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Abstract: 

Background: Total knee replacement is the final treatment option for knee osteoarthritis patients. However, knee 

prosthetics have limited life spans and revision total knee replacements often have worse outcomes than primary 

total knee replacements. Therefore, an e-health application is being developed by the LoaD consortium that could 

slow down disease progression based on personalised movement advice. To inform its development, an early 

Health Technology Assessment is performed. 

Methods: The cost-effectiveness was explored by means of an individual level state transition model. Monte Carlo 

simulations and scenario analyses were performed to explore the impact of uncertainty of input parameters on the 

robustness of the ICER. Finally, a headroom analysis was performed to explore the maximum acceptable cost of 

the e-health application.  

Results: Across all scenarios, annual costs per patient ranged between €137294 and 135370 on average. Annual 

QALYs ranged between 14.80 and 14.82. Cost-savings ranged between €570 and €2494 per patient per year on 

average. Reducing the chance of disease progression and progression to surgery resulted in QALY losses ranging 

between -0.01 and -0.03. The reason for this was that pre-surgical utilities were lower. The maximum acceptable 

costs per patient per year ranged between €351 and €1998 at a WTP of €20000 per QALY. The probability that the 

intervention was cost-saving ranged between 75.8% and 99.8%. 

Conclusion: The probability that the intervention was cost-effective ranged between 62% and 93% compared to 

the SOC at a WTP of €20000 per QALY. The application did not provide extra effect for additional costs, instead 

it provided cost-savings for similar health outcomes.  
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1. Introduction  

Approximately 1.6 million Dutch individuals suffer from knee osteoarthritis (KOA) and this number is expected 

to increase with 36.0% by the year 2040 [1]. The burden of disease in KOA is high, indicated by a utility score of 

0.7 [2]. In 2019, the expenditure on KOA patient related care in the Netherlands alone was approximately 500 

million euros and it is believed that these medical costs represent approximately 75.0% of the total costs, 

suggesting that the societal costs would be approximately 667 million euros [3, 4], showcasing the immense 

societal burden of KOA.  

KOA is characterized by progressive joint space narrowing (degrading cartilage), osteophyte formation, 

subchondral cyst formation and is associated by debilitating pain and loss of function in the knee [5]. In the 

Netherlands, the diagnosis of KOA is based on clinical criteria. Radiographic images are taken when there is an 

unexpected progression of symptoms that does not align with typical disease progression [6]. Radiography can 

capture the natural progression of the disease and allow for classification using the Kellgren-Lawrence (KL) 

system [7]. This system correlates with clinical observations of symptom severity [8]. However, on an individual 

level, KOA is a very heterogeneous disease with different rates of progression and varying severity of symptoms 

[9].  

In the Netherlands, standard of care (SOC) for KOA patients is based on the severity of the symptoms. Regimens 

often start with conservative treatment. This entails lifestyle management, predominantly focussed on weight loss, 

physiotherapy, analgesics and orthopaedic aids [6]. Total knee arthroplasty (TKA) is a last resort and conservative 

treatment aims to postpone the need for TKA as long as possible as TKA implants have limited life spans of 

approximately 10 years on average [10]. Premature TKAs increases the risk of requiring a revision TKA (rTKA) 

later in life, which has worse outcomes than primary TKAs and leads to a substantial risk of requiring re-rTKA 

[11].  

One of the discussed strategies in literature to slow down progression of KOA is weight loss, as there seems to be 

a relationship between biomechanical loading on joints and cartilage health through the conversion of mechanical 

signals into biochemical responses [12-14]. Various studies have shown that there is a “Goldilocks zone”, which 

is a zone of biomechanical load and frequency of  that load where joint preservation is optimized [14]. The 

principles behind the Goldilocks zone can also be used to develop exercises for KOA patients to ultimately slow 

down the progression of KOA and avoid cartilage deterioration.  

Such exercises can be provided to patients through e-health applications and can be tailored to their preferences 

and needs through holistic monitoring. Utilizing the Goldilocks zone, could potentially postpone primary TKAs 

even further, which could result in cost-savings and improved quality of life (QoL) retention. The concept of such 

an e-health application is currently being developed by the LoaD consortium in the Netherlands [15]. One of the 

main aims of the LoaD consortium is to develop an e-health application that would slow down disease progression. 

This would be achieved by providing personalised movement advice based on holistic monitoring. Although 

previously developed applications also focussed on managing the patient’s disease (m-health), these did not 

provide real-time personalized advise through holistic monitoring [16, 17], provided only general information on 

osteoarthritis and treatment [18, 19], or provided exercise advise solely for the pre- and/or post-operative stage 

[20-23]. Therefore, the LoaD consortium application distinguishes itself from other applications by integrating 

individually measured patient data in the provided advice to the patients, from the moment of diagnosis. 

Since the potential benefit of the LoaD application will depend on its effectiveness, cost, and acceptability to end-

users and care professionals, performing an early Health Technology Assessment (eHTA) during its development 

is important, because the eHTA will give insight into what aspects of the application may need further development 

to increase the chance of the application in reaching KOA patients.  

Therefore, the aim of this study is to explore the health economic impact of the e-health application in comparison 

to SOC for diagnosed KOA patients, through an eHTA. The minimum requirements for the e-health application to 

be cost-effective are explored by means of a headroom analysis of the maximum acceptable costs (MAC). 

Probabilistic sensitivity analyses (PSA) and scenario analyses will be performed to assess the impact of uncertainty 

in input parameters and the potential effect of the intervention on the robustness of the incremental cost-

effectiveness ratio (ICER), respectively. 

2. Methods  

In this study, an individual level state transition model (il-STM) was developed reflecting disease progression in 
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KOA. The model was populated with data, representing as closely as possible the Dutch KOA patient population. 

The model integrated costs from a societal perspective and compared the associated costs and  effects of utilising 

the LoaD intervention with SOC using Monte Carlo simulations.  

2.1. Model description  

The model was developed based on diagnostic and treatment guidelines in the Netherlands [6, 24]. Each model 

cycle was equivalent to 1 year with a total of 50 cycles. The model consisted of two phases, the conservative and 

surgical phase, and all patients started in KL2 and ended in Death, see Figure 1. The conservative phase is 

characterized by the progression of disease as depicted by the KL system [7]. A KL2 knee is used as the diagnostic 

criterium for KOA, since from this stage on, the patient shows unambiguous KOA symptoms. Therefore, the 

conservative phase included 3 health states, namely KL2 to KL4, see Figure 1.   

During the conservative phase a patient is educated on their disease and is treated with a combination of physical 

therapy, analgesics, orthopaedic aids and disease self-management. The SOC for KOA is defined by any 

combination of these components, because treatment regiments can vary per person and is based on symptom 

severity. If conservative treatment does not alleviate the patients symptoms, the patient would enter the surgical 

phase. Since the duration that a KOA patient receives conservative treatment can vary, the conservative phase of 

the model implements the possibility to transition from any of the three KL health states to the surgical phase. This 

phase starts with total knee arthroplasty (TKA) and ultimately is followed up with either a rTKA or death, see 

Figure 1. Post-TKA, the patient would either experience a net benefit from the surgery or no net benefit. This is 

depicted by the health states FB_pTKA and NB_pTKA, respectively [25]. The same reasoning was true for post 

rTKA, so the post rTKA health states were FB_prTKA and NB_prTKA, respectively. These health states are 

characterized by different costs and utility data. It was assumed that each patient could undergo a maximum of 1 

rTKA, because no data could be found for re-rTKA health states. Finally, patients could transition to the death 

state from any other health state in the model.  

 

2.2.1 Intervention e-health application and scenario analyses  

During this eHTA, information on the contents of the application were not yet available. To mimic the main aim 

of the application, the simulation model was used to explore certain scenarios, where plausible assumptions were 

made regarding disease progression. This was done using scenario analysis, where KOA patients were exposed to 

lower transition probabilities in the conservative stages using relative risks (RR). This concerned the transition 

probabilities of KL2 to KL3, KL3 to KL4, KL2 to TKA, KL3 to TKA and KL4 to TKA. In total there were 6 

scenarios. Scenarios 1 to 3 applied RRs of 0.95, 0.90 and 0.85 to the previously mentioned transition probabilities, 

respectively. Patients were only simulated with the adjusted probabilities, cost and utilities if they were adherent 

to the intervention.  

Figure 1. Individual level state transition model showcasing the possible transitions. All patients start in KL2 (green) and end 

in the “Death” (red) health state. KL2 = Kellgren-Lawrence grade 2, KL3 = Kellgren-Lawrence grade 3, KL4 = Kellgren-

Lawrence grade 4, TKA = Total knee arthroplasty, FB_pTKA = Full benefit post total knee arthroplasty, NB_pTKA = No benefit 

post total knee arthroplasty, rTKA = revision total knee arthroplasty, FB_prTKA = Full benefit post revision total knee 

arthroplasty, NB_prTKA = No benefit post revision total knee arthroplasty. 
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2.2.2 Adherence  

Adherence was reflected in the model by generating a beta distribution of predefined probabilities for adherence 

with an average probability of 0.65 [26]. Each Monte Carlo simulation, a different probability was drawn from the 

respective distribution. A patient was deemed adherent if the randomly drawn value from a uniform distribution 

for that patient was lower than the predefined probability for adherence that was set for each Monte Carlo 

simulation. This process is called stochastic assignment. Therefore, the results of the six scenarios showed a group 

average of adherent and non-adherent patients. To investigate the maximum potential of the intervention, a 

secondary analysis was performed assuming all patients were adherent. To allow comparison, the same RRs were 

used as in Scenario 2 and this new scenario was called Scenario 2A.   

2.2.3 Comorbidity  

Patients with KOA can develop comorbidities, such as diabetes mellitus type II (DMII) [27]. DMII is especially 

interesting due to the direct relation between KOA and physical inactivity, as the latter may result in increased 

body weight, which in turn results in excess risk of cardiovascular and metabolic diseases, including DMII. The 

development of DMII in KOA patients was implemented in the model by means of stochastic assignment, meaning 

that random values were drawn from a uniform distribution and if these were lower than the probability of 

developing DMII, the patient would be classified as a DMII case. To explore the impact of the intervention on the 

development of DMII, 3 scenarios were defined in which a conservative RR of 0.95 was applied to the probability 

of developing DMII, namely scenarios 4, 5 and 6. Scenarios 4 to 6 were essentially scenarios 1 to 3 in combination 

with a RRs of 0.95 for developing DMII. In this model, DMII was an individual level attribute, not a health state. 

2.3. Study population  

Two identical cohorts of 1000 patients, representative of the Dutch population, were generated. One cohort 

received SOC and the other received the e-health application in addition to SOC. The demographics of the cohorts 

were generated using probabilities and distributions retrieved from literature, see Supplementary file C. The cohort 

was defined as patients having KL2, being 45 years or older, having no previous history of knee surgery and not 

having received unicompartmental knee arthroplasty or uncemented knee arthroplasty.   

2.4. Model Inputs: Costs, utilities and probabilities  

The cost-effectiveness was assessed from the Dutch societal perspective. Therefore, the costs per health state 

include both medical costs and productivity costs. These societal costs for the conservative phase were obtained 

from Salmon et al. [28]. Costs of the surgical phase were retrieved from Van der Woude et al. [29] and Brunenberg 

et al. [30]. Productivity costs were based on the friction cost method as described in Dutch guidelines [31]. Annual 

costs of DMII management were also taken into account [32]. All costs were adjusted to the 2023 index. Future 

costs were discounted by 3.0% as according to Dutch guidelines [31].  

Utilities per health state in the conservative phase were retrieved from Hermans et al. [2]. For the surgical phases 

they were recovered from Rehman et al. [33] and the British National Health Institute (NHS) dataset [34], which 

archives patient reported outcome measures for KOA care. Utilities per health state were adjusted for the presence 

of the DMII [35, 36]. Future utilities were discounted 1.5% as according to Dutch guidelines [31]. 

Both costs and utilities were personalized by randomly assigning each KOA patient a single percentile score based 

on a normal distribution. This single percentile score was then used to obtain the respective costs and utilities from 

the cost and utility distributions of the various health states. Percentile scores were applied to avoid strong 

fluctuations in utility scores and costs associated with the different health states.  

Transition probabilities were all personalized based on age, sex, weight status or a combination thereof based on 

whether available evidence allowed stratification. Where necessary, transition probabilities from literature were 

converted into annual transition probabilities using the following formula [37]: 

F1: 𝑝 = 1 − (1 − 𝑝)1/𝑛  

Here, p is the probability from literature that needed to be converted to an annual probability, and n is the number 

of years the original probability was estimated for. Transition probabilities in the conservative phase were retrieved 

from Losina et al. [38] and were stratified for sex and BMI, but were the same for each +1 KL. Transition 

probabilities to post-TKA stages and post rTKA stages were retrieved from the NHS dataset and were stratified 

for age category and sex [34]. Transition probabilities to the rTKA stage were based on Gademan et al. and were 

also stratified by age and sex [39]. Finally, the transition probabilities to the death health state were collected from 

Nüesch et al. [40], Zhou et al. [41], Inacio et al. [42] and the Statistics Netherlands open access dataset and were 

also stratified for age and sex [43, 44]. All probabilities and utilities were generated using beta distributions. 
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Gamma distributions were used for cost data. All cost, utility and probability tables including explanations can be 

found in Supplementary file A. 

2.5. Outcome measures  

Primary outcome measures included absolute and incremental costs, quality adjusted life years (QALYs), and cost-

effectiveness ratios. Cost-effectiveness acceptability curves (CEAC) were generated to analyse the probability of 

being cost-effective at different willingness-to-pay (WTP) thresholds. For each strategy and each Monte Carlo 

simulation, the model estimated the total cost and QALYs. Utility scores accrued in each health state were 

multiplied by the time spent in each respective health state. The sum of this gave the number of QALYs. QALYs 

and costs were averaged out over the Monte Carlo simulations. The average costs and QALYs were used to 

calculate the ICER as follows: 

F2: 𝐼𝐶𝐸𝑅𝑒−ℎ𝑒𝑎𝑙𝑡ℎ =  
𝐶𝑜𝑠𝑡𝑒−ℎ𝑒𝑎𝑙𝑡ℎ−𝐶𝑜𝑠𝑡𝑆𝑂𝐶

𝑄𝐴𝐿𝑌𝑒−ℎ𝑒𝑎𝑙𝑡ℎ−𝑄𝐴𝐿𝑌𝑆𝑂𝐶
 

The e-health application is deemed cost-effective if the ICER is less than a WTP of €20000 per QALY. The WTP 

was based on the proportional shortfall score, which most likely will range between 0.16 and 0.37 based on 

estimations that were made for osteoporosis and rheumatoid arthritis [44, 45].  

Secondary outcome measures included the number of TKAs, rTKAs and incident DMII cases for SOC and the 

intervention group.  

2.6 Analyses  

PSAs were performed to assess the impact of uncertainty in input parameters on the robustness of the ICER. This 

was done by means of 500 Monte Carlo simulations. PSAs were performed for the six previously mentioned 

scenarios.  

Headroom was calculated using the MAC as described by Behr et al. [46]. The MAC for the e-health application 

was calculated using the following formula: 

F3: 𝑀𝐴𝐶 = (𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝐺𝑎𝑝 ∗ 𝑊𝑇𝑃) − 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝐶𝑜𝑠𝑡 

The effectiveness gap was defined as the difference between the QALYs obtained with the intervention and SOC. 

The WTP was always set to €20000. The costs included in this equation were health state related costs from a 

societal perspective. The development costs of the e-health application were not taken into account as these were 

unknown.  

Annual population and per person Expected Value of Perfect Information (EVPI) and Expected Value of Partial 

Perfect Information (EVPPI) analyses were performed to quantify the value of eliminating uncertainty in certain 

input parameters of the simulation model. For the population EVPIs and EVPPIs an annual prevalence of 762700 

patients were assumed [1]. The input parameters that were included mainly consisted of transition probabilities. 

The cost and utility data were not included, because simulated patients were assigned costs and utilities based on 

their assigned percentile scores since individual patient level data was not available.   

All simulations and statistical analyses were performed using R Statistical Software (R v4.3.1) and Rstudio 

(Rstudio v2024.04.0+735) [47]. The scripts containing all the code and all external libraries are available in 

Supplementary file C. 

3. Results 

In the following sections the results for the scenario, sensitivity and value of information (VOI) analyses will be 

discussed. Finally, the number of TKAs and DMII cases will be discussed. 

 

3.1 Scenario analysis   

In all of the scenario analyses, the e-health application was cost-saving and cost-effective for a WTP of €20000, 

see Table 1. Cost savings in Scenarios 1 to 6 were €-570, €-1359, €-2204, €-674, €-1520 and €-2494 per patient 

per year.  In Scenario 2A, where adherence was 100%, cost-savings were €736 higher compared to Scenario 2, 

totalling to €-2095, see Supplementary file B. 

At the same time, slowing down disease progression and progression to TKA through the e-health application, on 

average resulted in slightly lower health effects. Scenarios with lower RRs resulted in slightly greater health effect 

losses, see Table 1. Similar effect losses were observed when there was a chance of preventing comorbid DMII, 

see Table 1. In Scenario 2A, effect losses were even 0.01 greater than in Scenario 2, totalling a loss of -0.04, see 

Supplementary file B. These QALY losses can be explained by the fact that pre-surgical utilities are slightly lower 

than post surgical utilities. This combination of negative incremental costs and QALYs resulted in high positive 

ICERs for the intervention. Therefore, these ICERs represent the cost-savings per lost QALY rather than the 
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incremental costs per gained QALY, see Table 1.  

Despite the QALY losses, the intervention was very cost-saving in all of the scenario analyses. Therefore, the 

MACs per patient per year in these scenarios were also relatively high and followed the same pattern as the cost-

savings. Scenarios where the application was slowing down the progression of KOA more or had a chance of 

preventing DMII, had a higher MAC. Therefore, the highest MAC of €1998 per patient per year was observed in 

Scenario 6 and the lowest MAC of €351 was observed in Scenario 1. Similar to the cost-savings, the MAC had 

also increased in Scenario 2A compared to Scenario 2 at €1386 per patient per year, see Supplementary B. 

 

3.1.1 Sensitivity analyses  

In general, the majority of the Monte Carlo simulations yielded results that were in accordance with the different 

scenario averages, see Figures 2A and 2B. For Scenarios 1, 2 and 3, 78.8%, 96.2% and 99.8% of simulations were 

cost-saving, respectively. In total, 27.4%, 24.6%, and 23.4% of simulations were dominant in scenarios 1, 2 and 

3, respectively.  There was a 32.4%, 24.6% and a 23.4% chance for the simulations being effective in scenarios 1, 

2 and 3. In total, there was a 62.0%, 78.0% and 89.0% chance of the simulations being cost-effective in scenarios 

1, 2 and 3. In general, increasing the WTP treshhold made the scenarios less cost-effective, see Figures 2C, 2D 

and 2E.   

