, 

asymmetrical arthritis, elevated acute-phase reactants, enthesitis, inflammatory bowel diseases, family 

history of SpA, marked response to NSAIDs, psoriasis, and uveitis [12, 13]. Additional laboratory 

investigations such as HLA-B27 status and levels of C-reactive protein (CRP) may aid in diagnosis, along with 

imaging of the sacroiliac joints [14]. Diagnosing SpA remains challenging, however, due to its 

heterogeneous presentation. No single feature or additional marker has sufficient specificity to decide on 

a diagnosis. Especially in early phases of the disease, diagnosis proves to be problematic in practice. 

Proposed imaging methods aimed at diagnosing early stages of axSpA also exhibit low specificity, as similar 

abnormalities can be observed in healthy runners, post-partum females, or those experiencing other 

traumas [15]. Therefore, diagnosis involves recognizing a pattern of features that collectively provide 

sufficient likelihood to diagnose the patient [16].  

Studies have shown that on average, the time between symptom onset and the definitive diagnosis of SpA 

ranges from 5 to 12 years [2, 17, 18]. This very large delay in diagnosis has significant implications for 

disease outcomes and work productivity. Given that SpA affects mainly young individuals, acknowledging 

its impact on work productivity is crucial. Diagnostic delays longer than 5 years are associated with 

worsened disease outcomes, including loss of spinal range of motion and irreversible structural damage 

[13]. Moreover, indices measuring disease activity and functional impairment tend to worsen with longer 

diagnostic delays. Establishing the diagnosis early on allows the initiation of effective treatment, thereby 

preventing progressive structural damage and stiffness commonly observed in advanced stages of SpA [19, 

20]. 



At present, SpA is increasingly treated using a Treat-to-Target (T2T) approach, which states that treatment 

strategies should target specific objectives, typically including sustained remission or, if not possible, low 

disease activity as measured by appropriate disease activity composite scores [21]. Treatment can involve 

pharmacological or non-pharmacological therapies, including physical exercise and physiotherapy. 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the first-line pharmacological therapy for decreasing 

inflammation, pain, and stiffness. Biological disease-modifying antirheumatic drugs (bDMARDs), and 

especially tumor necrosis factor inhibitors (TNFi), are reported as second-line treatment. Furthermore, in 

pSpA, methotrexate is used as a first-line conventional synthetic disease-modifying antirheumatic drug 

(csDMARD) [4, 13]. 

Considering the importance of early treatment, timely diagnosis of SpA is essential. Recently, multiple 

studies have shown the potential of volatile organic compounds (VOCs) in noninvasive, early diagnosis of 

various conditions, including different types of cancer and infectious diseases [22]. VOCs, present in 

exhaled breath, reflect both physiological and pathological processes within the human body, such as 

inflammation, oxidation, and infection. The premise is that metabolic and biochemical processes 

associated with various pathological states give rise to different endogenous VOCs [23]. These compounds 

form unique patterns, known as breath prints, and can be detected with chemical sensors. Given the 

inflammatory character of SpA, it is plausible that VOCs representing inflammation and activity of the 

disease can be found in exhaled breath. Previous studies demonstrated the effectiveness of utilizing VOCs 

in discriminating between patients with rheumatoid arthritis (RA) and healthy individuals. For instance, a 

diagnostic study by Brekelmans et al. (2016) illustrated that breath prints of RA patients could be 

distinguished from those of healthy controls with a sensitivity of 76% and a specificity of 67% [22]. These 

promising results require further investigation into the possibilities that VOCs offer in early diagnosis of 

other inflammatory rheumatic diseases.  

The aeoNose electronic nose (the eNose company, Zutphen, the Netherlands) is a handheld device that 

can measure VOC patterns. To facilitate the recognition of various VOC mixtures, the aeoNose requires 

calibration [23]. This involves training the model with a large amount of breath prints, from which a 

database must be developed. Subsequently, newly detected scent patterns can be matched with these 

existing breath profiles using comparative pattern recognition analysis. This technique has already 

demonstrated effectiveness in diagnosing a variety of diseases. For instance, Kort et al. (2022) evaluated 

the aeoNose as a diagnostic tool for non-small cell lung cancer, yielding a sensitivity of 95% and a specificity 

of 49% in the external validation cohort [24]. Similarly, a study by van de Goor et al. (2018) investigated the 

potential of the aeoNose as a screening tool for lung cancer, achieving a sensitivity of 88% and a specificity 

of 86% in the blind test set [25]. Moreover, the diagnostic value of the aeoNose has been explored in 

numerous pilot studies involving other diseases, although these results have yet to be validated.  