For scenarios 4, 5 and 6, similar results were observed, see Figure 2F, 2G and 2H. The main difference was that 

the percentage of dominant simulations had increased to 32.6%, 28.0% and 27.0%, respectively. In total 75.8%, 

95.6% and 99.8% of simulation were cost-saving in scenarios 4, 5 and 6, respectively. Concerning the probability 

of being effective, simulations in scenarios 4, 5 and 6 showed probabilities of 37.6%, 28.4% and 27.0%, 

respectively. In general, the simulations in scenarios 4, 5 and 6 were more cost-effective with chances of cost-

effectiveness being 65.0%, 77.0% and 93.0%, respectively. In Scenario 2A, where adherence was 100%, effective 

and dominant simulations where 6.6 percentpoints (pp) lower than in Scenario 2, totalling 18%, and 99.6% of 

simulation were cost-saving, which was 3.4pp higher than in Scenario 2, see Supplementary file B.  

 

Table 1. Individual level state transition model Monte Carlo simulation results.  

Note Table 1. RRa represents the relative risk that was applied to the transition probabilities of KL2 to KL3, KL3 to KL4, KL4 

to TKA, KL3 to TKA and KL2 to TKA to mimic the slowing down of disease progression that the e-health application could 

potentially have. RRb represents the relative risk that was applied to the probability of developing DMII, to showcase what the 

cost-effectiveness could be if the e-health application would reduce the development of comorbid conditions by slowing KOA 

progression. ICER = Incremental cost-effectiveness ratio; MAC = Maximum acceptable cost of e-health application. 

 Scenario Cost 

ehealth  

(€) 

Cost 

SOC 

(€) 

QALY  

ehealth 

QALY 

SOC 
Cost (€) QALY ICER 

(€) 

MAC 

(€) 

W
it

h
o

u
t 

D
M

II
I 

Im
p

ac
t 

1 137294 137864 14.82 14.83 -570; 95% 

CI [-2028 : 

734] 

-0.01; 95% 

CI [-0.07 : 

0.04] 

52178 351 

2 136505 137864 14.81 14.83 -1359; 95% 

CI [-3284 : 

133] 

-0.03; 95% 

CI [-0.10 : 

0.04] 

51700 833 

3 135660 137864 14.80 14.83 -2204; 95% 

CI [-4618 : -

710] 

-0.03; 95% 

CI [-0.12: 

0.04] 

68774 1563 

W
it

h
 D

M
II

 i
m

p
ac

t 

4 137189 137864 14.82 14.83 -674; 95% 

CI [-2573 : 

967] 

-0.01; 95% 

CI [-0.07 : 

0.05] 

77981 501 

5 136344 137864 14.81 14.83 -1520; 95% 

CI [-3535 : 

187] 

-0.02; 95% 

CI [-0.10 : 

0.04] 

66295 1061 

6 135370 137864 14.81 14.83 -2494; 95% 

CI [-4749 : -

634] 

-0.03; 95% 

CI [-0.11 : 

0.05] 

100496 1998 
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3.1.2 VOI analyses  

With a WTP treshhold of €20000 per QALY, Scenarios 1 to 6 had annual population EVPIs of approximately 182, 

119, 52, 228, 120, and 33 million euros, respectively, see Figures 3A-F. This is equivalent to a per patient EVPI of 

€239, €156, €69, €299, €157, and €44 per year. 

The annual per patient EVPPI for the probability to transition to the full benefit health state after a rTKA for 60 to 

80 year old women was the highest at €4.83, resulting in an annual population EVPPI of approximately 3.68 

million euros in Scenario 4, see Figure 3G. Scenario 4 was also the only scenario that consistenly showed high 

EVPPIs, see Figure 3G. The only parameter that showed most consistency across all scenarios conserning the 

annual population EVPPI was the probability to transition a KL state as a non-obese man. Annual population 

EVPPIs for this parameter ranged between 0.4 and 1.9 million euros.  

In scenario 3, none of the parameters had an annual EVPPI higher than €0, suggesting that the current level of 

uncertainty in the decision-making process is accounted for, which is interesting since the annual population EVPI 

is not €0, see Figure 3C. 
 

3.2.1 Number of TKA, rTKA and comorbid DMII 

It was observed that when a RR risk was applied to slow down the progression of KOA and progression to surgery, 

this impacted the number of patients that underwent both TKA and rTKA. In all scenarios the SOC group had the 

Figure 2. (A) Cost-effectiveness (CE) planes showing 95%CI ellipse of the PSA for Scenarios 1 in yellow, 2 in magenta and 3 

in light blue, including percentage of simulations per CE-plane. (B) CE-planes showing 95%CI ellipse of the PSA For scenarios 

4 in green, 2 in purple and 3 in orange, including percentage of simulations per CE-plane. (C-H) Cost-effectiveness 

acceptability curve (CEAC) for Scenarios 1 to 6 with in blue the e-health intervention and in Red the SOC.  
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same lifetime risk for TKA and rTKA, namely 0.90 and 0.10, respectively. In scenarios 1 to 3, patients in the 

intervention group had lifetime risks of 0.90, 0.89, and 0.88 for TKA. Scenario 2A also had a lifetime risk of 0.89. 

Lifetime risks for rTKA were 0.10, 0.10, and 0.09, respectively for scenarios 1 to 3. In Scenario 2A, this lifetime 

risk was 0.09. In scenarios 1 to 3, the intervention was able to reduce the number of TKAs by 0.6%, 1.3%, and 

1.9%, respectively. The number of rTKAs were reduced by 1.7%, 4.2%, and 6.1%, respectively. The number of 

TKAs and rTKAs were reduced by 1.6% and 6.2%, respectively in Scenario 2A. 

The lifetime risk of developing DMII were the same in the SOC and intervention groups in all scenarios, namely 

0.49. There were however significant differences in the number of cycles spend with comorbid DMII. On average, 

the percentual reduction of time spent living with DMII in the intervention group compared to SOC were 0.3%, 

0.7% and 1.0%, which is equivalent to 25 days, 56 days, and 80 days, respectively in scenarios 4, 5 and 6.   

 

4. Discussion  

In the following sections the main study findings, strengths, weaknesses and future research suggestions are 

discussed. 

 

4.1. Main findings 

Some of the main findings were that the e-health application was highly cost-saving and that if the application 

could prevent comorbid DMII or reduce the number of years lived with DMII, this could help the e-health 

application become more cost-saving.  

Figure 3. (A-F) Graphs of annual population EVPI (popEVPI) in millions of euros as function of the WTP threshold per QALY 

in Scenarios 1 to 6 respectively. The red dashed lines represent the intersect with the WTP of €20000. (G) Horizontal barchart 

showing annual population EVPPI (popEVPPI) in millions of euros as function of the WTP threshold per QALY. 
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Another finding was that the e-health application resulted in small QALY losses, negatively affecting the MAC. 

However, its high cost-savings compensated for these losses. Therefore, the MAC reflected the cost-savings, 

ranging from €351 to €1998 per patient per year for a WTP of €20000. Notably, the simulations did not include 

the cost of the e-health application itself. Whether it remains cost-saving depends on the total operational, research 

and development costs. Since current simulations indicate a small health loss, ranging from -0.01 to -0.03 on 

average, decision makers should keep the price as low as possible, even though the intervention could save societal 

costs.  

The model showed small effect losses because pre-surgical utility values were lower than the post-surgical utility 

values. Therefore, improving adherence only amplified the cost-saving and effect loosing effect that were already 

observed. One of the reasons for this is that in these analyses, the very stringent assumption was made that utility 

values obtained in the SOC and intervention group are the same. In reality, the developers could implement lifestyle 

management components to the application to improve utility scores. Literature on e-health interventions in KOA, 

such as the study by Kloek et al. [4], show that patients that used the intervention can have higher utility values. 

In Kloek et al., patients receiving the E-exercise intervention had on average 0.1 higher utility compared to patients 

that received SOC physiotherapy, respectively 0.7 and 0.8. Therefore, any increment in utility score could make 

this e-health application a dominating intervention, since it is already cost-saving. Therefore, it would be advisable 

to re-explore the KL specific utilities for patients using the application though small pilot studies, but first the 

expected value of sample information (EVSI) should be explored.  

Kloek et al. conducted an HTA on a blended e-health physiotherapy intervention in a Dutch hip and knee 

osteoarthritic population aged 40-80. Similarly, our study focussed on 45+ years old KOA patients. Furthermore, 

their intervention was essentially online physiotherapy, whereas our intervention focussed on personalised 

movement advice based on holistic monitoring. Finally, Kloek et al. compared the intervention to SOC 

physiotherapy, but they did include all other healthcare costs, such as secondary care vists and productivity costs. 

Therefore, the patient population, the intervention and comparison in the study of Kloek et al. were partially 

comparable to our study. Similarly, Kloek et al. reported QALYs ranging from -0.1 to 0.1. Our study, however, 

showed higher probability of cost-savings compared to Kloek et al., respectively between 75.8% to 99.8% and 

65.0%, possibly because Kloek et al. did not include surgical phase costs and effects nor did they consider the cost 

of comorbidities. The fact that our study implemented a lifelong timeframe is a strength compared to other studies 

such as Kloek et al., which often only use a limited timeframe of 1 to 2 years.  

Another HTA on a KOA intervention by Coupé et al. [48] compared SOC physiotherapy with behavioural graded 

activity, which is similar to the lifestyle management component of our e-health application. Coupé et al. reported 

a small but uncertain QALY loss of approximately -0.1 and incremental costs ranging between €-4000 and €2000. 

However, their model timehorizon consisted of 65 weeks, meaning that they also did not take into account the 

surgical phase into their model.  

Hollinghurst et al. looked into telehealth for KOA care [49], involving a telephone advice service. While similar 

in essence to our intervention, it lacked the holistic monitoring component. Their British population was similar 

in age, but they did not include productivity and secondary care costs and reported a timehorizon less than a year. 

The authors reported very small positive incremental costs, because the intervention costs were higher than the 

SOC, and incremental effects with a lot of uncertainty in both outcomes. This is contradictory to our results, but 

the study is not completely comparable to our study with regards to time horizon and costs included, which could 

explain the differences.  

In summary, most studies reported in literature do not use an intervention that is completely comparable to ours, 

but similar outcomes have been observed. Not in absolute numbers, but in incremental effects and the uncertainty 

surrounding those effects. 

The simulations in our model mainly showed uncertainty regarding the probability to transition to the full benefit 

health state after a rTKA for 60 to 80 year old women, resulting in an annual population EVPPI of approximately 

3.68 million euros. In general, the EVPPIs measured were relatively low. However, the total annual EVPI was 228 

million euros meaning there is still much unexplained uncertainty. Most likely, a big portion of the uncertainty is 

caused by the distributions of the cost and utility input parameters since these are essentially fixed. The same 

reason in combination with the fact that the number of patients and simulations are low is most likely the cause 

for Scenario 3 not showing any EVPPIs. Since all EVPPI are relatively low, it might be worth collecting extra 

information on these parameters as long as the cost of the research itself is not higher that the EVPPIs. Therefore, 

as mentioned before, it would also be wise to explore the EVSI and explore the net benefit of research.  

 

4.2 Strengths, weaknesses and research suggestions 

One of the strengths of this research was that it implemented a lifelong societal perspective for the eHTA. Most 

papers focus on a limited timeframe for the model simulations, and therefore may ignore potential future impact 

on costs and effects. Especially since KOA is a condition that patients grow old with, it is important to measure all 

potential future consequences. Another strength of this study was the implementation of the il-STM. This allowed 

for more specific simulations as probabilities, costs and utilities were personalised. Also, the fact that the e-health 
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application was compared to the SOC as a whole, instead of just sole components of the SOC was a strength, as 

most studies compare an intervention with only physiotherapy or only patient education.  

One of the weaknesses of this study is that some of the components in this model rely on assumptions due to lack 

of evidence in literature, such as the cost data in post-rTKA stages or the cost data for KOA patients that did not 

experience net benefit post-TKA and post-rTKA. More accurate cost data is needed to get more accurate model 

output. For future eHTAs, it would be advisable to request cost and utility data from the national registery for 

orthopaedic interventions (LROI). This organisation archives data on TKAs and rTKAs in the Netherlands and is 

mentioned frequently in literature. 

Another weakness was the stringent assumption that utilities in the intervention and SOC group were the same, 

whereas in reality this will most likely not be the case, as depicted by literature. If not the case, researchers should 

keep this difference in mind for future simulation models assessing this matter. 

Another weakness is that the model assumes that KOA patients without DMII and KOA patients with DMII have 

the same transition probabilities. Future models should incorporate the KOA DMII relationship and any other 

comorbid relationships with KOA to better reflect disease progression. 

Finally, the low number of patients and simulations are a weakness. More patients and simulations should be 

generated to get more accurate results. 

The biggest limitation of this study lies in its PSA and VOI analyses, because the cost and utility data for the 

different health states were not taken into account. This introduced a lot of uncertainty in the output of the model. 

Future HTAs should either include patient level data or should bootstrap available data, which would allow the 

estimation of uncertainty in the utility and cost distributions themselves. This will strengthen the PSA and VOI 

analyses.  

Furthermore, another limitation is that a positive correlation was assumed between costs and utilities when 

assigning these values using an identical percentile score. A strong negative correlation would be more likely as it 

would be expected that individuals with bad QoL also are the patients that incur higher medical and productivity 

costs.  

Finally, it would be adviceable to analyse literature to identify what defines a fast progressor. The current eHTA 

implemented the possibility to progress fast, but the determining factors have not been explored. Exploring this 

would be a great addition to the model, because if the developers of the application know the determining factors, 

they could try to build the application in a way that it influences the disease progression even better by providing 

more personalized movement advice. 

Also, performing a secondary analysis looking into the health care perspective could provide meaningfull insights, 

as it could show which party in scoiety incurs the main costs.  

 

5.0 Conclusion 

In conclusion, the e-health application is cost-effective at a WTP of €20000 and the probability of the intervention 

being cost-effective compared to SOC ranged between 0.62 and 0.93 across scenarios. However, not in the sense 

that it provides extra QALYs for higher costs, but in the sense that it saves costs while incurring a very small 

QALY loss. The small QALY losses were due to pre-surgical utilities being lower. Therefore, the retention of 

patients in the conservative treatment phase for longer and preventing TKAs and rTKAs resulted in small QALY 

losses. Current result did not show it, but any increase in utilities could make the intervention dominant since the 

loss in QALYs is very low. Therefore, it would be advisable to continue on the development of the application 

while exploring other variables that affect disease progression and potentially collaborate with LROI to get more 

accurate cost and utility data for the Dutch setting. Since the model showed high cost-saving potentials, the price 

of the product can be set quite high with MAC values ranging up to €1998 per person per year. 
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Supplementary file A: Costs, utilities and probabilities 

Cost input parameters KL2, KL3 and KL4  

For the conservative phases, cost data about Dutch individuals that met the inclusion and exclusion criteria was 

reported on by Hermans et al. [2] and Kloek et al. [4]. Hermans et al., reported a mean annual medical cost of 

€2307.95 and a median cost of €2122.08 in 2012. It was reported that the medical costs made up 17.0% of the total 

costs. The other 83.0% were productivity costs. Hermans et al. reported the costs as an average over health states 

KL1, KL2 and KL3 instead of separated over these health states. This meant that the reported costs could not be 

integrated into the simulation model, as it would mean that the costs would be the same over the three increasing 

severity levels of KOA, whereas in reality these costs should increase with severity. The more recent paper by 

Kloek et al., from 2018, reported that the total medical costs would make up approximately 75.0% of the total cost, 

which is quite a discrepancy in comparison to the paper by Hermans et al. The reason for this could have been the 

difference in study populations. Hermans et al. focused on a working population aged 18-65 years old with quite 

the over representation of intermediate and high level educated patients, which earned a higher hourly rate when 

compared to the study population in Kloek et al. The study population, in the work of Kloek et al., was aged 40-

80 years old, therefore including retired patients, that earn a much lower hourly rate and of whom productivity 

costs were lower. 

The next paper that reported on a population that came closest to the Dutch population was a paper by Salmon et 

al. [28]. Salmon et al. reported on costs per KL state within a French population. The main difference between the 

paper by Kloek et al. and Salmon et al. were the distributions of the costs. Even though the mean costs in both 

papers were very similar, the distributions were very different. The cost distribution in the French cohort were 

more right-skewed. Another main difference was that Salmon et al. reported over a 100 times smaller productivity 

cost losses. Since the mean costs for direct medical treatments were very similar, it was decided to implement the 

distributions as reported for the French cohort. To still be representative for the Dutch population, it was decided 

to use the notion that 25.0% of total costs are productivity costs. Therefore, to calculate the total average costs, the 

direct medical costs reported by Salmon et al. were divided by 0.75, see supplementary Table 1.   

Cost input parameters TKA, FB_pTKA and NB_pTKA  

The costs for TKA and rTKA were retrieved from Van der Woude et al. [29]. In their paper, they reported mean 

TKA costs of €14604, see Supplementary Table 1. They did not report productivity costs. Brunenberg et al. did 

report on productivity costs. They reported the losses in productivity costs were €1502.03 in the year of the TKA, 

see supplementary Table 1. Therefore, the costs for the health state TKA are calculated by taking the sum of c.TKA 

and c.TKA.prod. Brunenberg et al. also reported first year post-discharge costs of €5800.53. This included formal 

medical care costs, informal costs and productivity costs. They did not report the standard deviations for these 

numbers or any other statistics that would allow the generation of a gamma distribution. For the total cost they did 

mention a minimum value and a maximum value. Based on these descriptive statistics, a standard deviation was 

estimated using the methodology as described by Hozo et al. [50]. The estimated standard deviation for the total 

mean cost of €12877 was €8427. The assumption was then made that shape of the distribution of the total mean 

cost would be transferable to any subdomain cost distribution, because it is most likely that the individuals that 

incur the highest total costs also incur higher medical and productivity costs, suggesting consistency in their 

behaviour. Since productivity costs are a subdomain of the total costs, the shape of the distribution of the 

productivity costs was assumed to be similar to that of the total costs. Hence, the ratio between the mean and 

standard deviation of the total costs (12877/8427= 1.528) was applied to the mean costs of c.TKA.prod, 

c.FB_pTKA and c.NB_pTKA to estimate the standard deviations for these respective costs. For c.FB_pTKA and 

c.NB_pTKA this was €3866.35 and for c.TKA.prod this was €983.04, see supplementary Table 1. It was assumed 

that KOA patients that experienced no net benefits from the TKA, would have higher costs than patients that 

experience net benefit. The magnitude by which this was higher, was retrieved from a paper by Marsh et al. [51]. 

Marsh et al., reported on costs accrued by KOA patients that were satisfied and patients that were dissatisfied. 

Here the assumption was made that people with net benefit are always satisfied and patients without benefit are 

always dissatisfied. Since costs were reported for the American population, the ratio between the means of the two 

groups was calculated. The c. NB_pTKA was then multiplied by this factor, which was 1.54.  

Cost input parameters rTKA, FB_prTKA and NB_prTKA  

No relevant cost data could be found for the revision states in literature. Only the direct medical cost of the rTKA 

was reported by Van der Woude et al. to be €24327.31. Therefore assumptions had to be made about the costs of 

the rTKA health state and the post revision health states. It was assumed that the FB_prTKA and the NB_prTKA 
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health states would be more expensive compared to the primary TKA and post primary TKA health states. More 

precisely, it was assumed that c.TKA.prod, c.FB_prTKA and c.NB_prTKA would be approximately 1.67 times 

more expensive. This is the ratio between c.TKA and c.rTKA. Therefore, the costs in FB_prTKA were calculated 

by multiplying c.FB_pTKA by 1.67. The costs in NB_pTKA was calculated by multiplying by 1.67 and 1.54. 

Finally, the productivity costs for the year of the rTKA was calculated by multiplying c.TKA.prod by 1.67. 

Therefore, costs for the revision states do not have separate input parameters, except for the rTKA. 

Cost input parameters DMII  

Finally, some conditional cost distributions were created for KOA patients that developed a comorbidity due to the 

KOA. Whenever a KOA patient developed DMII, the annual cost of managing the DMII would get added to the 

annual cost of managing their KOA, see supplementary Table 1. Janssen et al. [32] reported 6 monthly costs. These 

costs were multiplied by two to get the costs in supplementary Table 1 [32].  

Supplementary Table 1. Cost table including distribution parameters for Monte Carlo  simulations. Costs for the health states 

are indexed to 2023 and given in euros. All costs are annual costs, except for c.TKA and c.rTKA. These were one-off costs. 
aThese costs were reported from a health care perspective. To account for productivity costs, the costs were divided by 0.75, 

based on the notion from Hermans et al [2]. bThese costs were reported from a health care perspective, excluding 

productivity costs. cThese costs were calculated based on assumptions. SD = standard deviation. 

Parameter Mean ± SD (2023, €) Distribution Shape Scale Source 

c.KL2a 1960 ± 5600 Gamma 0.1225 16000 Salmon et al. [28] 

c.KL3a 2230 ± 5425 Gamma 0.168970 13197.59 Salmon et al. [28] 

c.KL4a 2360 ± 4095 Gamma 0.332136 7105.519 Salmon et al. [28] 

c.TKA.prodc 1502.03 ± 983.04 Gamma 2.334613 643.3744 Assumption based on Van der 

Woude et al. [29] and 

Brunenberg et al. [30] 

c.FB_pTKAc 5800.53 ± 3866.35 Gamma 2.25078 2577.12 Assumption based on Van der 

Woude et al. [29] and 

Brunenberg et al. [30] 

c.NB_pTKAc 5800.53 ± 3866.35 Gamma 2.25078 2577.12 Assumption based on Van der 

Woude et al. [29] and 

Brunenberg et al. [30] 

c.TKAb 14604 ± 1586.36 Gamma 84.75009 172.3184 Van der Woude et al. [29] 

c.rTKAb 24327.31 ± 1588.79 Gamma 234.6973 103.708 Van der Woude et al. [29] 

c.DMII 6012 ± 603 Gamma 99.40388 60.48054 Janssen et al. [32] 

 

Utility input parameters  

The utilities u.KL2 and u.KL3 were derived from Hermans et al. [2]. In their paper they report an average for KL 

1 to KL3, but since KL1 was less than 10.0% of the population, the reported statistics were more representative 

for KL2 and KL3. The utilities for KL4 and TKA were the same, based on the assumption that a patient in TKA 

experiences the same level of functional inability, due to the extensive rehabilitation track and pain that follows 

the surgery [33]. After the surgery, a KOA patient either responded well or bad to the surgery. If a patient 

experienced net benefit, their utility score would increase substantially. If they did not experience net benefit, their 

utility would on average not change, see supplementary Table 2. The same counts for the revision health states. In 

case a patient developed DMII during the simulation, their utility score would get adjusted for that using the 

methodology as described by Flanagan et al. [35]. This methodology essentially is based on the multiplication of 

the utility for KOA with the utility of DMII.  

Supplementary Table 2. Utilities table including distribution parameters for Monte Carlo  simulations. SD = standard 

deviation. 

Parameter Mean ± SD Distribution Alpha Beta Source 

u.KL2 0.70 ± 0.23 Beta 323.3098 138.5613 Hermans et al. [2] 

u.KL3 0.70 ± 0.23 Beta 323.3098 138.5613 Hermans et al. [2] 

u.KL4 0.52 ± 0.18 Beta 624.4044 576.3733 Rehman et al. [33] 

u.TKA 0.52 ± 0.18 Beta 624.4044 576.3733 Rehman et al. [33] 

u.FB_pTKA 0.82 ± 0.15 Beta 56604.54 12425.39 NHS data-set [34] 

u.NB_pTKA 0.57 ± 0.27 Beta 4388.031 3310.269 NHS data-set [34] 

u.rTKA 0.41 ± 0.30 Beta 564.9103 812.9196 NHS data-set [34] 
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u.FB_prTKA 0.75 ± 0.18 Beta 1687.618 562.5394 NHS data-set [34] 

u.NB_prTKA 0.43 ± 0.34 Beta 112.6213 149.2887 NHS data-set [34] 

u.DMII 0.79 ± 0.24 Beta 3425.909 910.6847 Nauck et al. [36] 

 

Probability input parameters  

All transition probabilities were based on beta distributions or mean point estimates. The transition probabilities 

from KL2 to KL3 and KL3 to KL4 were based on the paper by Losina et al. [38], see supplementary Table 3. In 

this paper Losina made the distinction between obese and non-obese men and women from the United States of 

America. These transition probabilities allowed to simulate KOA patients in a personalized fashion. However, the 

reported probabilities were measured for any +1 KL-grade increment. Therefore, the probabilities of moving from 

KL2 to KL3 and KL3 to KL4 were the same.  

Since KOA patients are very heterogeneous in disease progression, the model was complemented with the 

probability to transition from any KL health state to the TKA state. These transition probabilities were retrieved 

from the NHS data-set containing Patient Reported Outcome Measures (PROMs) for KOA care. The data set 

allowed for the calculation of probability distributions stratified for sex, age, and duration of symptoms until TKA. 

Therefore, for each age and sex category in combination with duration of knee symptoms, a transition probability 

was calculated, see supplementary Table 3. The data-set originally reports four duration categories, namely: 

1. Less than one year of symptoms before surgery, which was adjusted to exactly one year in the model, 

because the cycle length in the model was one year. 

2. Two to five years of symptoms before surgery. After the probability distribution for this category was 

generated, the individually drawn values for the PSA were divided by four, based on the assumption that 

a patient in each of those four years has an equal chance of transitioning to TKA. 

3. Six to nine years of symptoms before surgery. The same assumption was made for this distribution as for 

the two to five years category. 

4. Ten or more years of symptoms before surgery. Probabilities sampled from the distribution generated for 

this category were not adjusted post-sampling. 

Finally, there was the probability to die in either of the three KL health states. These probabilities were calculated 

by multiplying the standardized mortality ratio’s (SMR’s) of KOA patients with the chance of dying reported for 

the general Dutch population by the Central Bureau for Statistics (CBS) in the Netherlands [43]. An overall SMR 

was reported for men and women with KOA, but not per KL stage. The SMR for men with KOA was 1.58 and the 

SMR for women with KOA was 1.52 [40]. Using the SMR’s and the data provided by the CBS, probabilities of 

dying were calculated for various age and sex groups, see supplementary Table 3.  

The probability of staying in either K2, KL3 or KL4 was calculated by subtracting the sum of the previously 

mentioned probabilities, being the probability of dying, progressing in KL-grade and transitioning to TKA, from 

one. 

Once the KOA patient entered the TKA health state, they moved to either the FB_pTKA, NB_pTKA or the death 

health states. The probabilities for FB_pTKA and NB_pTKA originally came from the same source [34]. Therefore 

the sum of these two probabilities already equalled one. The probability to die in the year of TKA was retrieved 

from a different source [41]. Therefore, these probabilities had to get readjusted to sum to one. This was done by 

multiplying both the probabilities of transitioning to FB_pTKA and NB_pTKA with the chance of dying and 

subtracting it from the prior respective probabilities. Therefore, if the chance of dying was 0.1, the chance of 

transitioning to FB_pTKA was 0.8 and the chance of transitioning to NB_pTKA was 0.2, than these probabilities 

would become 0.1, 0.72 and 0.18. The chance of dying was again calculated by multiplying a SMR, of 1.08, with 

the probabilities of the general Dutch population.  

Once the KOA patient was in FB_pTKA or NB_pTKA, they would transition to the rTKA, stay in their respective 

health state or move to the death health state, see figure 1 in the main paper. The probabilities to transition to rTKA 

implemented in the model were retrieved from a Dutch study, but did not mention the probability to transition for 

patients that did not experience net benefit, because often times there is only few patients that experience no net 

benefit and the group average is analysed [39]. For this reason, the assumption was made that the transition 

probability from either of the two health states to the rTKA health state were the same. Since the authors of the 

paper reported 6 yearly probabilities, these were transformed to annual transition probabilities, meaning that the 

alpha and beta parameters of the beta distribution in supplementary Table 3 were based on the six year probabilities, 

but all the values drawn from the beta distribution were transformed into annual chances. The probability of dying 
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was the same as for the TKA health state. This probability could get higher as the patient stays multiple years in 

the same stage, because all probabilities were updated with age. The probability to stay in either FB_pTKA or 

NB_pTKA was calculated by subtracting the sum of progressing or dying from one.  

In the rTKA stage a KOA patient could again die, transition to FB_prTKA or transition to NB_prTKA. Once again, 

the probabilities to transition to FB_prTKA or NB_prTKA came from one source and the chance of dying came 

from another source. Therefore, the same normalization method mentioned for the TKA transitions were applied 

in this stage as well.  

In FB_prTKA and NB_prTKA patients could either remain in that state or die. The chance of dying was the same 

as for the rTKA stage and the chance of remaining in the respective states was calculated by subtracting the 

mortality chance from one. No re-revision stage was added to the model because no data could be found on re-

rTKA with regards to transition probabilities to full benefit or no benefit health states or the associated costs and 

utilities. 

Supplementary Table3. Transition probabilities table including distribution parameters for Monte Carlo simulations. aThese 

transition probabilities were representative for any increment in the KL grading scale, meaning from KL2 to KL3 and KL3 to 

KL4.  bThe alpha and beta values were used to generate a distrinution. This distribution was divided by 4, because the 

assumption was made that each year within the 2-5 year and 6-9 year category, there would be an equal chance of 

transitioning to TKA. This is already depicted in the mean and SD. cThe alpha and beta values for the distribution of these 

transition probabilities were based on6 year measurement period. Therefore, the distribution was transformed to 1 year 

transition probabilities, which are depicted in the mean and SD. SD = standard deviation. 

Probability + 1 KL Mean ± SD Distribution Alpha Beta Source 

Obese & malea 0.12 ± 0.03 Beta 15.77 112.91 Losina et al. [38] 

Non-obese & malea 0.06 ± 0.01 Beta 15.16 256.53 Losina et al. [38] 

Obese & femalea 0.09 ± 0.02 Beta 15.54 158.12 Losina et al. [38] 

Non-obese & femalea 0.04 ± 0.01 Beta 15.02 360.42 Losina et al. [38] 

Probability KL → TKA Mean ± SD Distribution Alpha Beta Source 

1 year & male & 45-59 0.0097 ± 0.005 Beta 4 412 NHS data-set [34] 

1 year & male & 60-79 0.0160 ± 0.002 Beta 77 4741 NHS data-set [34] 

1 year & male & 80+ 0.0133 ± 0.005 Beta 7 521 NHS data-set [34] 

1 year & female & 45-59 0.0168 ± 0.005 Beta 14 814 NHS data-set [34] 

1 year & female & 60-79 0.0187 ± 0.002 Beta 100 5249 NHS data-set [34] 

1 year & female & 80+ 0.0287 ± 0.006 Beta 22 747 NHS data-set [34] 

2-5 years & male & 45-59b 0.0913 ± 0.006 Beta 152 264 NHS data-set [34] 

2-5 years & male & 60-79b 0.1222 ± 0.002 Beta 2355 2463 NHS data-set [34] 

2-5 years & male & 80+b 0.1571 ± 0.005 Beta 332 169 NHS data-set [34] 

2-5 years & female & 45-59b 0.1235 ± 0.004 Beta 409 419 NHS data-set [34] 

2-5 years & female & 60-79b 0.1396 ± 0.002 Beta 2987 2362 NHS data-set [34] 

2-5 years & female & 80+b 0.1691 ± 0.004 Beta 520 249 NHS data-set [34] 

6-9 years & male & 45-59b 0.0548 ± 0.005 Beta 91 325 NHS data-set [34] 

6-9 years & male & 60-79b 0.0642 ± 0.002 Beta 1237 3581 NHS data-set [34] 

6-9 years & male & 80+b 0.0516 ± 0.004 Beta 109 419 NHS data-set [34] 

6-9 years & female & 45-59b 0.0616 ± 0.004 Beta 204 624 NHS data-set [34] 

6-9 years & female & 60-79b 0.0597 ± 0.001 Beta 1278  4071 NHS data-set [34] 

6-9 years & female & 80+b 0.0430 ± 0.003 Beta 132  637 NHS data-set [34] 

10+ years & male & 45-59 0.4063 ± 0.024 Beta 169  247 NHS data-set [34] 

10+ years & male & 60-79 0.2384 ± 0.006 Beta 1149  3669 NHS data-set [34] 

10+ years & male & 80+ 0.1513 ± 0.016 Beta 80  448 NHS data-set [34] 

10+ years & female & 45-59 0.2426 ± 0.015 Beta 201  627 NHS data-set [34] 

10+ years & female & 60-79 0.1839 ± 0.005 Beta 984  4365 NHS data-set [34] 

10+ years & female & 80+ 0.1237 ± 0.012 Beta 95  674 NHS data-set [34] 

Probability TKA → FB_pTKA Mean ± SD Distribution Alpha Beta Source 

Male & 45-59 0.8210 ± 0.019 Beta 344 75 NHS data-set [34] 

Male & 60-79 0.8193 ± 0.006 Beta 3971 876 NHS data-set [34] 

Male & 80+ 0.8285 ± 0.016 Beta 440 91 NHS data-set [34] 

Female & 45-59 0.7907 ± 0.014 Beta 657 174 NHS data-set [34] 

Female & 60-79 0.8268 ± 0.005 Beta 4466 935 NHS data-set [34] 

Female & 80+ 0.8227 ± 0.0138 Beta 645 139 NHS data-set [34] 

Probability FB_pTKA → rTKA Mean ± SD Distribution Alpha Beta Source  

Male & 45-59c 0.0173 ± 0.0004 Beta 1274 11553 Gademan et al. [39] 
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Male & 60-79c 0.0052 ± 0.0001 Beta 1190 37484 Gademan et al. [39] 

Male & 80+c 0.0032 ± 0.0003 Beta 118 6103 Gademan et al. [39] 

Female & 45-59c 0.0089 ± 0.0002 Beta 1937 35293 Gademan et al. [39] 

Female & 60-79c 0.0054 ± 0.0001 Beta 2415 72613 Gademan et al. [39] 

Female & 80+c 0.0031 ± 0.0002 Beta 352 18505 Gademan et al. [39] 

Probability rTKA → FB_prTKA Mean ± SD Distribution Alpha Beta Source 

Male & 45-59 0.7320 ± 0.085 Beta 19 7 NHS data-set [34] 

Male & 60-79 0.7247 ± 0.033 Beta 134 51 NHS data-set [34] 

Male & 80+ 0.8210 ± 0.072 Beta 23 5 NHS data-set [34] 

Female & 45-59 0.7151 ± 0.075 Beta 25 10 NHS data-set [34] 

Female & 60-79 0.7856 ± 0.029 Beta 158 43 NHS data-set [34] 

Female & 80+ 0.7890 ± 0.066 Beta 30 8 NHS data-set [34] 

Probability KL → D Mean Distribution Source 

Male & 45-64 0.0072 - Nüesch et al. & CBS [40, 43] 

Male & 65-80 0.0399 - Nüesch et al. & CBS [40, 43] 

Male & 80-85 0.1111 - Nüesch et al. & CBS [40, 43] 

Male & 85-90 0.2137 - Nüesch et al. & CBS [40, 43] 

Male & 90-95 0.3959 - Nüesch et al. & CBS [40, 43] 

Male & 95+ 0.7059 - Nüesch et al. & CBS [40, 43] 

Female & 45-64 0.0050 - Nüesch et al. & CBS [40, 43] 

Female & 65-80 0.0268 - Nüesch et al. & CBS [40, 43] 

Female & 80-85 0.0768 - Nüesch et al. & CBS [40, 43] 

Female & 85-90 0.1598 - Nüesch et al. & CBS [40, 43] 

Female & 90-95 0.3150 - Nüesch et al. & CBS [40, 43] 

Female & 95+ 0.5872 - Nüesch et al. & CBS [40, 43] 

Probability TKA → D Mean Distribution Source 

45-64 0.0042 - Zhou et al. & CBS [41, 43] 

65-80 0.0232 - Zhou et al. & CBS [41, 43] 

80-85 0.0652 - Zhou et al. & CBS [41, 43] 

85-90 0.1298 - Zhou et al. & CBS [41, 43] 

90-95 0.2472 - Zhou et al. & CBS [41, 43] 

95+ 0.4499 - Zhou et al. & CBS [41, 43] 

Probability rTKA → D Mean Distribution Source 

45-64 0.0070 - Inacio et al. & CBS [42, 43] 

65-80 0.0386 - Inacio et al. & CBS [42, 43] 

80-85 0.1087 - Inacio et al. & CBS [42, 43] 

85-90 0.2164 - Inacio et al. & CBS [42, 43] 

90-95 0.4120 - Inacio et al. & CBS [42, 43] 

95+ 0.7498 - Inacio et al. & CBS [42, 43] 

 

Probability DMII  

Beside the probabilities to progress or die, there were also probabilities implemented in the model to develop a 

comorbidity due to the KOA. This comorbidity was DMII as mentioned before. The probabilities to develop DMII 

was not restricted to the health state that was occupied by the patient. Instead, every cycle, the patient had a chance 

of developing the comorbidity. The probability of developing DMII was calculated using RR measures from the 

work of Rahman et al. in combination with Dutch population data [52, 53]. To calculate the probability that an 

obese, overweight or not overweight KOA patient would develop DMII, we needed the probabilities that a not 

exposed obese, overweight or not overweight individual would develop DMII. This latter probability would have 

to be multiplied by the RR to get the probability for a KOA patient. Then the model controls for each cycle whether, 

using stochastic assignment, someone will develop DMII. After that initial cycle where the patient develops DMII, 

they remain diabetic until death and keep incurring the DMII related costs and utilities. 
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Supplementary file B 

Scenario 2A is an additional analysis to Scenario 2 regarding adherence. In Scenario 2A, the exact same population 

was tested for the intervention, but an adherence of 100% was assumed to explore the maximum potential effect 

of the e-health application. Therefore, all other parameters were the same as in Scenario 2. 