This pilot study describes the first step in investigating the ability of the aeoNose to distinguish between 

SpA patients and healthy individuals by means of an exhaled breath analysis. This concerns the learning 

phase, in which a robust prediction model must be developed and trained. A secondary aim is to explore 

whether the performance of the generated model can be optimized by adding relevant clinical variables.  

 

 

 



Materials and method  

Study design 
The study was designed as a prospective, observational, and mono-centered diagnostic study at Medisch 

Spectrum Twente hospital, Enschede, the Netherlands. Data collection started in December 2021 and was 

continued until the end of April 2024. The study protocol was approved by the Institutional Review Board 

of Medisch Spectrum Twente (number K20-03).  

Study population  
SpA patients with scheduled appointments at the outpatient clinic of the rheumatology department were 

approached in the waiting room by the researcher. A brief overview of the procedure was provided, 

followed by an invitation to participate in the study. Those who agreed were then given the informed 

consent form (Appendix A). After their appointment with the rheumatologist, participants completed the 

breath test. The control group of people without a rheumatic disease was mainly collected during an earlier 

study, including mostly people who work at Medisch Spectrum Twente and family, friends, or caretakers of 

patients of the rheumatology department (D. Gerritsen, 2023, personal communication). 

All subjects included in this study had to be 18 years or older and sign the informed consent form before 

undergoing the aeoNose procedure. Participants with a rheumatologist-confirmed clinical diagnosis of SpA 

were deemed eligible for inclusion in the patient group and participants without a known inflammatory 

rheumatic disease for inclusion in the control group. People unable to perform the aeoNose procedure 

were excluded from the study, along with those who had insufficient command of the Dutch language to 

fully understand the informed consent. Additionally, it was decided to exclude the subgroup of SpA patients 

presenting with psoriasis, also known as psoriatic arthritis (PsA), to ensure a more homogenous patient 

group. To train sufficiently robust prediction models, it was estimated that each group had to comprise at 

least 50 participants.   

 

Materials  
The aeoNose contains three different rigid metal oxide sensors, each of the micro-hotplate type [23]. This 

design allows modulation of the sensor surface temperature through a 32-step sinusoidal process, ranging 

between 180° and 340°. Within this range, the sensors function as semiconductors. As the temperature 

increases, the semiconductor’s ability to conduct electricity also increases. Initially, when oxygen molecules 

adsorb/ ionize at the sensor surface, conductivity remains low. However, the removal of oxygen due to 

redox reactions with VOCs causes the conductivity to change [26]. These changes can be measured and 

quantified, resulting in a unique breath profile. Moreover, the modulation of the sensor surface 

temperature allows for conductivity changes to be obtained at different temperatures [27]. This provides 

a more accurate measurement of the composition of breath, considering the temperature dependence of 

the redox reactions. Conductivity is therefore recorded as a function of the temperature modulation. 

A small pump within the aeoNose ensures that a steady stream of exhaled air flows over the three sensor 

surfaces and a Tenax tube, allowing for the measurement of VOCs [27]. A carbon filter in the disposable 

mouthpiece ensures the inhalation of clean air, while another carbon filter beneath the device ensures 

that only clean air is passed over the sensors. These measures minimize the risk of cross-infection. 

Additionally, the aeoNose contains one-way valves, allowing exhalation through the device but preventing 

any air from returning to the subject [26].  



Procedure  
All measurements were performed in the same room with the same aeoNose device (AEO18120006) for 

both patients and controls, following a standardized procedure. The room was only used for aeoNose 

measurements and to avoid interference, the use of hand-alcohol was prohibited in this room. Participants 

were instructed to inhale and exhale through the disposable mouthpiece of the aeoNose for five minutes. 

During this time, the circulation of air should only go through the aeoNose device. Therefore, nose 

breathing was interfered with by using a nose clamp and patients were asked to enclose the lips over the 

mouthpiece at all times. Patients were also instructed to hold the aeoNose device in their hands, 

positioning themselves as preferred. During the measurement, patients were informed when they reached 

the 2.5-minute time limit, indicating they were halfway done. After 5 minutes of breathing, the end of the 

measurement was indicated by an audio signal from the aeoNose device. At this point, participants were 

asked a yes/no question regarding their willingness to perform the diagnostic procedure again. The 

perceived burden was assessed on a scale from 0 to 10, with 0 indicating no discomfort at all and 10 

indicating unbearable discomfort. This information was recorded in Castor Electronic Data Capture, EDC 

(v2023.4.5.0). After the measurement, the aeoNose was set aside and the sensor surfaces were 

regenerated with clean air. Then, the internal Tenax tube that gathered VOCs during the measurement was 

heated, while the VOCs were released [28]. Finally, the data was sent over to the iPad through Bluetooth, 

after which it was sent to the data center of the eNose company for analysis.   

After undergoing the aeoNose procedure, demographic information on age, gender, height, body weight, 

smoking status, comorbidities, and the last time that the patient had eaten was collected and captured in 

Castor EDC. Additional information regarding the disease status of SpA patients was gathered from their 

electronic patient files and also documented in Castor EDC. This information included details about the 

peripheral or axial nature of the disease (SpA location), the presence of the HLA-B27 gene, CRP levels, the 

erythrocyte sedimentation rate (ESR), disease activity, and the use of csDMARDs or bDMARDs. The 

diagnosis, SpA location, and activity of the disease were also verified by the specialist consulted on the day 

of the measurement, using a short case record form that the physician was asked to fill out (Appendix B).  

Statistical analysis  
Descriptive statistics 
Descriptive statistics were carried out to describe the study population and to explore differences between 

the study groups. This firstly involved exporting the data that was captured in Castor EDC to a CSV file, 

which was then imported into RStudio (2023.06.2+561). Subsequently, various tests were conducted to 

assess whether there were statistically significant differences in the collected variables between both 

groups. Since the groups are independent, a t-test was performed for all continuous variables that were 

normally distributed. In cases where a normal distribution could not be assumed, the Mann-Whitney U-

test was utilized to compare the groups. For categorical variables, a Chi-squared test was employed. 

Differences with a p-value below 0.05 were considered significant.  

In the patient group, SpA-related details were collected along with the general characteristics. Therefore, 

a separate table describing disease-specific characteristics was generated. For continuous variables that 

followed a normal distribution, the mean and standard deviation were computed. When a normal 

distribution could not be assumed, the median and interquartile range were provided. Categorical variables 

were presented as counts of subjects and the corresponding percentages.  

  



Generating the prediction models 
VOC data preparation and machine learning-based training were performed by the eNose company using 

the proprietary Aethena software package [23]. During each measurement, a matrix was recorded 

containing thousands of data points. This data was first standardized, due to the slight variations that exist 

between sensors among aeoNoses. Subsequently, data was compressed using a Tucker3 algorithm, 

resulting in vectors representing one of the seven sensor combinations of the three metal oxide sensors in 

the aeoNose device. Redundant information and noise were removed in the compressed vectors, 

maintaining the information concerning the distinction between healthy controls and patients.  

To create a prediction model, various machine learning (ML) methods can be used. In this study, the eNose 

company entered the vectors that were created into a supervised random forest (RF) model, while the true 

disease status was known. This resulted in the generation of multiple possible RF models, each with its 

specific performance measures. The output of each model included a ranked receiver operating 

characteristic (ROC) curve, with performance measured by the area under the receiver operating 

characteristic curve (AUC-ROC), sensitivity, and specificity. A combination of the best models was selected 

based on ranked AUC-ROCs, resulting in so-called ‘judge’ models. The selected judge models were 

validated using 10-fold cross-validation, as the limited sample size did not allow for splitting the sample 

into a separate training and test set. For further analyses, the algorithm of the best performing model was 

used. This algorithm produced a prediction value for each study subject from the RF, ranging between -1 

and +1, with higher values indicating a higher likelihood of SpA. 

Next, three different logistic regression models were constructed in RStudio, all employing the true disease 

status as the dependent variable. The first model consisted of a univariate logistic regression, incorporating 

only the aeoNose value as the independent variable. For the second (multivariate) logistic regression 

model, solely clinical variables were added as independent variables. Initially, all candidate variables were 

introduced to the model. These included age, gender, body mass index (BMI), smoking status, the presence 

of comorbidities, and the last moment of food consumption. Subsequently, backward selection was 

employed to identify variables with significant impact on the model’s fit, as determined by the -2log 

likelihood [29]. Significance for retaining the variables in the model was indicated by a p-value below 0.15. 

SpA-related features such as location and activity of the disease were not included in the model, as they 

did not apply to control subjects. Regarding medication use, it could be assumed that no healthy control 

subject uses either csDMARDs or bDMARDs, while a considerable number of patients do, making these 

unsuitable as fair predictors. Finally, a third multivariate logistic regression was conducted, incorporating 

the clinical variables from the second model along with the aeoNose classification value. The classification 

value was multiplied by 10 before including it in the regression. This adjustment allowed the odds ratio to 

be interpreted as the odds of having SpA for every 0.1 increment in the classification value, rather than for 

an increment of 1. This interpretation is more meaningful, given that the aeoNose value can only range 

from -1 to +1. Backward selection was then employed again to determine which variables should be 

retained in the model (p < 0.15). This process was repeated because the addition of the classification value 

alters the interactions between the variables in the regression model, potentially leading to different 

variables becoming significant in predicting disease status. Before conducting the backward selection, it 

was decided to always incorporate age in the final model, as this variable is readily available and commonly 

used in similar studies.  