The scenario analysis showed that there was an average effect loss of 0.04. This was 0.01 percent point lower than 

in Scenario 2, showing that full adherence is more effective in retaining KOA patients in the conservative phase 

of the model. At the same time average cost-savings of €2095 were observed in Scenario 2A. These cost-savings 

where €736 higher than in Scenario 2. The ICER and MAC both had increased compared to in Scenario 2 and 

were €59119 per QALY and €1386 per person per year, respectively. 

The percentage of simulations that were dominant in Scenario 2A were the same as the percentage of simulations 

that were effective, namely 18%. This was 6.6 percent points lower than in Scenario 2. The probability of the 

scenario simulations being cost-saving had increased by 3.4 percent points, see supplementary Figure 1. 

It had also been observed that the lifetime risk for a TKA and rTKA were 0.89 and 0.09, respectively, and that the 

reduction in TKAs and rTKAs were 1.6% and 6.2%, respectively. 

  

Supplementary Figure 1. Graph showing PSA results of Scenario 2 in magenta and Scenario 2A in light blue. 
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Supplementary file C 

The code for the simulation Model consist of three parts. The first part entails the libraries necessary to run the 

code, standard model input parameters and all of the transition probabilities that will be called by certain 

functions when certain conditions are met. The basal layout of the code comes from the following source: 

Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou P. Microsimulation 

modeling for health decision sciences using R: A tutorial. Med Decis Making. 2018;38(3):400–22. 

rm(list = ls())    # remove any variables in R's memory  
library(truncnorm) # Generate truncated normal distributions 
library(ggplot2)   # Data visualization 
library(dampack)   # Estimate Gamma and Beta distributions 
 
## Model input ## 
n.i <- 1000 # Number of simulated individuals                                                                           
n.t <- 50 # Time horizon in years 
v.n <- c("KL2","KL3", "KL4","TKA","FB_pTKA","NB_pTKA","rTKA","FB_prTKA", "NB_prTKA","D") # 
Model states 
n.s <- length(v.n) # Number of health states                                                                        
d.c         <- 0.03 # Discounting of costs 3%                                                                              
d.e         <- 0.015 # Discounting of QALYs 1.5%                                                                             
v_names_str <- c("SOC", "E.health") # Store the strategy names                                                              
n_str       <- length(v_names_str) # Number of strategies                                                              
n_sim       <- 500 # Number of PSA simulations                                                                                
seed.all    <- 1 # Identical seed for all random processes                                                                                 
RR_SC1 <- 0.95 # Relative risk used to reduce chance of KOA progression                                                                                   
RR.dm_SC1 <- 1 # Relative risk used to lower chance for DMII development                                                                                   
 
## Data analysis ## 
# Annual mortality in general Dutch population. Based on CBS 
p.male.45to65.mortality   <- 0.0045335      
p.female.45to65.mortality <- 0.00328725   
p.male.65to80.mortality   <- 0.025257     
p.female.65to80.mortality <- 0.017613667  
p.male.80to85.mortality   <- 0.070285     
p.female.80to85.mortality <- 0.05053      
p.male.85to90.mortality   <- 0.135232     
p.female.85to90.mortality <- 0.105158     
p.male.90to95.mortality   <- 0.250561     
p.female.90to95.mortality <- 0.207239     
p.male.95tox.mortality    <- 0.446796  
p.female.95tox.mortality  <- 0.386342     
 
# Probability of dying in KL2 to KL4, age and sex specific. 
SMR_M_KL <- 1.58 # Standardized mortality ratio for men. Based on: https://pubmed.ncbi.nlm.
nih.gov/21385807/ 
SMR_F_KL <- 1.52 # Standardized mortality ratio for women. Based on: https://pubmed.ncbi.nl
m.nih.gov/21385807/ 
 
p.KLtoD_45to65_M <- p.male.45to65.mortality   * SMR_M_KL 
p.KLtoD_45to65_F <- p.female.45to65.mortality * SMR_F_KL 
p.KLtoD_65to80_M <- p.male.65to80.mortality   * SMR_M_KL 
p.KLtoD_65to80_F <- p.female.65to80.mortality * SMR_F_KL 
p.KLtoD_80to85_M <- p.male.80to85.mortality   * SMR_M_KL 
p.KLtoD_80to85_F <- p.female.80to85.mortality * SMR_F_KL 
p.KLtoD_85to90_M <- p.male.85to90.mortality   * SMR_M_KL 
p.KLtoD_85to90_F <- p.female.85to90.mortality * SMR_F_KL 
p.KLtoD_90to95_M <- p.male.90to95.mortality   * SMR_M_KL 
p.KLtoD_90to95_F <- p.female.90to95.mortality * SMR_F_KL 
p.KLtoD_95tox_M  <- p.male.95tox.mortality    * SMR_M_KL  
p.KLtoD_95tox_F  <- p.female.95tox.mortality  * SMR_F_KL  
 
# Annual probability of dying in revision TKA, age specific. Based on: https://pubmed.ncbi.
nlm.nih.gov/30559011/ AND https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528856/ 
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SMR_rTKA <- 1.8 # Joint SMR for men and women 
p.45to65.mortality <- 0.003910375       
p.65to80.mortality <- 0.021435333       
p.80to85.mortality <- 0.0604075        
p.85to90.mortality <- 0.120195        
p.90to95.mortality <- 0.2289        
p.95tox.mortality  <- 0.416569      
 
p.rTKAtoD_45to65 <- p.45to65.mortality * SMR_rTKA  
p.rTKAtoD_65to80 <- p.65to80.mortality * SMR_rTKA  
p.rTKAtoD_80to85 <- p.80to85.mortality * SMR_rTKA  
p.rTKAtoD_85to90 <- p.85to90.mortality * SMR_rTKA  
p.rTKAtoD_90to95 <- p.90to95.mortality * SMR_rTKA  
p.rTKAtoD_95tox  <- p.95tox.mortality  * SMR_rTKA 
 
# Annual probability of dying in TKA, age specific. Based on: https://pubmed.ncbi.nlm.nih.g
ov/37279845/ 
SMR_TKA <- 1.08 
p.TKAtoD_45to65 <- p.45to65.mortality * SMR_TKA 
p.TKAtoD_65to80 <- p.65to80.mortality * SMR_TKA 
p.TKAtoD_80to85 <- p.80to85.mortality * SMR_TKA 
p.TKAtoD_85to90 <- p.85to90.mortality * SMR_TKA 
p.TKAtoD_90to95 <- p.90to95.mortality * SMR_TKA 
p.TKAtoD_95tox  <- p.95tox.mortality  * SMR_TKA 
 
# Probability of being an obese dutch person stratified by age and sex. Based on: 
# https://www.zorginzicht.nl/binaries/content/assets/zorginzicht/kwaliteitsinstrumenten/KNG
F-richtlijn+Artrose+heup-knie.PDF AND 
# https://www.vzinfo.nl/overgewicht/volwassenen 
p.man <- 190400/546100  # probability of KOA patient being male.  
p.OB.U65 <- 0.2   # Probability of being obese and under 65 years 
p.OW.U65 <- 0.403 # Probability of being overweight and under 65 years 
p.OB.O65 <- 0.159 # Probability of being obese and over 65 years 
p.OW.O65 <- 0.383 # Probability of being overweight and over 65 years 
 
# Developing diabetes, Based on  
# https://www.cbs.nl/nl-nl/nieuws/2022/40/meer-obesitas-en-diabetes-bij-volwassenen-met-arm
oederisico#:~:text=In%202021%20had%205%20procent,zonder%20overgewicht%20(2%20procent). 
# https://www.hindawi.com/journals/ijr/2014/620920/ 
rr.DM.O65   <- (0.99 + 1.32)/2 # averaged, because the report it stratified   
rr.DM.U65   <- (1.32 + 1.52)/2 # averaged, because the report it stratified   
p.DM.U65.OB <- rr.DM.U65 * 0.118 # probability of developing DM2 while under 65 years and o
bese 
p.DM.U65.OW <- rr.DM.U65 * 0.059 # probability of developing DM2 while under 65 years and o
verweight 
p.DM.U65.NW <- rr.DM.U65 * 0.020 # probability of developing DM2 while under 65 years and n
ot overweight 
p.DM.O65.OB <- rr.DM.O65 * 0.225 # probability of developing DM2 while over 65 years and ob
ese 
p.DM.O65.OW <- rr.DM.O65 * 0.140 # probability of developing DM2 while over 65 years and ov
erweight 
p.DM.O65.NW <- rr.DM.O65 * 0.063 # probability of developing DM2 while over 65 years and no
t overweight 
 
# Dissatisfied patient cost factor 
set.seed(seed.all) 
ds_NB_pTKA <- mean(rnorm(100000, 21156.18, 137107.72)) / mean(rnorm(100000, 13453.84, 42446
.40)) # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451500/ 
set.seed(NULL) 

## Functions ## 
gen_psa <- function(n_sim = n_sim, seed = seed.all){ # Function that generates inputparamet
er distributions for PSA 
  set.seed(seed) 
  df_psa <- data.frame( 
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    p.adh  = rbeta(n_sim, 184, 100), # Distribution for probability of being adherent to th
e intervention 
    c.DMII = rgamma(n_sim, shape = 99.40388, scale = 60.48054), # Distribution for costdata 
when a patient is dabetic 
     
    p.t1_M_40to59     = rbeta(n_sim, 4, 412), # Distribution for probability to transition 
to TKA after 1 year of symptoms when 40-59 year old man   
    p.t2to5_M_40to59  = (rbeta(n_sim, 152, 264) / 4), # Distribution for probability to tra
nsition to TKA after 2-5 year of symptoms when 40-59 year old man 
    p.t6to9_M_40to59  = (rbeta(n_sim, 91, 325) / 4), # Distribution for probability to tran
sition to TKA after 6-9 year of symptoms when 40-59 year old man 
    p.t10tox_M_40to59 = rbeta(n_sim, 169, 247), # Distribution for probability to transitio
n to TKA after 10+ year of symptoms when 40-59 year old man 
     
    p.t1_M_60to80     = rbeta(n_sim, 77, 4741), # Distribution for probability to transitio
n to TKA after 1 year of symptoms when 60-80 year old man   
    p.t2to5_M_60to80  = (rbeta(n_sim, 2355, 2463) / 4), # Distribution for probability to t
ransition to TKA after 2-5 year of symptoms when 60-80 year old man 
    p.t6to9_M_60to80  = (rbeta(n_sim, 1237, 3581) / 4), # Distribution for probability to t
ransition to TKA after 6-9 year of symptoms when 60-80 year old man 
    p.t10tox_M_60to80 = rbeta(n_sim, 1149, 3669), # Distribution for probability to transit
ion to TKA after 10+ year of symptoms when 60-80 year old man 
     
    p.t1_M_80tox     = rbeta(n_sim, 7, 521), # Distribution for probability to transition t
o TKA after 1 year of symptoms when 80+ year old man   
    p.t2to5_M_80tox  = (rbeta(n_sim, 332, 196) / 4), # Distribution for probability to tran
sition to TKA after 2-5 year of symptoms when 80+ year old man 
    p.t6to9_M_80tox  = (rbeta(n_sim, 109, 419) / 4), # Distribution for probability to tran
sition to TKA after 6-9 year of symptoms when 80+ year old man 
    p.t10tox_M_80tox = rbeta(n_sim, 80, 448), # Distribution for probability to transition 
to TKA after 10+ year of symptoms when 80+ year old man 
     
    p.t1_F_40to59     = rbeta(n_sim, 14, 814), # Distribution for probability to transition 
to TKA after 1 year of symptoms when 40-59 year old woman   
    p.t2to5_F_40to59  = (rbeta(n_sim, 409, 419) / 4), # Distribution for probability to tra
nsition to TKA after 2-5 year of symptoms when 40-59 year old woman 
    p.t6to9_F_40to59  = (rbeta(n_sim, 204, 624) / 4), # Distribution for probability to tra
nsition to TKA after 6-9 year of symptoms when 40-59 year old woman 
    p.t10tox_F_40to59 = rbeta(n_sim, 201, 627), # Distribution for probability to transitio
n to TKA after 10+ year of symptoms when 40-59 year old woman 
     
    p.t1_F_60to80     = rbeta(n_sim, 100, 5249), # Distribution for probability to transiti
on to TKA after 1 year of symptoms when 60-80 year old woman   
    p.t2to5_F_60to80  = (rbeta(n_sim, 2987, 2362) / 4), # Distribution for probability to t
ransition to TKA after 2-5 year of symptoms when 60-80 year old woman 
    p.t6to9_F_60to80  = (rbeta(n_sim, 1278, 4071) / 4), # Distribution for probability to t
ransition to TKA after 6-9 year of symptoms when 60-80 year old woman 
    p.t10tox_F_60to80 = rbeta(n_sim, 984, 4365), # Distribution for probability to transiti
on to TKA after 10+ year of symptoms when 60-80 year old woman 
     
    p.t1_F_80tox     = rbeta(n_sim, 22, 747), # Distribution for probability to transition 
to TKA after 1 year of symptoms when 80+ year old woman   
    p.t2to5_F_80tox  = (rbeta(n_sim, 520, 249) / 4), # Distribution for probability to tran
sition to TKA after 2-5 year of symptoms when 80+ year old woman 
    p.t6to9_F_80tox  = (rbeta(n_sim, 132, 637) / 4), # Distribution for probability to tran
sition to TKA after 6-9 year of symptoms when 80+ year old woman 
    p.t10tox_F_80tox = rbeta(n_sim, 95, 674), # Distribution for probability to transition 
to TKA after 10+ year of symptoms when 80+ year old woman 
     
    # Probability of +1 KL 
    p.KL_M_O = rbeta(n_sim, 15.77727, 112.9117), # Probability to transition 1 KL-stage whe
n male and obese 
    p.KL_F_O = rbeta(n_sim, 15.54264, 158.1182), # Probability to transition 1 KL-stage whe
n female and obese 
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    p.KL_M   = rbeta(n_sim, 15.16028, 256.5293), # Probability to transition 1 KL-stage whe
n male and not obese 
    p.KL_F   = rbeta(n_sim, 15.01735, 360.4163), # Probability to transition 1 KL-stage whe
n female and not obese 
     
    # Probability TKA to FB_pTKA (NBp = 1-p)                         
    p.TKA_FBp_M_45to60 = rbeta(n_sim, 344, 75), # Probability TKA to FB_pTKA for 45 to 60 y
ear old men   
    p.TKA_FBp_F_45to60 = rbeta(n_sim, 657, 174), # Probability TKA to FB_pTKA for 45 to 60 
year old women 
    p.TKA_FBp_M_60to80 = rbeta(n_sim, 3971, 876), # Probability TKA to FB_pTKA for 60 to 80 
year old men   
    p.TKA_FBp_F_60to80 = rbeta(n_sim, 4466, 935), # Probability TKA to FB_pTKA for 60 to 80 
year old men   
    p.TKA_FBp_M_80tox  = rbeta(n_sim, 440, 91), # Probability TKA to FB_pTKA for 80+ year o
ld men        
    p.TKA_FBp_F_80tox  = rbeta(n_sim, 645, 139), # Probability TKA to FB_pTKA for 80+ year 
old women      
     
    # Probability rTKA to FB_prTKA (NBpr = 1-p)      
    p.rTKA_FBpr_M_45to60   = rbeta(n_sim, 19, 7), # Probability rTKA to FB_prTKA for 45 to 
60 year old men   
    p.rTKA_FBpr_F_45to60   = rbeta(n_sim, 25, 10), # Probability rTKA to FB_prTKA for 45 to 
60 year old women 
    p.rTKA_FBpr_M_60to80   = rbeta(n_sim, 134, 51), # Probability rTKA to FB_prTKA for 60 t
o 80 year old men   
    p.rTKA_FBpr_F_60to80   = rbeta(n_sim, 158, 43), # Probability rTKA to FB_prTKA for 60 t
o 80 year old men   
    p.rTKA_FBpr_M_80tox    = rbeta(n_sim, 23, 5), # Probability rTKA to FB_prTKA for 80+ ye
ar old men        
    p.rTKA_FBpr_F_80tox    = rbeta(n_sim, 30, 8), # Probability rTKA to FB_prTKA for 80+ ye
ar old women      
     
    # Probability FB or NB post primary TKA to revision TKA 
    p.FB.NBp_rTKA_M_45to65  = 1 - ((1 - rbeta(n_sim, 1274, 11553))^(1/6)), # Probability FB 
or NB post primary TKA to revision TKA for 45 to 60 year old men    
    p.FB.NBp_rTKA_F_45to65  = 1 - ((1 - rbeta(n_sim, 1937, 35293))^(1/6)), # Probability FB 
or NB post primary TKA to revision TKA for 45 to 60 year old women 
    p.FB.NBp_rTKA_M_65to80  = 1 - ((1 - rbeta(n_sim, 1190, 37484))^(1/6)), # Probability FB 
or NB post primary TKA to revision TKA for 60 to 80 year old men   
    p.FB.NBp_rTKA_F_65to80  = 1 - ((1 - rbeta(n_sim, 2415, 72613))^(1/6)), # Probability FB 
or NB post primary TKA to revision TKA for 60 to 80 year old men   
    p.FB.NBp_rTKA_M_80tox   = 1 - ((1 - rbeta(n_sim, 118, 6103))^(1/6)  ), # Probability FB 
or NB post primary TKA to revision TKA for 80+ year old men         
    p.FB.NBp_rTKA_F_80tox   = 1 - ((1 - rbeta(n_sim, 352, 18505))^(1/6) )  # Probability FB 
or NB post primary TKA to revision TKA for 80+ year old women      
  ) 
  return(df_psa) 
} 
 
# Function to look-up transition probability from conservative health stages to TKA based o
n duration of symptoms, sex and age 
# tx, where x is the number of years with symptoms before surgery 
# M = male; F = Female 
# x1tox2, where x1 and x2 describe the age category 
prob_t <- function(i){  
  df_l_2TKA <- expand.grid(Age = c(45:150), Sex = c(0,1), Cycle = c(1:n.t)) 
  df_l_2TKA$Probability <- NA 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_M_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_M_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_M_80tox[i] 
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  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_F_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_F_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle == 1)] <- df_psa_input_SC1$p.t1_F_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_M_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_M_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_M_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_F_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_F_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 2:5)] <- df_psa_input_SC1$p.t2to5_F_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_M_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_M_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_M_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_F_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_F_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 6:9)] <- df_psa_input_SC1$p.t6to9_F_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_M_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_M_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 1 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_M_80tox[i] 
   
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 40:60   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_F_40to59[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 60:80   & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_F_60to80[i] 
  df_l_2TKA$Probability[which(df_l_2TKA$Age %in% 80:150  & df_l_2TKA$Sex == 0 & df_l_2TKA$C
ycle %in% 10:n.t)] <- df_psa_input_SC1$p.t10tox_F_80tox[i] 
   
  return(df_l_2TKA) 
} 
 
Probs <- function(M_it, Trt, i, t, RR_SC1){ 
  p.KL2_3 <- p.KL3_4 <-  ifelse(df_Char_SC1$male[i] == 1 & df_Char_SC1$Obese[i] == “Obese”, 
p.KL_M_O, 
                         ifelse(df_Char_SC1$male[i] == 0 & df_Char_SC1$Obese[i] == “Obese”, 
p.KL_F_O, 
                         ifelse(df_Char_SC1$male[i] == 1 & df_Char_SC1$Obese[i] != “Obese”, 
p.KL_M, p.KL_F))) # Probability to progress 1 KL state based on sex and BMI 
   
  p.KL_D <- ifelse(m.AGE_SC1[i, t] < 65 & df_Char_SC1$male[i] == 1, p.KLtoD_45to65_M,  
            ifelse(m.AGE_SC1[i, t] < 80 & m.AGE_SC1[i, t] >= 65 & df_Char_SC1$male[i] == 1, 
p.KLtoD_65to80_M,  
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            ifelse(m.AGE_SC1[i, t] < 85 & m.AGE_SC1[i, t] >= 80 & df_Char_SC1$male[i] == 1, 
p.KLtoD_80to85_M, 
            ifelse(m.AGE_SC1[i, t] < 90 & m.AGE_SC1[i, t] >= 85 & df_Char_SC1$male[i] == 1, 
p.KLtoD_85to90_M, 
            ifelse(m.AGE_SC1[i, t] < 95 & m.AGE_SC1[i, t] >= 90 & df_Char_SC1$male[i] == 1, 
p.KLtoD_90to95_M, 
            ifelse(m.AGE_SC1[i, t] >= 95 & df_Char_SC1$male[i] == 1, p.KLtoD_95tox_M, 
            ifelse(m.AGE_SC1[i, t] < 65 & df_Char_SC1$male[i] == 0, p.KLtoD_45to65_F, 
            ifelse(m.AGE_SC1[i, t] < 80 & m.AGE_SC1[i, t] >= 65 & df_Char_SC1$male[i] == 0, 
p.KLtoD_65to80_F,  
            ifelse(m.AGE_SC1[i, t] < 85 & m.AGE_SC1[i, t] >= 80 & df_Char_SC1$male[i] == 0, 
p.KLtoD_80to85_F, 
            ifelse(m.AGE_SC1[i, t] < 90 & m.AGE_SC1[i, t] >= 85 & df_Char_SC1$male[i] == 0, 
p.KLtoD_85to90_F, 
            ifelse(m.AGE_SC1[i, t] < 95 & m.AGE_SC1[i, t] >= 90 & df_Char_SC1$male[i] == 0, 
p.KLtoD_90to95_F, # Probability to die from KL stages 
            p.KLtoD_95tox_F))))))))))) 
   
  p.TKA_FBp <- ifelse(m.AGE_SC1[i, t] <= 60 & df_Char_SC1$male[i] == 1, p.TKA_FBp_M_45to60,  
               ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 60 & df_Char_SC1$male[i] == 
1, p.TKA_FBp_M_60to80,  
               ifelse(m.AGE_SC1[i, t] > 80 & df_Char_SC1$male[i] == 1, p.TKA_FBp_M_80tox,  
               ifelse(m.AGE_SC1[i, t] <= 60 & df_Char_SC1$male[i] == 0, p.TKA_FBp_F_45to60, 
               ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 60 & df_Char_SC1$male[i] == 
0, p.TKA_FBp_F_60to80, p.TKA_FBp_F_80tox))))) # Probability to experience full benefit post
-TKA based on sex and age 
   
  p.TKA_D <- p.FBp_D <- p.NBp_D <- ifelse(m.AGE_SC1[i, t] < 65, p.TKAtoD_45to65, 
                                   ifelse(m.AGE_SC1[i, t] < 80 & m.AGE_SC1[i, t] >= 65, p.T
KAtoD_65to80, 
                                   ifelse(m.AGE_SC1[i, t] < 85 & m.AGE_SC1[i, t] >= 80, p.T
KAtoD_80to85, 
                                   ifelse(m.AGE_SC1[i, t] < 90 & m.AGE_SC1[i, t] >= 85, p.T
KAtoD_85to90, 
                                   ifelse(m.AGE_SC1[i, t] < 95 & m.AGE_SC1[i, t] >= 90, p.T
KAtoD_90to95, p.TKAtoD_95tox))))) # Probability to die from primary surgical stages based o
n age 
   
  p.KL2_TKA <- p.KL3_TKA <- p.KL4_TKA <- df_prob_t_SC1$Probability[df_prob_t_SC1$Sex == df_
Char_SC1$male[i] & df_prob_t_SC1$Age == m.AGE_SC1[i, t] & df_prob_t_SC1$Cycle == t] 
   
  p.TKA_FBp <- p.TKA_FBp - (p.TKA_FBp * p.TKA_D) 
  p.TKA_NBp <- 1 - p.TKA_FBp - p.TKA_D 
   
  p.FBp_rTKA <- p.NBp_rTKA <- ifelse(m.AGE_SC1[i, t] <= 65 & df_Char_SC1$male[i] == 1, p.FB
.NBp_rTKA_M_45to65,  
                              ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 65 & df_Char
_SC1$male[i] == 1, p.FB.NBp_rTKA_M_65to80,  
                              ifelse(m.AGE_SC1[i, t] > 80 & df_Char_SC1$male[i] == 1, p.FB.
NBp_rTKA_M_80tox,  
                              ifelse(m.AGE_SC1[i, t] <= 65 & df_Char_SC1$male[i] == 0, p.FB
.NBp_rTKA_F_45to65, 
                              ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 65 & df_Char
_SC1$male[i] == 0, p.FB.NBp_rTKA_F_65to80, 
                              p.FB.NBp_rTKA_F_80tox))))) # Probability to need revision TKA 
based on sex and age 
   
  p.rTKA_FBpr <- ifelse(m.AGE_SC1[i, t] <= 60 & df_Char_SC1$male[i] == 1, p.rTKA_FBpr_M_45t
o60,  
                 ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 60 & df_Char_SC1$male[i] 
== 1, p.rTKA_FBpr_M_60to80,  
                 ifelse(m.AGE_SC1[i, t] > 80 & df_Char_SC1$male[i] == 1, p.rTKA_FBpr_M_80to
x,  
                 ifelse(m.AGE_SC1[i, t] <= 60 & df_Char_SC1$male[i] == 0, p.rTKA_FBpr_F_45t
o60, 
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                 ifelse(m.AGE_SC1[i, t] <= 80 & m.AGE_SC1[i, t] > 60 & df_Char_SC1$male[i] 
== 0, p.rTKA_FBpr_F_60to80,  
                 p.rTKA_FBpr_F_80tox))))) # Probability to experience full benefit post-rTK
A 
   
  p.rTKA_D <- p.NBpr_D <- p.FBpr_D <- ifelse(m.AGE_SC1[i, t] < 65, p.rTKAtoD_45to65, 
                                      ifelse(m.AGE_SC1[i, t] < 80 & m.AGE_SC1[i, t] >= 65, 
p.rTKAtoD_65to80, 
                                      ifelse(m.AGE_SC1[i, t] < 85 & m.AGE_SC1[i, t] >= 80, 
p.rTKAtoD_80to85, 
                                      ifelse(m.AGE_SC1[i, t] < 90 & m.AGE_SC1[i, t] >= 85, 
p.rTKAtoD_85to90, 
                                      ifelse(m.AGE_SC1[i, t] < 95 & m.AGE_SC1[i, t] >= 90, 
p.rTKAtoD_90to95,  
                                      p.rTKAtoD_95tox))))) # Probability to die after revis
ion TKA stages 
   
  p.rTKA_FBpr <- p.rTKA_FBpr - (p.rTKA_FBpr * p.rTKA_D) 
  p.rTKA_NBpr <- 1 - p.rTKA_FBpr - p.rTKA_D 
   
  p.KL2_TKA <- RR_SC1 * p.KL2_TKA #readjusting of probabilities based on RR 
  p.KL3_TKA <- RR_SC1 * p.KL3_TKA #readjusting of probabilities based on RR 
  p.KL4_TKA <- RR_SC1 * p.KL4_TKA #readjusting of probabilities based on RR 
  p.KL2_3   <- RR_SC1 * p.KL2_3   #readjusting of probabilities based on RR 
  p.KL3_4   <- RR_SC1 * p.KL3_4   #readjusting of probabilities based on RR 
   
  p.KL2_2     <- 1 - p.KL2_3 - p.KL2_TKA - p.KL_D 
  p.KL3_3     <- 1 - p.KL3_4 - p.KL3_TKA - p.KL_D 
  p.KL4_4     <- 1 - p.KL4_TKA - p.KL_D 
  p.FBpr_FBpr <- 1 - p.FBpr_D 
  p.NBpr_NBpr <- 1 - p.NBpr_D 
   
  v.p.it <- rep(NA, n.s) 
  names(v.p.it) <- v.n 
   
  v.p.it[M_it == "KL2"] <- c(p.KL2_2,p.KL2_3,0,p.KL2_TKA,0,0,0,0,0,p.KL_D)            
  v.p.it[M_it == "KL3"] <- c(0,p.KL3_3,p.KL3_4,p.KL3_TKA,0,0,0,0,0,p.KL_D)            
  v.p.it[M_it == "KL4"] <- c(0,0,p.KL4_4,p.KL4_TKA,0,0,0,0,0,p.KL_D)        
  v.p.it[M_it == "TKA"] <- c(0,0,0,0,p.TKA_FBp,p.TKA_NBp,0,0,0,p.TKA_D)                  
  v.p.it[M_it == "FB_pTKA"] <-   c(0,0,0,0,(1-p.FBp_rTKA-p.FBp_D),0,p.FBp_rTKA,0,0,p.FBp_D) 
  v.p.it[M_it == "NB_pTKA"] <-   c(0,0,0,0,0,(1-p.NBp_rTKA-p.NBp_D),p.NBp_rTKA,0,0,p.NBp_D) 
  v.p.it[M_it == "rTKA"] <-      c(0,0,0,0,0,0,0,p.rTKA_FBpr,p.rTKA_NBpr,p.rTKA_D) 
  v.p.it[M_it == "FB_prTKA"] <-  c(0,0,0,0,0,0,0,p.FBpr_FBpr,0,p.FBpr_D)                     
  v.p.it[M_it == "NB_prTKA"] <-  c(0,0,0,0,0,0,0,0,p.NBpr_NBpr,p.NBpr_D)                     
  v.p.it[M_it == "D"] <-         c(0,0,0,0,0,0,0,0,0,1)                            
  ifelse(all.equal(sum(v.p.it),1), return(v.p.it), print("Probabilities do not sum to 1"))     
} 
 
# Calculation of costs associated with each health state 
Costs <- function (M_it, Trt = FALSE, c.KL2, c.KL3, c.KL4, c.TKA, c.TKA.prod, c.FB_pTKA, c.
NB_pTKA, c.rTKA) {   
  c.it                     <- 0                                                                     
  c.it[M_it == "KL2"]      <- c.KL2/0.75                                 
  c.it[M_it == "KL3"]      <- c.KL3/0.75                                 
  c.it[M_it == "KL4"]      <- c.KL4/0.75                                 
  c.it[M_it == "TKA"]      <- c.TKA + c.TKA.prod                                                    
  c.it[M_it == "FB_pTKA"]  <- c.FB_pTKA                                                             
  c.it[M_it == "NB_pTKA"]  <- c.NB_pTKA * ds_NB_pTKA 
  c.it[M_it == "rTKA"]     <- c.rTKA + (1.5 * c.TKA.prod)                                           
  c.it[M_it == "FB_prTKA"] <- 1.5 * c.FB_pTKA                                                       
  c.it[M_it == "NB_prTKA"] <- 1.5 * c.NB_pTKA * ds_NB_pTKA                                                       
  c.it[M_it == "D"]        <- 0 
   
  return(c.it) 
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} 
 
# Calculation of effects associated with each health state 
Effs <- function (M_it, Trt = FALSE, cl = 1, u.KL2, u.KL3, u.KL4, u.TKA, u.FB_pTKA, u.NB_pT
KA, u.rTKA, u.FB_prTKA, u.NB_prTKA) {  
  u.it                    <- 0                                                   
  u.it[M_it == "KL2"]     <- u.KL2                                               
  u.it[M_it == "KL3"]     <- u.KL3                                               
  u.it[M_it == "KL4"]     <- u.KL4                                               
  u.it[M_it == "TKA"]     <- u.TKA                                               
  u.it[M_it == "FB_pTKA"] <- u.FB_pTKA                                           
  u.it[M_it == "NB_pTKA"] <- u.NB_pTKA                                           
  u.it[M_it == "rTKA"]    <- u.rTKA                                              
  u.it[M_it == "FB_prTKA"]<- u.FB_prTKA                                          
  u.it[M_it == "NB_prTKA"]<- u.NB_prTKA                                          
  u.it[M_it == "D"]       <- 0                                                    
  QALYs <- u.it * cl                                                             
  return(QALYs)                                                                  
} 
 
# Function to keep track of patient age 
AGE <- function(M_it, i, t) { 
  age <- df_Char_SC1$age[i] 
  age <- if (M_it != "D") { 
    age + t  # each year age grows with 1 year  
  } else { 
    0  # age remains unchanged if M_it is "D" 
  } 
  return(age)  
} 
 
# Function that determines whether someone develops DMII or has DMII based on age and BMI 
DMII_func <- function(M_it, i, t, RR.dm_SC1){ 
  DM2_present <- ifelse((m.AGE_SC1[i, t + 1] < 65) & (df_Char_SC1$Obese[i] == "Obese") & (r
unif(1) < (RR.dm_SC1 * p.DM.U65.OB)) | m.DMII_SC1[i, t] == 1, 1, 
                 ifelse((m.AGE_SC1[i, t + 1] < 65) & (df_Char_SC1$Obese[i] == "Overweight") 
& (runif(1) < (RR.dm_SC1 * p.DM.U65.OW)) | m.DMII_SC1[i, t] == 1, 1, 
                 ifelse((m.AGE_SC1[i, t + 1] < 65) & (df_Char_SC1$Obese[i] == "Not overweig
ht") & (runif(1) < (RR.dm_SC1 * p.DM.U65.NW)) | m.DMII_SC1[i, t] == 1, 1, 
                 ifelse((m.AGE_SC1[i, t + 1] >= 65) & (df_Char_SC1$Obese[i] == "Obese") & (
runif(1) < (RR.dm_SC1 * p.DM.O65.OB)) | m.DMII_SC1[i, t] == 1, 1, 
                 ifelse((m.AGE_SC1[i, t + 1] >= 65) & (df_Char_SC1$Obese[i] == "Overweight"
) & (runif(1) < (RR.dm_SC1 * p.DM.O65.OW)) | m.DMII_SC1[i, t] == 1, 1, 
                 ifelse((m.AGE_SC1[i, t + 1] >= 65) & (df_Char_SC1$Obese[i] == "Not overwei
ght") & (runif(1) < (RR.dm_SC1 * p.DM.O65.NW)) | m.DMII_SC1[i, t] == 1, 1, 0)))))) 
   
  if (M_it == "D") {DM2_present <- 0} 
  return(DM2_present) 
} 
 
# Generate patient characteristics table 
set.seed(seed.all) 
df_Char_SC1 <- data.frame(male = ifelse(runif(n.i) < p.man, 1, 0),               # Gender: 
1 = Male, 0 = Female 
                          age = round(rtruncnorm(n.i,a = 45, mean = 53.2, sd = 7.4))) # Gen
erate population based on Hermans et al., which used Dutch patients 
set.seed(NULL) 
 