For each model, a different cut-off point was chosen, such that healthy controls and subjects were 

optimally separated [23]. The decision on the optimal threshold is dependent on the purpose of the breath 



test. A lower threshold reduces the number of missed SpA cases, while a higher threshold reduces the 

number of false-positive cases. The selected cut-off point consequently determines the sensitivity and 

specificity of the model. A feasible aim for the aeoNose is to utilize it as a pre-screening tool, preferably 

within general practitioners’ (GP) offices. Here, patients with suspected SpA can undergo an aeoNose 

measurement. The results of the measurement can assist the GP in determining whether referral to the 

rheumatology department for further evaluation is warranted. To realize this in practice, the number of 

false negatives as measured by the aeoNose should be minimized, to avoid missed diagnoses. Therefore, 

favoring high sensitivity over specificity is preferred when deciding on a cut-off point, along with a high 

NPV. On the other hand, excessive referrals of healthy patients are also undesirable. Hence, the number of 

false positives should be maintained at an acceptable level.  

The exact cut-off point for each model in this study was determined in collaboration with a rheumatologist, 

leveraging their clinical expertise. They stated that the objective for each model should be to achieve a 

sensitivity of at least 90%, ideally 95%, to be clinically relevant as a pre-screening tool. To compute the 

ROC-AUC of all models, the sensitivity and specificity for each possible cut-off point were calculated to 

serve as inputs for the ROC, using the formulas in Figure 1 [30]. In addition, the positive predictive value 

(PPV) and negative predictive value (NPV) were calculated using the formulas in Figure 1 [31].  

 

Figure 1: Formulas used to measure the performance of the various models, with the FN being the false 
negatives, FP false positives, TN true negatives, and TP true positives [31].   
 

As the RF models generated by the eNose company were validated using 10-fold cross-validation, this 

technique was also applied in the training process of the various logistic regression models. The 

performance of these models was evaluated using Cohen’s Kappa, as this accuracy statistic accounts for 

imbalanced study arms [32]. Given the considerable variation in the size of the study groups, Cohen’s Kappa 

was deemed appropriate to use in this study. To finalize the analysis, the AUC-ROCs of all three models 

were compared using DeLong’s test. Differences with a p-value below 0.05 were considered significant.  

  

  



Results  
A total of 320 subjects were eligible for inclusion in this study (Figure 2). Of these subjects, 34 had to be 

excluded due to failed measurements. Another 36 were excluded because they performed the breath test 

with a different aeoNose device (AEO19010006), which did not collect sufficient data to be included in the 

analysis. Finally, 11 subjects were excluded because they were initially classified as healthy but were later 

found to have a rheumatic disease. As a result, the final study cohort comprised 239 subjects, including 

180 healthy controls and 59 SpA patients.  

 

Figure 2: Flowchart of the inclusion process. C = healthy controls, P = SpA patients 
  



Table 1 provides the baseline characteristics of the study samples. Both groups were similar in terms of 

general characteristics, but SpA patients were significantly more likely to be male (p=0.022). The smoking 

status of one participant in the control group was missing. Since smoking status was included as an 

independent variable in the multivariate logistic regression, this participant had to be removed from 

further analyses.  

Concerning the experience of participants, >90% of them were willing to perform the breath test again. 

However, some complications were observed during the measurements. Firstly, the nose clamp was quite 

unstable, causing it to fall off regularly. Additionally, the disposable mouthpiece often became briefly 

disconnected, as it was not securely attached to the device. Despite these minor issues, participants’ 

overall experience was positive. This is reflected in the median discomfort scores, which were 2 for both 

patients and controls on a scale where 0 indicated no discomfort at all and 10 indicated unbearable 

discomfort.  