# Function that performs the patient simulations and stores costs, effects and other outcom
es 
MicroSim <- function(n.i, n.t, v.n, X = NULL, d.c, d.e, TR.out = FALSE, TS.out = FALSE, Trt 
= FALSE, seed = seed.all, RR_SC1, drawn_values_SC1, RR.dm_SC1) { 
  set.seed(seed) 
  v.dwc <- 1 / ((1 + d.c) ^ (0:n.t)) 
  v.dwe <- 1 / ((1 + d.e) ^ (0:n.t)) 
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  # create the matrix capturing the state name/costs/health outcomes for all individuals at 
each time point  
  m.DMII_SC1 <<- m.AGE_SC1 <<- m.M_SC1 <<- m.C_SC1 <<- m.E_SC1 <<- matrix(nrow = n.i, ncol 
= n.t + 1, 
                                                                          dimnames = list(p
aste("ind",   1:n.i, sep =" "), 
                                                                                          p
aste("cycle", 0:n.t, sep =" "))) 
  ##################################################################### 
  # Complement the patient characteristics table 
  df_Char_SC1$Obese <<- ifelse((df_Char_SC1$age >= 65) & (runif(n.i) < p.OB.O65), "Obese", 
                               ifelse((df_Char_SC1$age >= 65) & (runif(n.i) < p.OW.O65), "O
verweight", 
                                      ifelse((df_Char_SC1$age < 65) & (runif(n.i) < p.OB.U6
5), "Obese", 
                                             ifelse((df_Char_SC1$age < 65) & (runif(n.i) < 
p.OW.U65), "Overweight", 
                                                    "Notoverweight")))) 
  df_Char_SC1$u.DMII <- qbeta(drawn_values_SC1,3425.909, 910.6847) 
  ##################################################################### 
   
  m.M_SC1[, 1] <<- rep("KL2", n.i) # All patients start at KL2 
  m.DMII_SC1[, 1] <<- rep(0, n.i) # All patients start without DMII 
   
  for (i in 1:n.i) { # Run simulation for every individual 
    set.seed(seed + i) # set the seed for every individual for the random number generator 
    m.AGE_SC1[i, 1] <<- df_Char_SC1$age[i] 
    m.E_SC1[i, 1] <<- Effs(m.M_SC1[i, 1], Trt, u.KL2 = df_ut_SC1$u.KL2[i], u.KL3 = df_ut_SC
1$u.KL3[i], u.KL4 = df_ut_SC1$u.KL4[i],  
                           u.TKA = df_ut_SC1$u.TKA[i], u.FB_pTKA = df_ut_SC1$u.FB_pTKA[i], 
u.NB_pTKA = df_ut_SC1$u.NB_pTKA[i], u.rTKA = df_ut_SC1$u.rTKA[i],  
                           u.FB_prTKA = df_ut_SC1$u.FB_prTKA[i], u.NB_prTKA = df_ut_SC1$u.N
B_prTKA[i]) 
    m.C_SC1[i, 1] <<- Costs(m.M_SC1[i, 1], Trt, c.KL2 = df_ct_SC1$c.KL2[i], c.KL3 = df_ct_S
C1$c.KL3[i], c.KL4 = df_ct_SC1$c.KL4[i],  
                            c.TKA = df_ct_SC1$c.TKA[i], c.TKA.prod = df_ct_SC1$c.TKA.prod[i
], c.FB_pTKA = df_ct_SC1$c.FB_pTKA[i],  
                            c.NB_pTKA = df_ct_SC1$c.NB_pTKA, c.rTKA = df_ct_SC1$c.rTKA) 
     
    for (t in 1:n.t) {    # For loop stepping through each cycle 
      if (Trt == TRUE & m.p.adh_SC1$p.adh[i] == 1) { # For 100% adherence, remove 2nd condit
ion 
        v.p <- Probs(m.M_SC1[i, t], Trt, i, t, RR_SC1) 
      } else { 
        v.p <- Probs(m.M_SC1[i, t], Trt, i, t, RR_SC1 = 1) 
      } 
       
      m.M_SC1[i, t + 1] <<- sample(v.n, prob = v.p, size = 1) 
      m.AGE_SC1[i, t + 1] <<- AGE(m.M_SC1[i, t + 1], i, t) 
      m.E_SC1[i, t + 1] <<-  Effs(m.M_SC1[i, t + 1], Trt, u.KL2 = df_ut_SC1$u.KL2[i], u.KL3 
= df_ut_SC1$u.KL3[i], u.KL4 = df_ut_SC1$u.KL4[i],  
                                  u.TKA = df_ut_SC1$u.TKA[i], u.FB_pTKA = df_ut_SC1$u.FB_pT
KA[i], u.NB_pTKA = df_ut_SC1$u.NB_pTKA[i], u.rTKA = df_ut_SC1$u.rTKA[i],  
                                  u.FB_prTKA = df_ut_SC1$u.FB_prTKA[i], u.NB_prTKA = df_ut_
SC1$u.NB_prTKA[i]) 
      m.C_SC1[i, t + 1] <<- Costs(m.M_SC1[i, t + 1], Trt, c.KL2 = df_ct_SC1$c.KL2[i], c.KL3 
= df_ct_SC1$c.KL3[i], c.KL4 = df_ct_SC1$c.KL4[i],  
                                  c.TKA = df_ct_SC1$c.TKA[i], c.TKA.prod = df_ct_SC1$c.TKA.
prod[i], c.FB_pTKA = df_ct_SC1$c.FB_pTKA[i],  
                                  c.NB_pTKA = df_ct_SC1$c.NB_pTKA, c.rTKA = df_ct_SC1$c.rTK
A) 
       
    } # close the loop for the time points  
    if(i/100 == round(i/100,0)) {            # display the progress of the simulation 
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      cat('\r', paste(i/n.i * 100, "% done", sep = "")) 
    } 
  } # close the loop for the individuals 
   
  # After all the dataframes are filled, a seperate loop is started to readjust costs and e
ffects based on DMII status 
  for (i in 1:n.i) { 
    for (t in 1:n.t) { 
       
      if (Trt == TRUE & m.p.adh_SC1$p.adh[i] == 1) {# For 100% adherence, remove 2nd conditi
on 
        m.DMII_SC1[i, t + 1] <<- DMII_func(m.M_SC1[i, t + 1], i, t, RR.dm_SC1 = RR.dm_SC1) 
      } else { 
        m.DMII_SC1[i, t + 1] <<- DMII_func(m.M_SC1[i, t + 1], i, t, RR.dm_SC1 = 1) 
      } 
       
      if (m.DMII_SC1[i, t + 1] == 1){ 
        m.C_SC1[i, t + 1] <<- m.C_SC1[i, t + 1] + c.DMII 
        m.E_SC1[i, t + 1] <<- m.E_SC1[i, t + 1] * df_Char_SC1$u.DMII[i] 
      }else{ 
        m.C_SC1[i, t + 1] <<- m.C_SC1[i, t + 1] 
        m.E_SC1[i, t + 1] <<- m.E_SC1[i, t + 1] 
      } 
    }} 
   
  tc_SC1 <- m.C_SC1 %*% v.dwc       # total (discounted) cost per individual 
  te_SC1 <- m.E_SC1 %*% v.dwe       # total (discounted) QALYs per individual  
   
  tc_hat_SC1 <- mean(tc_SC1)        # average (discounted) cost  
  te_hat_SC1 <- mean(te_SC1)        # average (discounted) QALYs 
   
  if (TS.out == TRUE) {  # create a  matrix of transitions across states 
    TS_SC1 <- paste(m.M_SC1, cbind(m.M_SC1[, -1], NA), sep = "->")  # transitions from one 
state to the other ### 
    TS_SC1 <- matrix(TS, nrow = n.i) 
    rownames(TS_SC1) <- paste("Cycle", 0:n.t, sep = " ")    # name the rows of the matrix 
    colnames(TS_SC1) <- paste("Ind",   1:n.s, sep = " ")    # name the columns of the matri
x 
  } else { 
    TS_SC1 <- NULL 
  } 
   
  if (TR.out == TRUE) {  # create a trace from the individual trajectories 
    TR_SC1 <- t(apply(m.M_SC1, 2, function(x) table(factor(x, levels = v.n, ordered = TRUE)
))) 
    TR_SC1 <- TR_SC1 / n.i                                    # create a distribution trace 
    rownames(TR_SC1) <- paste("Cycle", 0:n.t, sep = " ")  # name the rows of the matrix 
    colnames(TR_SC1) <- v.n                               # name the columns of the matrix 
  } else { 
    TR_SC1 <- NULL 
  } 
   
  results <- list(RR.dm_SC1 = RR.dm_SC1, m.AGE_SC1 = m.AGE_SC1, m.DMII_SC1 = m.DMII_SC1, m.
M_SC1 = m.M_SC1, m.C_SC1 = m.C_SC1, m.E_SC1 = m.E_SC1, tc_SC1 = tc_SC1, te_SC1 = te_SC1, tc
_hat_SC1 = tc_hat_SC1, te_hat_SC1 = te_hat_SC1, TS_SC1 = TS_SC1, TR_SC1 = TR_SC1, RR_SC1 = 
RR_SC1, drawn_values_SC1 = drawn_values_SC1)   # store the results from the simulation in a 
list   
  return(results)   # return the results 
} 
 
calculate_ce_out_SC1 <- function(n_wtp_SC1 = 100000){ 
  ## create empty vectors to store total utilities and costs 
  v_tot_qaly_SC1 <- v_tot_cost_SC1 <- vector(mode = "numeric", length = n_str) 
  names(v_tot_qaly_SC1) <- names(v_tot_cost_SC1) <- v_names_str 
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  v_tot_qaly_SC1[1] <- sim_no_scrn_SC1$te_hat_SC1 
  v_tot_qaly_SC1[2] <- sim_scrn_SC1$te_hat_SC1 
  v_tot_cost_SC1[1] <- sim_no_scrn_SC1$tc_hat_SC1 
  v_tot_cost_SC1[2] <- sim_scrn_SC1$tc_hat_SC1 
   
  ## Vector with discounted net monetary benefits (NMB) 
  v_nmb_SC1 <- v_tot_qaly_SC1 * n_wtp_SC1 - v_tot_cost_SC1 
   
   
  ## data.frame with discounted costs, effectiveness and NMB 
  df_ce_SC1 <- data.frame(Strategy = v_names_str, 
                          Cost     = v_tot_cost_SC1, 
                          Effect   = v_tot_qaly_SC1, 
                          NMB      = v_nmb_SC1) 
   
  return(df_ce_SC1) 
} 

##################################### Running the psa model ###############################
############ 
df_psa_input_SC1 <- gen_psa(n_sim = n_sim) # Store PSA input parameters 
 
df_c_SC1 <- df_e_SC1 <- df_TKA_SC1 <- df_rTKA_SC1 <- as.data.frame(matrix(0, 
                                                                          nrow = n_sim, 
                                                                          ncol = n_str)) 
colnames(df_c_SC1) <- colnames(df_e_SC1) <- colnames(df_TKA_SC1) <- colnames(df_rTKA_SC1) <
- v_names_str 
df_dm_count_SC1 <- df_dm_avg_y_SC1 <- as.data.frame(matrix(0, 
                                                           nrow = n_sim, 
                                                           ncol = 4)) 
colnames(df_dm_count_SC1) <- colnames(df_dm_avg_y_SC1) <- c("mean SOC", "sd SOC", "mean e-h
ealth", "sd e-health") 
df_FB_pTKA_SC1 <- df_NB_pTKA_SC1 <- df_FB_prTKA_SC1 <- df_NB_prTKA_SC1 <- df_KL2_SC1 <- df_
KL3_SC1 <- df_KL4_SC1 <- as.data.frame(matrix(0, 
                                                                                                                                         
nrow = n_sim, 
                                                                                                                                         
ncol = 6)) 
colnames(df_FB_pTKA_SC1) <- colnames(df_NB_pTKA_SC1) <- colnames(df_FB_prTKA_SC1) <- colnam
es(df_NB_prTKA_SC1) <- colnames(df_KL2_SC1) <- colnames(df_KL3_SC1) <- colnames(df_KL4_SC1) 
<- c("count_soc" ,"mean_SOC", "sd_SOC", "count_E", "mean_E", "sd_E")  
 
l_int_health_states_SC1 <- l_soc_health_states_SC1 <- l_int_DMII_SC1 <- l_soc_DMII_SC1 <- l
ist() 
 
start.time_SC1 <- Sys.time() # track computation time 
for(i in 1:n_sim){ # start simulation 
  for(j in 1:ncol(df_psa_input_SC1)){   
    assign(colnames(df_psa_input_SC1)[j],df_psa_input_SC1[i,j]) 
  } 
  set.seed(seed.all) 
  df_prob_t_SC1 <<- prob_t(i) 
  m.p.adh_SC1 <- data.frame(p.adh = ifelse(runif(n.i) < df_psa_input_SC1$p.adh[i], 1, 0)) # 
determine each simulation who is adherent based on drawn value from adherence distribution 
  norm_distr_SC1 <- rnorm(n.i, mean = 0, sd = 1) 
  percentiles_SC1 <- ecdf(norm_distr_SC1) # calculate percentiles for respective normal dis
tribution 
  drawn_values_SC1 <- percentiles_SC1(norm_distr_SC1) # drawn values 
  drawn_values_SC1[drawn_values_SC1 == 1] <- 0.9999 
  df_ut_SC1 <- data.frame(Patient = 1:n.i,  
                          Percentile = drawn_values_SC1,  
                          u.KL2 =      qbeta(drawn_values_SC1, 323.3098, 138.5613), 
                          u.KL3 =      qbeta(drawn_values_SC1, 323.3098, 138.5613), 
                          u.KL4 =      qbeta(drawn_values_SC1, 624.4044, 576.3733), 
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                          u.TKA =      qbeta(drawn_values_SC1, 624.4044, 576.3733),  
                          u.FB_pTKA =  qbeta(drawn_values_SC1, 56604.54, 12425.39),  
                          u.NB_pTKA =  qbeta(drawn_values_SC1, 4388.031, 3310.269),  
                          u.rTKA =     qbeta(drawn_values_SC1, 564.9103, 812.9196), 
                          u.FB_prTKA = qbeta(drawn_values_SC1, 1687.618, 562.5394),  
                          u.NB_prTKA = qbeta(drawn_values_SC1, 112.6213, 149.2887)) # Draw 
utilities based on percentile scores 
  df_ct_SC1 <- data.frame(Patient = 1:n.i, 
                          Percentile  = drawn_values_SC1, 
                          c.KL2       = qgamma(drawn_values_SC1, shape = 0.1225   , scale = 
16000   ), 
                          c.KL3       = qgamma(drawn_values_SC1, shape = 0.168970 , scale = 
13197.59), 
                          c.KL4       = qgamma(drawn_values_SC1, shape = 0.332136 , scale = 
7105.519), 
                          c.TKA.prod  = qgamma(drawn_values_SC1, shape = 2.334613 , scale = 
643.3744), 
                          c.FB_pTKA   = qgamma(drawn_values_SC1, shape = 2.25078  , scale = 
2577.12 ), 
                          c.NB_pTKA   = qgamma(drawn_values_SC1, shape = 2.25078  , scale = 
2577.12 ), 
                          c.TKA       = qgamma(drawn_values_SC1, shape = 84.75009 , scale = 
172.3184), 
                          c.rTKA      = qgamma(drawn_values_SC1, shape = 234.6973 , scale = 
103.708 )) # Draw costs based on percentile scores 
   
  ## 
  sim_no_scrn_SC1 <- MicroSim(n.i, n.t, v.n, X = v.x, d.c, d.e, TS.out = FALSE, TR.out = FA
LSE, Trt = FALSE, RR_SC1 = 1, seed = seed.all, drawn_values_SC1, RR.dm_SC1 = 1) # run for n
o treatment 
  sim_scrn_SC1    <- MicroSim(n.i, n.t, v.n, X = v.x, d.c, d.e, TS.out = FALSE, TR.out = FA
LSE, Trt = TRUE, RR_SC1 = RR_SC1, seed = seed.all, drawn_values_SC1, RR.dm_SC1 = RR.dm_SC1) 
# run for treatment 
  df_ce_psa_SC1 <- calculate_ce_out_SC1() #calculate and save the outcomes 
  df_c_SC1[i, ] <- df_ce_psa_SC1$Cost   # take the cost from the PSA run and store in df_c 
  df_e_SC1[i, ] <- df_ce_psa_SC1$Effect # take the QALY from the PSA run in store in df_e 
   
  ## List of dataframes containing all the health states status and DMII status 
  l_int_health_states_SC1[[i]] <- sim_scrn_SC1$m.M_SC1 
  l_soc_health_states_SC1[[i]] <- sim_no_scrn_SC1$m.M_SC1 
  l_int_DMII_SC1[[i]] <- sim_scrn_SC1$m.DMII_SC1 
  l_soc_DMII_SC1[[i]] <- sim_no_scrn_SC1$m.DMII_SC1 
   
  ## Display simulation progress 
  if(i/(n_sim/10) == round(i/(n_sim/10),0)) { # display progress every 10% 
    cat('\r', paste('            ', 'Overall progress: ', i/n_sim * 100, "% done",  
                    sep = " ")) 
  } 
} 
elapsed.time_SC1 <- Sys.time() - start.time_SC1 # total computation time 
elapsed.time_SC1 
 