Table 1: Baseline characteristics of the study population (N=239) 

 SpA patients  
N=59 

Healthy controls   
N=180 

P-value  

Mean age (SD) 50.3 (15.8) 53.3 (17.6) 0.213 

Gender N(%)   0.022 
 Male 36 (61.0) 77 (42.8)  
 Female 23 (39.0) 103 (57.2)  

Mean BMI (SD) 26.6 (4.60) 27.0 (5.18) 0.514 

Smoking N(%)   0.824 
 Yes  7 (11.9) 28 (15.6)  
 No  29 (49.2) 81 (45.0)  
 Stopped  23 (39.0) 70 (38.9)  
 Missing  0 (0.0) 1 (0.6)  

Comorbidities N(%)(1)   0.930 
 Yes 36 (61.0) 113 (62.8)  
 No 23 (39.0) 67 (37.2)  

Last time eating N(%)   0.878 
 Less than 3 hours  42 (71.2) 132 (73.3)  
 More than 3 hours  17 (28.8) 48 (26.7)  

Willingness to perform again N(%)   0.357 
 Yes  54 (91.5) 164 (91.1)  
 No  3 (5.1) 4 (2.2)  
 Missing  2 (3.4) 12 (6.7)  

Median discomfort score (IQR) 2 (1-4) 2 (1-4) 0.744(2) 

(1)Specified in Appendix C. 
(2)The p-value was determined through a Mann-Whitney U test instead of a t-test. 
 
The clinical characteristics of the SpA patients are displayed in Table 2. Among the overall patient group, 

41 individuals were identified with axial SpA (69.5%), while only 15 patients had peripheral SpA (25.4%). 

Additionally, the majority of patients tested positive for the HLA-B27 gene (66.1%).  

In total, 34 patients received SpA-specific medications (57.6%). Among them, 18 received bDMARDs 

(30.5%), especially TNF inhibitors (27.1%), while the remaining 16 patients used csDMARDs (27.1%). The 



median CRP level was determined to be 2, with an interquartile range of 1 to 6, indicating low disease 

activity.  

Table 2: Characteristics of SpA patients (N=59) 

 SpA patients  

SpA location N(%)  
 Axial  41 (69.5) 
 Peripheral 15 (25.4) 
 Missing  3 (5.1) 

HLA-B27 N(%)   
 Yes 39 (66.1) 
 No 14 (23.7) 
 Missing  6 (10.2) 

Median ESR (IQR)  6.5 (2-12.8) 

Median CRP (IQR) 2 (1-6) 

Active illness N(%)  
 Yes  10 (16.9) 
 No  35 (59.3) 
 Missing  14 (23.7) 

Medication use N(%)  
csDMARD 16 (27.1) 
 Methotrexate  7 (11.9) 
 Sulfasalazine  5 (8.5) 
 Hydroxychloroquine  1 (1.7) 
 Prednisone  3 (5.1) 
bDMARD  18 (30.5) 
 TNFi inhibitor  16 (27.1) 
 Abatacept  1 (1.7) 
 IL6-inhibitor   1 (1.7) 
Other  52 (88.1) 

 

Prediction models 
In the ML prediction modeling analysis, 180 healthy controls and 59 SpA patients were included. Due to 

the exclusion of one participant in the control group with a missing smoking status, the subsequent logistic 

regression models comprised 179 healthy controls and 59 patients.  

The best RF model of the eNose company assigned a value between -1 and 1 to each participant, indicative 

of their disease status. These predicted values for all participants are displayed in the scatterplot in Figure 

3. In this plot, red squares represent SpA patients, while green squares represent healthy controls. The 

dashed line indicates the optimal cut-off point that was used by the eNose company, set at a value of -0.13. 

At this threshold, the model achieved a sensitivity of 92%, a specificity of 88%, a PPV of 71%, and an NPV 

of 97%. The AUC-ROC was 0.95 (95% CI 0.92-0.99). Participants with classification values below the 

threshold are predicted to be healthy, while those above the threshold are predicted to be patients.   

 



 

Figure 3: Scatterplot of the predicted value per participant. The dashed line represents the threshold 
determined by the eNose company. Solid lines represent the thresholds used in the univariate logistic 
regression.  
 
To illustrate the effects of changing the threshold, the eNose prediction value was entered into the first 

univariate logistic regression. To achieve a higher specificity and PPV, the threshold was increased to 0.11 

(Figure 3), which corresponds to a probability ≥38% of SpA. With this cut-off point, the sensitivity reached 

88%, the specificity 95%, the PPV 85%, and the NPV 96%. Since this study aims to investigate the potential 

of the aeoNose as a pre-screening tool, the definite model should exhibit high sensitivity and NPV. To meet 

these criteria, the threshold was finally set to -0.42 (Figure 3), corresponding to a probability ≥5% of SpA. 

This adjustment resulted in a sensitivity of 95%, a specificity of 70%, a PPV of 51%, and an NPV of 98%. 

Since this first logistic regression model included only the aeoNose classification value, the AUC-ROC 

remained 0.95 (95% CI 0.92-0.99). 

The second logistic regression model included only relevant clinical variables, determined by backward 

selection. Table 3 shows that age and gender significantly predicted the presence of SpA. Including these 

variables in the model resulted in a sensitivity of 95%, a specificity of 9%, a PPV of 26%, and an NPV of 85%. 

The corresponding AUC was 0.63 (95% CI 0.54-0.71). A probability of SpA ≥14% was considered a positive 

test result in this case. 

The third model combined both eNose values and relevant clinical variables, again determined through 

backward selection. Table 3 shows that the aeoNose breath value is strongly associated with the presence 

of SpA (OR 1.62, 95% CI 1.46-1.86). Additionally, male participants have a 3-fold higher odds of having SpA 

(OR 3.02, 95% CI 1.02-9.73). Age was not significantly associated with the presence of SpA in this model (p 

= 0.47), but was still incorporated in the final model as described in the method section. Incorporating 

these variables in the regression resulted in an only marginally higher AUC of 0.96 (95% CI 0.93-0.99). The 

sensitivity of the model was 95%, the specificity 73%, the PPV 53%, and the NPV 98%. For this model, a 

probability of SpA ≥5% was considered a positive test result, corresponding to a threshold of -0.53.  



Table 3: Results of the backward selection for model 2 and model 3 

Variable Model 2 p-value Model 3 p-value 

aeoNose value(1) - - 1.62 (1.46-1.86) <0.001 

Age  0.99 (0.97-1.00) 0.106 1.01 (0.98-1.05) 0.47 

Gender (male) 2.28 (1.24-4.27) 0.0089 3.02 (1.02-9.73) 0.052 

Data are presented as odds ratio (95% confidence interval), along with the p-value. Constant model 2: -
0.79, model 3: -2.26. Cut-off point: 0.15. (1)The aeoNose value was multiplied by 10 to obtain the odds per 
0.1 increment. 
 
Figure 4 shows the confusion matrices of classifications made by each model, which were used to calculate 

the sensitivity, specificity, PPV, and NPV. Here, the prediction for every participant is depicted against their 

true disease status. Table 4 summarizes all relevant outcome measures, along with Cohen’s Kappa. This 

measure was used to evaluate the validity of the models, resulting from the 10-fold cross-validation. 

Cohen’s Kappa can range from -1 to +1, with +1 indicating perfect agreement between predictors and 

outcome and 0 representing the level of agreement expected by random chance [34]. Values below 0 are 

also possible, but unlikely to occur in practice. The reported Cohen’s Kappa is the average result across all 

10 folds of the validation.  

 

Figure 4: Outcomes of the three logistic regression models (left upper corner). Model 1 contains only the 
aeoNose classification value, model 2 solely clinical variables, and model 3 a combination of both clinical 
variables and the aeoNose value. TP =true positives, FP = false positives, FN = false negatives, TN = true 
negatives.  
 

Table 4: Performance of the three investigated logistic regression models 

Model  Cut-off Sensitivity Specificity PPV NPV AUC-ROC 
(95% CI) 

Kappa 

1 -0.42 95% 70% 51% 98% 0.95 (0.92-0.99) 0.82 

2  0.11 95% 9% 26% 85% 0.63 (0.54-0.71) 0 

3 -0.53 95% 74% 55% 98% 0.96 (0.93-0.99) 0.84 

Model 1 contains only the aeoNose classification value, model 2 solely clinical variables, and model 3 a 

combination of both clinical variables and the aeoNose value. PPV: positive predictive value, NPV: negative 

predictive value, AUC-ROC: area under the receiver operating curve, Kappa: mean value of the 10 folds, 

indicative of the model’s fit.  

To visualize the performance of the various models, Figure 5 presents the ROC curves of the three models. 

In this figure, the sensitivity is plotted on the y-axis against the 1 - specificity on the x-axis. 



 

Figure 5: Combined ROC curve for models 1, 2, and 3. Shades represent 95% CI’s. 

To conclude the analysis, several tests were conducted to determine whether the overall AUC-ROCs of the 
various models significantly differed from each other. The AUC of the aeoNose values-only model was 
significantly higher than that of the clinical variables-only model (p<0.001). Comparing the aeoNose 
values-only model with the combined model revealed no significant difference in AUC (p=0.47). Finally, 
the AUC of the clinical variables-only model was significantly lower than that of the combined model 
(p<0.001).  

  



Discussion  
This pilot study investigated the ability of the aeoNose to discriminate between SpA patients and healthy 

controls through exhaled breath analysis. With the prediction model that contained solely aeoNose 

classification values, a sensitivity of 95% and an NPV of 98% were found in the training sample. Diagnostic 

accuracy, expressed as AUC-ROC, was found to be 0.95. Adding readily available clinical parameters did not 

change the sensitivity and NPV but slightly reduced the number of false positives, increasing the AUC-ROC 

to 0.96. However, as the performance of the initial aeoNose model was already very high, this increase was 

not statistically significant (p=0.47). These results indicate that the aeoNose was highly effective in 

distinguishing the breath prints of healthy controls from those of SpA patients. However, these findings 

need to be validated in larger and independent samples. 