## Analysis 
sim_stats_KL2_SC1 <- sim_stats_KL3_SC1 <- sim_stats_KL4_SC1 <-  
  sim_stats_TKA_SC1 <- sim_stats_FBpTKA_SC1 <- sim_stats_NBpTKA_SC1 <-  
  sim_stats_rTKA_SC1 <- sim_stats_FBprTKA_SC1 <- sim_stats_NBprTKA_SC1 <- as.data.frame(mat
rix(0, 
                                                                                               
nrow = n_sim, 
                                                                                               
ncol = 4)) 
colnames(sim_stats_KL2_SC1) <- colnames(sim_stats_KL3_SC1) <- colnames(sim_stats_KL4_SC1) <
-  
  colnames(sim_stats_TKA_SC1) <- colnames(sim_stats_FBpTKA_SC1) <- colnames(sim_stats_NBpTK
A_SC1) <-  
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  colnames(sim_stats_rTKA_SC1) <- colnames(sim_stats_FBprTKA_SC1) <- colnames(sim_stats_NBp
rTKA_SC1) <-  c("count_of_patients_ehealth", "mean_ehealth", "count_of_patients_soc", "mean
_soc") 
 
for (i in 1:n_sim) { 
  sim_stats_KL2_SC1[i, ]     <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "KL2") > 0))
, (mean(rowSums(l_int_health_states_SC1[[i]] == "KL2")[rowSums(l_int_health_states_SC1[[i]] 
== "KL2") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "KL2") > 0))
, (mean(rowSums(l_soc_health_states_SC1[[i]] == "KL2")[rowSums(l_soc_health_states_SC1[[i]] 
== "KL2") != 0], na.rm = TRUE))) 
  sim_stats_KL3_SC1[i, ]     <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "KL3") > 0))
, (mean(rowSums(l_int_health_states_SC1[[i]] == "KL3")[rowSums(l_int_health_states_SC1[[i]] 
== "KL3") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "KL3") > 0))
, (mean(rowSums(l_soc_health_states_SC1[[i]] == "KL3")[rowSums(l_soc_health_states_SC1[[i]] 
== "KL3") != 0], na.rm = TRUE))) 
  sim_stats_KL4_SC1[i, ]     <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "KL4") > 0))
, (mean(rowSums(l_int_health_states_SC1[[i]] == "KL4")[rowSums(l_int_health_states_SC1[[i]] 
== "KL4") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "KL4") > 0))
, (mean(rowSums(l_soc_health_states_SC1[[i]] == "KL4")[rowSums(l_soc_health_states_SC1[[i]] 
== "KL4") != 0], na.rm = TRUE))) 
  sim_stats_TKA_SC1[i, ]     <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "TKA") > 0))
, (mean(rowSums(l_int_health_states_SC1[[i]] == "TKA")[rowSums(l_int_health_states_SC1[[i]] 
== "TKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "TKA") > 0))
, (mean(rowSums(l_soc_health_states_SC1[[i]] == "TKA")[rowSums(l_soc_health_states_SC1[[i]] 
== "TKA") != 0], na.rm = TRUE))) 
  sim_stats_FBpTKA_SC1[i, ]  <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "FB_pTKA") > 
0)), (mean(rowSums(l_int_health_states_SC1[[i]] == "FB_pTKA")[rowSums(l_int_health_states_S
C1[[i]] == "FB_pTKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "FB_pTKA") > 
0)), (mean(rowSums(l_soc_health_states_SC1[[i]] == "FB_pTKA")[rowSums(l_soc_health_states_S
C1[[i]] == "FB_pTKA") != 0], na.rm = TRUE))) 
  sim_stats_NBpTKA_SC1[i, ]  <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "NB_pTKA") > 
0)), (mean(rowSums(l_int_health_states_SC1[[i]] == "NB_pTKA")[rowSums(l_int_health_states_S
C1[[i]] == "NB_pTKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "NB_pTKA") > 
0)), (mean(rowSums(l_soc_health_states_SC1[[i]] == "NB_pTKA")[rowSums(l_soc_health_states_S
C1[[i]] == "NB_pTKA") != 0], na.rm = TRUE))) 
  sim_stats_rTKA_SC1[i, ]    <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "rTKA") > 0)
), (mean(rowSums(l_int_health_states_SC1[[i]] == "rTKA")[rowSums(l_int_health_states_SC1[[i
]] == "rTKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "rTKA") > 0)
), (mean(rowSums(l_soc_health_states_SC1[[i]] == "rTKA")[rowSums(l_soc_health_states_SC1[[i
]] == "rTKA") != 0], na.rm = TRUE))) 
  sim_stats_FBprTKA_SC1[i, ] <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "FB_prTKA") 
> 0)), (mean(rowSums(l_int_health_states_SC1[[i]] == "FB_prTKA")[rowSums(l_int_health_state
s_SC1[[i]] == "FB_prTKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "FB_prTKA") 
> 0)), (mean(rowSums(l_soc_health_states_SC1[[i]] == "FB_prTKA")[rowSums(l_soc_health_state
s_SC1[[i]] == "FB_prTKA") != 0], na.rm = TRUE))) 
  sim_stats_NBprTKA_SC1[i, ] <- c((sum(rowSums(l_int_health_states_SC1[[i]] == "NB_prTKA") 
> 0)), (mean(rowSums(l_int_health_states_SC1[[i]] == "NB_prTKA")[rowSums(l_int_health_state
s_SC1[[i]] == "NB_prTKA") != 0], na.rm = TRUE)), 
                                  (sum(rowSums(l_soc_health_states_SC1[[i]] == "NB_prTKA") 
> 0)), (mean(rowSums(l_soc_health_states_SC1[[i]] == "NB_prTKA")[rowSums(l_soc_health_state
s_SC1[[i]] == "NB_prTKA") != 0], na.rm = TRUE))) 
} 
 
summary_table_KL2_SC1     <- c((mean(sim_stats_KL2_SC1$mean_ehealth)), (sqrt(var(sim_stats_
KL2_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_KL2_SC1$mean_soc)), (sqrt(var(sim_stats_KL2_
SC1$mean_soc)/n_sim))) 
summary_table_KL3_SC1     <- c((mean(sim_stats_KL3_SC1$mean_ehealth)), (sqrt(var(sim_stats_
KL3_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_KL3_SC1$mean_soc)), (sqrt(var(sim_stats_KL3_
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SC1$mean_soc)/n_sim))) 
summary_table_KL4_SC1     <- c((mean(sim_stats_KL4_SC1$mean_ehealth)), (sqrt(var(sim_stats_
KL4_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_KL4_SC1$mean_soc)), (sqrt(var(sim_stats_KL4_
SC1$mean_soc)/n_sim))) 
summary_table_TKA_SC1     <- c((mean(sim_stats_TKA_SC1$mean_ehealth)), (sqrt(var(sim_stats_
TKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_TKA_SC1$mean_soc)), (sqrt(var(sim_stats_TKA_
SC1$mean_soc)/n_sim))) 
summary_table_FBpTKA_SC1  <- c((mean(sim_stats_FBpTKA_SC1$mean_ehealth)), (sqrt(var(sim_sta
ts_FBpTKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_FBpTKA_SC1$mean_soc)), (sqrt(var(sim_s
tats_FBpTKA_SC1$mean_soc)/n_sim))) 
summary_table_NBpTKA_SC1  <- c((mean(sim_stats_NBpTKA_SC1$mean_ehealth)), (sqrt(var(sim_sta
ts_NBpTKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_NBpTKA_SC1$mean_soc)), (sqrt(var(sim_s
tats_NBpTKA_SC1$mean_soc)/n_sim))) 
summary_table_rTKA_SC1    <- c((mean(sim_stats_rTKA_SC1$mean_ehealth)), (sqrt(var(sim_stats
_rTKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_rTKA_SC1$mean_soc)), (sqrt(var(sim_stats_r
TKA_SC1$mean_soc)/n_sim))) 
summary_table_FBprTKA_SC1 <- c((mean(sim_stats_FBprTKA_SC1$mean_ehealth)), (sqrt(var(sim_st
ats_FBprTKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_FBprTKA_SC1$mean_soc)), (sqrt(var(si
m_stats_FBprTKA_SC1$mean_soc)/n_sim))) 
summary_table_NBprTKA_SC1 <- c((mean(sim_stats_NBprTKA_SC1$mean_ehealth)), (sqrt(var(sim_st
ats_NBprTKA_SC1$mean_ehealth)/n_sim)), (mean(sim_stats_NBprTKA_SC1$mean_soc)), (sqrt(var(si
m_stats_NBprTKA_SC1$mean_soc)/n_sim))) 
 
 
names(summary_table_KL2_SC1) <- names(summary_table_KL3_SC1) <- names(summary_table_KL4_SC1
) <-  
  names(summary_table_TKA_SC1) <- names(summary_table_FBpTKA_SC1) <-  
  names(summary_table_NBpTKA_SC1) <- names(summary_table_rTKA_SC1) <-  
  names(summary_table_FBprTKA_SC1) <- names(summary_table_NBprTKA_SC1) <- c("mean_ehealth", 
"se_ehealth", "mean_soc", "se_soc") 
 
## DMII 
sim_stats_DMII_SC1 <- as.data.frame(matrix(0, 
                                           nrow = n_sim, 
                                           ncol = 4)) 
colnames(sim_stats_DMII_SC1) <- c("count_of_patients_ehealth", "mean_ehealth", "count_of_pa
tients_soc", "mean_soc") 
for (i in 1:n_sim) { 
  sim_stats_DMII_SC1[i, ]     <- c((sum(rowSums(l_int_DMII_SC1[[i]] == 1) > 0)), (mean(rowS
ums(l_int_DMII_SC1[[i]] == 1)[rowSums(l_int_DMII_SC1[[i]] == 1) != 0], na.rm = TRUE)), 
                                   (sum(rowSums(l_soc_DMII_SC1[[i]] == 1) > 0)), (mean(rowS
ums(l_soc_DMII_SC1[[i]] == 1)[rowSums(l_soc_DMII_SC1[[i]] == 1) != 0], na.rm = TRUE))) 
} 
summary_table_DMII_SC1 <- c((mean(sim_stats_DMII_SC1$count_of_patients_ehealth)), (mean(sim
_stats_DMII_SC1$mean_ehealth)), (sqrt(var(sim_stats_DMII_SC1$mean_ehealth)/n_sim)), (mean(s
im_stats_DMII_SC1$count_of_patients_soc)), (mean(sim_stats_DMII_SC1$mean_soc)), (sqrt(var(s
im_stats_DMII_SC1$mean_soc)/n_sim))) 
names(summary_table_DMII_SC1) <- c("N_DMII_ehealth", "mean_ehealth", "se_ehealth", "N_DMII_
soc", "mean_soc", "se_soc") 
 
## Create PSA object for dampack 
mean_TKA_SC1  <- data.frame(SOC = mean(df_TKA_SC1$SOC), 
                            E.health = mean(df_TKA_SC1$E.health)) 
t.test(df_TKA_SC1$SOC, df_TKA_SC1$E.health) 
mean_rTKA_SC1 <- data.frame(SOC = mean(df_rTKA_SC1$SOC), 
                            E.health = mean(df_rTKA_SC1$E.health)) 
t.test(df_rTKA_SC1$SOC, df_rTKA_SC1$E.health) 
 
l_psa_SC1 <- make_psa_obj(cost = df_c_SC1,  
                          effectiveness = df_e_SC1,  
                          parameters = df_psa_input_SC1,  
                          strategies = v_names_str, 
                          currency = "€") 
 
df_incr_SC1 <- data.frame(Incr_cost = df_c_SC1$E.health - df_c_SC1$SOC, 
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                          Incr_effect = df_e_SC1$E.health - df_e_SC1$SOC) 
avg_effect_SC1 <- mean(df_incr_SC1$Incr_effect) 
avg_cost_SC1 <- mean(df_incr_SC1$Incr_cost) 
 
MAC_SC1 <- (avg_effect_SC1 * 20000) - avg_cost_SC1 
 
# Create a ggplot object with your data 
p_SC1 <- ggplot(df_incr_SC1, aes(x = Incr_effect, y = Incr_cost)) + 
  geom_point(color = "red", size = 2, alpha = 0.3) +  
  xlim(-0.25, 0.25) +   
  ylim(-5000,5000) + 
  labs(x = "Incremental effect", y = "Incremental costs") + 
  theme_minimal() +  
  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, slope = 10000, color = "black", size = 0.5) + 
  geom_abline(intercept = 0, slope = 20000, color = "black", size = 0.5) + 
  geom_point(data = data.frame(x=avg_effect_SC1, y=avg_cost_SC1), aes(x=x, y=y), color = "b
lack", size = 4, alpha = 0.7) 
print(p_SC1) 
# Add an ellipse around the data points 
p_SC1 + stat_ellipse(level = 0.95, geom = "polygon", fill = NA, linetype = "dashed",color = 
"black", size = 0.5) 
 
v_wtp <- seq(0, 100000, by = 20000) 
 
## 09.3.1 ICER 
# use dampack to calculate the ICER 
df_cea_psa_SC1 <- calculate_icers(cost       = df_ce_psa_SC1$Cost, 
                                  effect     = df_ce_psa_SC1$Effect, 
                                  strategies = df_ce_psa_SC1$Strategy) 
 
## 09.3.2 Cost-Effectiveness Acceptability Curves (CEAC) and Frontier (CEAF) 
out_ceaf_SC1 <- ceac(v_wtp, l_psa_SC1) 
plot(out_ceaf_SC1) 
# 
#df_icer_wtp_test_SC1 <- as.data.frame(matrix(0, 
#                                             nrow = n_sim, 
#                                             ncol = length(v_wtp))) 
#colnames(df_icer_wtp_test_SC1) <- v_wtp 
#df_icer_wtp_test_SC1 <- sapply(v_wtp, function(wtp){ 
#  (df_incr_SC1$Incr_cost < df_incr_SC1$Incr_effect * wtp) & (df_incr_SC1$Incr_effect >= 0) 
#}) 
#proportions_ehealth_SC1 <- colMeans(df_icer_wtp_test_SC1) 
#proportions_soc_SC1 <- 1 - proportions_ehealth_SC1 
# 
#out_SOC_SC1 <- data.frame(WTP = v_wtp, 
#                          Strategy = "SOC", 
#                          Proportion = proportions_soc_SC1) 
#out_E.health_SC1 <- data.frame(WTP = v_wtp, 
#                               Strategy = "E.health", 
#                               Proportion = proportions_ehealth_SC1) 
#out_ceaf_SC1 <- rbind(out_SOC_SC1, out_E.health_SC1) 
#out_ceaf_SC1 <- out_ceaf_SC1 %>% 
#  group_by(WTP) %>% 
#  mutate(On_Frontier = Proportion == max(Proportion)) %>% 
#  ungroup() 
# 
#figure4_1 <- ggplot(out_ceaf_SC1, aes(x=WTP, y=Proportion, color = Strategy)) + 
#  geom_line() + 
#  geom_point(size = 1.5) + 
#  geom_rect(data=subset(out_ceaf_SC1, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
#  scale_x_continuous(breaks = unique(out_ceaf_SC1$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
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#  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
#  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
#  labs( 
#    x = "WTP in €1000/QALY", 
#    y = "Pr cost-effective" 
#  ) + 
#  theme_bw() + 
#  theme( 
#    axis.title.x = element_text(size = 7), 
#    axis.title.y = element_text(size = 7), 
#    legend.position = "none") 
 
## 09.3.3 Cost-Effectiveness Scatter plot 
plot(l_psa_SC1) 
 
## 09.4 Expected value of perfect information (EVPI) 
evpi_SC1 <- calc_evpi(wtp = v_wtp, psa = l_psa_SC1) # calculate EVPI 
plot(evpi_SC1, effect_units = "QALY") # EVPI plot 
 
write.csv(df_psa_input_SC1, "C:/Users/shoai/OneDrive/Bureaublad/R_afstuderen/R_afstudeeropd
racht/psa_input_data_SC1.csv", row.names = FALSE) 
write.csv(df_c_SC1, "C:/Users/shoai/OneDrive/Bureaublad/R_afstuderen/R_afstudeeropdracht/ps
a_results_costs_SC1.csv", row.names = FALSE) 
write.csv(df_e_SC1, "C:/Users/shoai/OneDrive/Bureaublad/R_afstuderen/R_afstudeeropdracht/ps
a_results_effects_SC1.csv", row.names = FALSE) 

## Paper figures ## 

library(ggplot2) 
library(gridExtra) 
library(grid) 
library(SAVI) 
library(dplyr) 
library(tidyr) 
library(tibble) 
 
## 
total_points <- n_sim 
f1_nw_SCF1 <- sum(df_incr_SCF1$Incr_effect < 0 & df_incr_SCF1$Incr_cost > 0) / total_points 
f1_nw_SCF2 <- sum(df_incr_SCF2$Incr_effect < 0 & df_incr_SCF2$Incr_cost > 0) / total_points 
f1_nw_SCF3 <- sum(df_incr_SCF3$Incr_effect < 0 & df_incr_SCF3$Incr_cost > 0) / total_points 
f1_ne_SCF1 <- sum(df_incr_SCF1$Incr_effect > 0 & df_incr_SCF1$Incr_cost > 0) / total_points  
f1_ne_SCF2 <- sum(df_incr_SCF2$Incr_effect > 0 & df_incr_SCF2$Incr_cost > 0) / total_points  
f1_ne_SCF3 <- sum(df_incr_SCF3$Incr_effect > 0 & df_incr_SCF3$Incr_cost > 0) / total_points 
f1_sw_SCF1 <- sum(df_incr_SCF1$Incr_effect < 0 & df_incr_SCF1$Incr_cost < 0) / total_points  
f1_sw_SCF2 <- sum(df_incr_SCF2$Incr_effect < 0 & df_incr_SCF2$Incr_cost < 0) / total_points  
f1_sw_SCF3 <- sum(df_incr_SCF3$Incr_effect < 0 & df_incr_SCF3$Incr_cost < 0) / total_points 
f1_se_SCF1 <- sum(df_incr_SCF1$Incr_effect > 0 & df_incr_SCF1$Incr_cost < 0) / total_points 
f1_se_SCF2 <- sum(df_incr_SCF2$Incr_effect > 0 & df_incr_SCF2$Incr_cost < 0) / total_points 
f1_se_SCF3 <- sum(df_incr_SCF3$Incr_effect > 0 & df_incr_SCF3$Incr_cost < 0) / total_points 
 
f2_nw_SCF4 <- sum(df_incr_SCF4$Incr_effect < 0 & df_incr_SCF4$Incr_cost > 0) / total_points 
f2_nw_SCF5 <- sum(df_incr_SCF5$Incr_effect < 0 & df_incr_SCF5$Incr_cost > 0) / total_points 
f2_nw_SCF6 <- sum(df_incr_SCF6$Incr_effect < 0 & df_incr_SCF6$Incr_cost > 0) / total_points 
f2_ne_SCF4 <- sum(df_incr_SCF4$Incr_effect > 0 & df_incr_SCF4$Incr_cost > 0) / total_points  
f2_ne_SCF5 <- sum(df_incr_SCF5$Incr_effect > 0 & df_incr_SCF5$Incr_cost > 0) / total_points  
f2_ne_SCF6 <- sum(df_incr_SCF6$Incr_effect > 0 & df_incr_SCF6$Incr_cost > 0) / total_points 
f2_sw_SCF4 <- sum(df_incr_SCF4$Incr_effect < 0 & df_incr_SCF4$Incr_cost < 0) / total_points  
f2_sw_SCF5 <- sum(df_incr_SCF5$Incr_effect < 0 & df_incr_SCF5$Incr_cost < 0) / total_points  
f2_sw_SCF6 <- sum(df_incr_SCF6$Incr_effect < 0 & df_incr_SCF6$Incr_cost < 0) / total_points 
f2_se_SCF4 <- sum(df_incr_SCF4$Incr_effect > 0 & df_incr_SCF4$Incr_cost < 0) / total_points 
f2_se_SCF5 <- sum(df_incr_SCF5$Incr_effect > 0 & df_incr_SCF5$Incr_cost < 0) / total_points 
f2_se_SCF6 <- sum(df_incr_SCF6$Incr_effect > 0 & df_incr_SCF6$Incr_cost < 0) / total_points 
 