The sensitivity, specificity, NPV, and PPV observed in the various models were determined by the chosen 

cut-off point, as this influences the balance between the number of false-positive cases versus the number 

of missed cases concerning SpA. The decision on these thresholds is subjective and dependent on the aim 

of the test. When the consequences of late disease detection are severe, it is crucial to minimize the 

number of missed cases and focus should therefore be on obtaining a high sensitivity and NPV. Conversely, 

when used in a diagnostic setting, the number of false-positive test results should be minimized. In this 

case, the focus should be on achieving a high specificity and PPV.  

Since previous studies indicated that the aeoNose might not perform well enough as a standalone 

diagnostic tool [22, 35], the current study focused on its use as a pre-screening tool in a point-of-care 

setting. This approach to the use of an eNose aims to reduce diagnostic delays in SpA while at the same 

time preventing too many unnecessary referrals of healthy individuals to hospitals, thereby alleviating 

pressure on the waiting lists and specialists. However, the excellent predictive results obtained in the 

current study indicate that the aeoNose may even have potential for use in a diagnostic setting. This could 

be particularly effective for SpA, a disease that is challenging to diagnose in its early stages. Existing 

diagnostic techniques for SpA include HLA-B27 status, the ASAS criteria, and MRI, which exhibit sensitivities 

and specificities around 43% and 91% [36], 83% and 84% [7], and 79% and 89% [37, 38], respectively. Given 

the sensitivity of 88% and the specificity of 95% found in the current training sample, the aeoNose seems 

to outperform the existing techniques. Employing the aeoNose as a diagnostic tool in a hospital setting 

would be beneficial, as it would eliminate the need to repeat the calibration process at every external 

location separately.   

The diagnostic value of the eNose has already been evaluated across various conditions, including 

respiratory diseases, infectious diseases, and cancer. However, studies on using an eNose for diagnosing 

inflammatory diseases are limited [39]. Brekelmans et al. (2026) investigated whether an eNose could 

differentiate between patients with rheumatoid arthritis (RA), PsA, and healthy controls. Their study 

revealed that the breath prints of RA and PsA patients could be differentiated from those of healthy 

controls with accuracies of 71% and 69% in the training set, respectively. The current study marks the first 

exploration of the aeoNose’s ability to discriminate healthy controls from SpA patients.  

Strengths  
An important strength of this study is the comparable groups in terms of general characteristics. With the 

exception of SpA patients being predominantly male, the groups showed no statistically significant 

differences in age, BMI, smoking status, the presence of comorbidities, and the last moment of food 

consumption. Therefore, the exhaled breath profiles were not likely to be substantially influenced by these 



factors, making the findings more robust. Medication usage could also be a confounding factor, as they are 

typically used among most patients. It is possible that the aeoNose may not detect variations in breath 

profiles due to inflammation, but instead also measures the presence of SpA-specific medications. 

However, in this study, 34 patients were using SpA-specific medications out of the total patient group of 

59. Considering that nearly half of the patients were not on SpA medication, the potential confounding 

effect is also expected to be limited. The remaining characteristics of the patient group in this study are 

also representative of the general SpA population, as seen by rheumatologists in the Netherlands [33]. 

Another strength of this study is the systematic and standardized approach that was used to complete the 

measurements. All measurements were performed in the same room under stable, controlled conditions. 

The researcher overseeing the measurements ensured the correct use of the nose clamp and verified that 

participants were breathing through the mouthpiece, without air escaping along the sides. If accurate 

measurement could not be guaranteed, such as when too many breaks were taken, the participant was 

excluded from the study.   

Limitations  
This study provides only the first step in exploring the ability of the aeoNose to discriminate between 

healthy controls and SpA patients. The RF model and the logistic regression models used in this study were 

only validated using 10-fold cross-validation, meaning that no independent test sample was used to 

validate the outcomes. The main consideration for not splitting the data into a training and testing set 

separately was the fact that the patient group comprised only 59 individuals. Splitting the data would 

therefore result in the inclusion of only a few patients in de dataset, most likely leading to inaccurate 

validation results [40]. While 10-fold cross-validation prevents overfitting of the models to some extent, it 

cannot be guaranteed that the models are completely free of overfitting. Therefore, externally validating 

the results of the performance of the algorithm in a future study is crucial.  

When comparing the outcomes of this study to similar eNose studies, it is evident that the initial AUC-ROC 

value of 0.95 found here is exceptionally high. Other studies typically reported AUC-ROCs ranging between 

0.70 and 0.85 [22, 28, 39]. The discrepancy in results can partly be explained by a flaw in the study design. 

The control group was primarily collected during an earlier study by D. Gerritsen et al. (2023), with 

measurements primarily executed between January 2022 and March 2023. Data collection for the current 

SpA patient group mostly occurred between February and April 2024. Therefore, most healthy controls 

were included in the study significantly earlier than SpA patients. The separation plot (Figure 3) illustrates 

this time discrepancy. Healthy controls are primarily located on the left side of the plot, whereas patients 

are mostly located in the right upper corner. This indicates the presence of distinct clusters of data points. 

However, for accurate training of a prediction model, it is important to measure both positive and negative 

samples simultaneously in time [41]. When data collection occurs at different times for various groups, the 

model might learn from temporal patterns in the data instead of actual breath data patterns, leading to 

inaccurate performance. This effect is also illustrated in Figure 3, where the few controls measured in the 

last period of the study are all assigned high eNose values, along with the patients measured during that 

time. Because this period predominantly included patients, the algorithm assumes everyone measured 

during this time is a patient. Due to this uneven distribution of data, the results of the current study are 

likely to overestimate the diagnostic accuracy of the aeoNose in independent samples. Simultaneously 

measuring patients and controls would likely have led to lower performance of the prediction model 

compared to its current performance, as it would eliminate the confounding effect of data clusters and 

ensure the model is trained on solely breath data.  



Another limitation of this study is the limited inclusion of clinical variables in the multivariate logistic 

regression. While laboratory findings like CRP levels and ESR were accessible for SpA patients, healthy 

controls were not subjected to blood tests. Consequently, this information could not be included in the 

logistic regression, leaving only general characteristics to be considered. Among these general 

characteristics, smoking behavior was categorized in the analysis as current, past, or never smoker. 

However, the preferred method to capture smoking behavior is through pack years. In this measure, both 

the quantity and duration of smoking are considered, providing a more accurate reflection of its impact. 

This is important as smoking affects SpA in various ways [42]. Pack years could not be utilized in this study, 

as the amount smoked by past smokers was not recorded. This would have resulted in a pack year value of 

0 for all past smokers, inaccurately representing their smoking history. 

Future research 
Further research is recommended to gain more insight into the discriminatory abilities of the aeoNose. 

While this pilot has demonstrated the ability of the aeoNose to differentiate between breath prints of 

healthy controls and those of SpA patients in the training set, it is important to acknowledge the described 

limitations that are likely to have affected the robustness of findings. Therefore, validation of the results in 

a new study is necessary. It would be advised to include a larger sample size in such a study and to also 

conduct subgroup analyses, for example between SpA patients with active disease and those without, to 

investigate the influence on the performance of the aeoNose. Moreover, the collection of blood work from 

both patients and healthy controls would enable consideration of more clinical variables in the multivariate 

logistic regression, potentially leading to improved performance. 

Lastly, it cannot be conclusively stated that the diagnostic performance of the aeoNose is solely attributed 

to the pathological processes represented by endogenous VOCs. There is a possibility that the aeoNose 

captures other factors characteristic of SpA, enabling the distinction between patients and healthy 

controls. Validating the device in a different setting with a different population would address these 

assumptions, allowing more robust conclusions.  

Conclusion 
Based on this study it can be concluded that the aeoNose shows promising ability to discriminate between 

SpA patients and healthy controls and could possibly be used as a diagnostic tool in the future. Diagnostic 

accuracy can be slightly enhanced by incorporating age and gender into a multivariate logistic regression 

model, rather than including solely aeoNose classification values based on exhaled breath data. However, 

further research is needed to validate these findings.  
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Appendix B: additional data from the specialist  

 



Appendix C: additional information on comorbidities in the study cohort 
 

 SpA patients 
N= 59 

Healthy controls  
N= 180 

Comorbidities N(%)   
 Hypertension  7 (11.9%) 4 (2.2) 
 Diabetes 2 (3.4) 2 (1.1) 
 Obesity  0 0 
 Cardiovascular diseases 7 (11.9) 41 (22.8) 
 Lung diseases 4 (6.8) 12 (6.7) 
 Other inflammatory diseases 11 (18.6) 9 (5.0) 
 Cancer 1 (1.7) 1 (0.6) 
 Osteoporosis 2 (3.4) 4 (2.2) 
 Other  26 (44.1) 113 (62.8) 

 

 