37 
 

## adherence 
f3_ne_SCFA2 <- sum(df_incr_SCFA2$Incr_effect > 0 & df_incr_SCFA2$Incr_cost > 0) / total_poi
nts 
f3_nw_SCFA2 <- sum(df_incr_SCFA2$Incr_effect < 0 & df_incr_SCFA2$Incr_cost > 0) / total_poi
nts 
f3_se_SCFA2 <- sum(df_incr_SCFA2$Incr_effect > 0 & df_incr_SCFA2$Incr_cost < 0) / total_poi
nts 
f3_sw_SCFA2 <- sum(df_incr_SCFA2$Incr_effect < 0 & df_incr_SCFA2$Incr_cost < 0) / total_poi
nts 
 
figure_adh <- ggplot() + 
  stat_ellipse(data = df_incr_SCFA2, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geo
m = "polygon",     alpha = 0.3, fill = "turquoise2", color = "turquoise2", size = 0.5) + 
  stat_ellipse(data = df_incr_SCF2,  aes(x = Incr_effect, y = Incr_cost), level = 0.95, geo
m = "polygon",     alpha = 0.3, fill = "magenta", color = "magenta", size = 0.5) + 
  xlim(-0.5, 0.5) +   
  ylim(-5000,5000) + 
  labs(x = "Incremental effect (QALYs)", y = "Incremental cost (€)") + 
  theme_minimal() +  
  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, linetype = "dashed", slope = 20000, color = "black", size = 0.
5) + 
  geom_point(data = data.frame(x=avg_effect_SCF2,  y=avg_cost_SCF2),  aes(x=x, y=y), color 
= "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x=avg_effect_SCFA2, y=avg_cost_SCFA2), aes(x=x, y=y), color 
= "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_text(data = data.frame(x = avg_effect_SCF2, y = avg_cost_SCF2),  
            aes(x = x, y = y, label = "2"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCFA2, y = avg_cost_SCFA2),  
            aes(x = x, y = y, label = "A2"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  annotate("text", x = -0.45, y = 3500,  color = "magenta",       size = 5, label = paste0(
round(f1_nw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3500, color = "magenta",       size = 5, label = paste0(
round(f1_sw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 3500,  color = "magenta",       size = 5, label = paste0(
round(f1_ne_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -3500, color = "magenta",       size = 5, label = paste0(
round(f1_se_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 4000,  color = "turquoise2",      size = 5, label = paste
0(round(f3_nw_SCFA2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -4000, color = "turquoise2",      size = 5, label = paste
0(round(f3_sw_SCFA2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 4000,  color = "turquoise2",      size = 5, label = paste
0(round(f3_ne_SCFA2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -4000, color = "turquoise2",      size = 5, label = paste
0(round(f3_se_SCFA2 * 100, 1), "%")) + 
  annotate("text", x = 0.25, y = 2000,   size = 3, color = "black", label = paste0("WTP = €
20,000")) + 
  theme_bw() +  
  theme(panel.background = element_rect(fill = "gray95")) 
 
## 
figure1 <- ggplot() + 
  geom_point(data = df_incr_SCF3, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"turquoise2", size = 2, alpha = 0.2) + 
  geom_point(data = df_incr_SCF2, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"magenta", size = 2, alpha = 0.2) + 
  geom_point(data = df_incr_SCF1, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"yellow2", size = 2, alpha = 0.2) + 
  xlim(-0.5, 0.5) +   
  ylim(-5000,5000) + 
  labs(x = "Incremental effect", y = "Incremental cost") + 
  theme_minimal() +  
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  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, linetype = "dashed", slope = 20000, color = "black", size = 0.
5) + 
  geom_point(data = data.frame(x=avg_effect_SCF3, y=avg_cost_SCF3), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x=avg_effect_SCF2, y=avg_cost_SCF2), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x=avg_effect_SCF1, y=avg_cost_SCF1), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
  geom_text(data = data.frame(x = avg_effect_SCF3, y = avg_cost_SCF3),  
            aes(x = x, y = y, label = "3"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF2, y = avg_cost_SCF2),  
            aes(x = x, y = y, label = "2"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF1, y = avg_cost_SCF1),  
            aes(x = x, y = y, label = "1"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  annotate("text", x = -0.45, y = 3000,  color = "yellow3", size = 5, label = paste0(round(
f1_nw_SCF1 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3000, color = "yellow3", size = 5, label = paste0(round(
f1_sw_SCF1 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 3000,  color = "yellow3", size = 5, label = paste0(round(
f1_ne_SCF1 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -3000, color = "yellow3", size = 5, label = paste0(round(
f1_se_SCF1 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 3500,  color = "magenta",       size = 5, label = paste0(
round(f1_nw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3500, color = "magenta",       size = 5, label = paste0(
round(f1_sw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 3500,  color = "magenta",       size = 5, label = paste0(
round(f1_ne_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -3500, color = "magenta",       size = 5, label = paste0(
round(f1_se_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 4000,  color = "turquoise2",      size = 5, label = paste
0(round(f1_nw_SCF3 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -4000, color = "turquoise2",      size = 5, label = paste
0(round(f1_sw_SCF3 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 4000,  color = "turquoise2",      size = 5, label = paste
0(round(f1_ne_SCF3 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -4000, color = "turquoise2",      size = 5, label = paste
0(round(f1_se_SCF3 * 100, 1), "%")) + 
  annotate("text", x = 0.25, y = 2000,   size = 3, color = "black", label = paste0("WTP = €
20,000")) + 
  theme_bw() +  
  theme(panel.background = element_rect(fill = "gray95")) + 
  annotate("text", x = Inf, y = Inf, label = "A", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure2 <- ggplot() + 
  geom_point(data = df_incr_SCF6, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"orange", size = 2, alpha = 0.2) + 
  geom_point(data = df_incr_SCF5, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"purple", size = 2, alpha = 0.2) + 
  geom_point(data = df_incr_SCF4, aes(x = Incr_effect, y = Incr_cost), shape = 19, color = 
"green", size = 2, alpha = 0.2) + 
  xlim(-0.5, 0.5) +   
  ylim(-5000,5000) + 
  labs(x = "Incremental effect", y = "Incremental cost") + 
  theme_minimal() +  
  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, linetype = "dashed", slope = 20000, color = "black", size = 0.
5) + 
  geom_point(data = data.frame(x=avg_effect_SCF6, y=avg_cost_SCF6), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
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  geom_point(data = data.frame(x=avg_effect_SCF5, y=avg_cost_SCF5), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x=avg_effect_SCF4, y=avg_cost_SCF4), aes(x=x, y=y), color = 
"black", size = 5, alpha = 0.7, shape = 16) + 
  geom_text(data = data.frame(x = avg_effect_SCF6, y = avg_cost_SCF6),  
            aes(x = x, y = y, label = "6"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF5, y = avg_cost_SCF5),  
            aes(x = x, y = y, label = "5"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF4, y = avg_cost_SCF4),  
            aes(x = x, y = y, label = "4"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  annotate("text", x = -0.45, y = 4000,  color = "green", size = 5, label = paste0(round(f2
_nw_SCF6 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -4000, color = "green", size = 5, label = paste0(round(f2
_sw_SCF6 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 4000,  color = "green", size = 5, label = paste0(round(f2
_ne_SCF6 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -4000, color = "green", size = 5, label = paste0(round(f2
_se_SCF6 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 3500,  color = "purple", size = 5, label = paste0(round(f
2_nw_SCF5 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3500, color = "purple", size = 5, label = paste0(round(f
2_sw_SCF5 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 3500,  color = "purple", size = 5, label = paste0(round(f
2_ne_SCF5 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -3500, color = "purple", size = 5, label = paste0(round(f
2_se_SCF5 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 3000,  color = "orange",  size = 5, label = paste0(round(
f2_nw_SCF4 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3000, color = "orange",  size = 5, label = paste0(round(
f2_sw_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = 3000,  color = "orange",  size = 5, label = paste0(round(
f2_ne_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.45,  y = -3000, color = "orange",  size = 5, label = paste0(round(
f2_se_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.25, y = 2000,   size = 3, color = "black", label = paste0("WTP = €
20,000")) + 
  theme_bw() + 
  theme(panel.background = element_rect(fill = "gray95")) + 
  annotate("text", x = Inf, y = Inf, label = "B", size = 4, hjust = 1.1, vjust = 1.1) 
 
   
 
grid.arrange(figure1, figure2, ncol = 2) 
 
scenarios <- c("RR_a = 0.95 & RR_b = 1", "RR_a = 0.90 & RR_b = 1", "RR_a = 0.85 & RR_b = 1"
,  
               "RR_a = 0.95 & RR_b = 0.95", "RR_a = 0.90 & RR_b = 0.95", "RR_a = 0.85 & RR_
b = 0.95") 
delta_cost <- c(avg_cost_SCF1, avg_cost_SCF2, avg_cost_SCF3, avg_cost_SCF4, avg_cost_SCF5, 
avg_cost_SCF6) 
delta_eff <- c(avg_effect_SCF1, avg_effect_SCF2, avg_effect_SCF3, avg_effect_SCF4, avg_effe
ct_SCF5, avg_effect_SCF6) 
MAC <- c(MAC_SCF1, MAC_SCF2, MAC_SCF3, MAC_SCF4, MAC_SCF5, MAC_SCF6) 
UCL_cost <- c((avg_cost_SCF1  + (1.96 * (sd(df_incr_SCF1$Incr_cost  ) / sqrt(n_sim)))) , (a
vg_cost_SCF2   + (1.96 * (sd(df_incr_SCF2$Incr_cost  ) / sqrt(n_sim)))), 
              (avg_cost_SCF3  + (1.96 * (sd(df_incr_SCF3$Incr_cost  ) / sqrt(n_sim)))) , (a
vg_cost_SCF4   + (1.96 * (sd(df_incr_SCF4$Incr_cost  ) / sqrt(n_sim)))), 
              (avg_cost_SCF5  + (1.96 * (sd(df_incr_SCF5$Incr_cost  ) / sqrt(n_sim)))) , (a
vg_cost_SCF6   + (1.96 * (sd(df_incr_SCF6$Incr_cost  ) / sqrt(n_sim))))) 
LCL_cost <- c((avg_cost_SCF1  - (1.96 * (sd(df_incr_SCF1$Incr_cost  ) / sqrt(n_sim)))) , (a
vg_cost_SCF2   - (1.96 * (sd(df_incr_SCF2$Incr_cost  ) / sqrt(n_sim)))), 
              (avg_cost_SCF3  - (1.96 * (sd(df_incr_SCF3$Incr_cost  ) / sqrt(n_sim)))) , (a
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vg_cost_SCF4   - (1.96 * (sd(df_incr_SCF4$Incr_cost  ) / sqrt(n_sim)))), 
              (avg_cost_SCF5  - (1.96 * (sd(df_incr_SCF5$Incr_cost  ) / sqrt(n_sim)))) , (a
vg_cost_SCF6   - (1.96 * (sd(df_incr_SCF6$Incr_cost  ) / sqrt(n_sim))))) 
UCL_eff<- c((avg_effect_SCF1  + (1.96 * (sd(df_incr_SCF1$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF2 + (1.96 * (sd(df_incr_SCF2$Incr_effect) / sqrt(n_sim)))), 
            (avg_effect_SCF3  + (1.96 * (sd(df_incr_SCF3$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF4 + (1.96 * (sd(df_incr_SCF4$Incr_effect) / sqrt(n_sim)))), 
            (avg_effect_SCF5  + (1.96 * (sd(df_incr_SCF5$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF6 + (1.96 * (sd(df_incr_SCF6$Incr_effect) / sqrt(n_sim))))) 
LCL_eff <- c((avg_effect_SCF1 - (1.96 * (sd(df_incr_SCF1$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF2 - (1.96 * (sd(df_incr_SCF2$Incr_effect) / sqrt(n_sim)))), 
             (avg_effect_SCF3 - (1.96 * (sd(df_incr_SCF3$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF4 - (1.96 * (sd(df_incr_SCF4$Incr_effect) / sqrt(n_sim)))), 
             (avg_effect_SCF5 - (1.96 * (sd(df_incr_SCF5$Incr_effect) / sqrt(n_sim)))) , (a
vg_effect_SCF6 - (1.96 * (sd(df_incr_SCF6$Incr_effect) / sqrt(n_sim))))) 
ICER <- delta_cost/delta_eff 
 
summary_results <-  
  data.frame(Scenario = scenarios, 
           Mean_incremental_cost = delta_cost, 
           UCL_cost = UCL_cost, 
           LCL_cost = LCL_cost, 
           Mean_incremental_effect = delta_eff, 
           UCL_effect = UCL_eff, 
           LCL_effect = LCL_eff, 
           ICER = ICER, 
           MAC = MAC) 
#View(summary_results) 
 
figure3 <- ggplot() + 
  stat_ellipse(data = df_incr_SCF3, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "turquoise2", color = "turquoise2", size = 0.5) + 
  stat_ellipse(data = df_incr_SCF2, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "magenta", color = "magenta", size = 0.5) + 
  stat_ellipse(data = df_incr_SCF1, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "yellow2", color = "yellow3", size = 0.5) + 
  xlim(-0.5, 0.5) +   
  ylim(-5000, 5000) + 
  labs(x = "Incremental effect (QALYs)", y = "Incremental cost (€)") + 
  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, linetype = "dashed", slope = 20000, color = "black", size = 0.
5) + 
  geom_point(data = data.frame(x = avg_effect_SCF3, y = avg_cost_SCF3), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x = avg_effect_SCF2, y = avg_cost_SCF2), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x = avg_effect_SCF1, y = avg_cost_SCF1), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_text(data = data.frame(x = avg_effect_SCF3, y = avg_cost_SCF3),  
            aes(x = x, y = y, label = "3"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF2, y = avg_cost_SCF2),  
            aes(x = x, y = y, label = "2"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF1, y = avg_cost_SCF1),  
            aes(x = x, y = y, label = "1"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  annotate("text", x = -0.45, y = 5000,  size = 3, color = "turquoise2", label = paste0(rou
nd(f1_nw_SCF3 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -5000, size = 3, colour = "turquoise2", label = paste0(ro
und(f1_sw_SCF3 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 5000,   size = 3, colour = "turquoise2", label = paste0(ro
und(f1_ne_SCF3 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -5000,  size = 3, colour = "turquoise2", label = paste0(ro
und(f1_se_SCF3 * 100, 1), "%")) + 
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  annotate("text", x = -0.45, y = 4000,  size = 3, color = "magenta", label = paste0(round(
f1_nw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -4000, size = 3, colour = "magenta", label = paste0(round
(f1_sw_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 4000,   size = 3, colour = "magenta", label = paste0(round
(f1_ne_SCF2 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -4000,  size = 3, colour = "magenta", label = paste0(round
(f1_se_SCF2 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 3000,  size = 3, color = "yellow3", label = paste0(round(
f1_nw_SCF1 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3000, size = 3, colour = "yellow3", label = paste0(round
(f1_sw_SCF1 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 3000,   size = 3, colour = "yellow3", label = paste0(round
(f1_ne_SCF1 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -3000,  size = 3, colour = "yellow3", label = paste0(round
(f1_se_SCF1 * 100, 1), "%")) + 
  annotate("text", x = 0.25, y = 2000,   size = 3, color = "black", label = paste0("WTP = €
20,000")) + 
  theme_bw() + 
  theme(plot.margin = unit(c(0.2,2.3,0.2,0.2), "lines"), 
        panel.background = element_rect(fill = "gray95")) +  
  annotate("text", x = Inf, y = Inf, label = "A", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure4 <- ggplot() + 
  stat_ellipse(data = df_incr_SCF6, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "orange", color = "orange", size = 0.5) + 
  stat_ellipse(data = df_incr_SCF5, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "purple", color = "purple", size = 0.5) + 
  stat_ellipse(data = df_incr_SCF4, aes(x = Incr_effect, y = Incr_cost), level = 0.95, geom 
= "polygon", alpha = 0.3, fill = "green", color = "green", size = 0.5) + 
  xlim(-0.5, 0.5) +   
  ylim(-5000, 5000) + 
  labs(x = "Incremental effect (QALYs)",  
       y = "Incremental cost (€)") + 
  geom_hline(yintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 0.5) + 
  geom_abline(intercept = 0, linetype = "dashed", slope = 20000, color = "black", size = 0.
5) + 
  geom_point(data = data.frame(x = avg_effect_SCF6, y = avg_cost_SCF6), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x = avg_effect_SCF5, y = avg_cost_SCF5), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_point(data = data.frame(x = avg_effect_SCF4, y = avg_cost_SCF4), aes(x = x, y = y), 
color = "black", size = 5, alpha = 0.7, shape = 16) + 
  geom_text(data = data.frame(x = avg_effect_SCF6, y = avg_cost_SCF6),  
            aes(x = x, y = y, label = "6"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF5, y = avg_cost_SCF5),  
            aes(x = x, y = y, label = "5"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  geom_text(data = data.frame(x = avg_effect_SCF4, y = avg_cost_SCF4),  
            aes(x = x, y = y, label = "4"),  
            color = "white", size = 3, vjust = 0.5, hjust = 0.5) + 
  annotate("text", x = -0.45, y = 5000,  size = 3, color = "orange", label = paste0(round(f
2_nw_SCF6 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -5000, size = 3, colour = "orange", label = paste0(round(
f2_sw_SCF6 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 5000,   size = 3, colour = "orange", label = paste0(round(
f2_ne_SCF6 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -5000,  size = 3, colour = "orange", label = paste0(round(
f2_se_SCF6 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 4000,  size = 3, color = "purple", label = paste0(round(f
2_nw_SCF5 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -4000, size = 3, colour = "purple", label = paste0(round(
f2_sw_SCF5 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 4000,   size = 3, colour = "purple", label = paste0(round(
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f2_ne_SCF5 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -4000,  size = 3, colour = "purple", label = paste0(round(
f2_se_SCF5 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = 3000,  size = 3, color = "green", label = paste0(round(f2
_nw_SCF4 * 100, 1), "%")) + 
  annotate("text", x = -0.45, y = -3000, size = 3, colour = "green", label = paste0(round(f
2_sw_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = 3000,   size = 3, colour = "green", label = paste0(round(f
2_ne_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.45, y = -3000,  size = 3, colour = "green", label = paste0(round(f
2_se_SCF4 * 100, 1), "%")) + 
  annotate("text", x = 0.25, y = 2000,   size = 3, color = "black", label = paste0("WTP = €
20,000")) + 
  theme_bw() + 
  theme(plot.margin = unit(c(0.2,2.3,0.2,0.2), "lines"), 
        panel.background = element_rect(fill = "gray95")) + 
  annotate("text", x = Inf, y = Inf, label = "B", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure1_1 <- ggplot(out_ceaf_SCF1, aes(x=WTP, y=Proportion, color = Strategy)) + 
  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF1, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF1$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 1" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "C", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure4_1 <- ggplot(out_ceaf_SCF4, aes(x=WTP, y=Proportion, color = Strategy)) + 
  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF4, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF4$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 4" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "F", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure2_1 <- ggplot(out_ceaf_SCF2, aes(x=WTP, y=Proportion, color = Strategy)) + 
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  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF2, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF2$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 2" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "D", size = 4, hjust = 1.1, vjust = 1.1) 
 
 
figure5_1 <- ggplot(out_ceaf_SCF5, aes(x=WTP, y=Proportion, color = Strategy)) + 
  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF5, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF5$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 5" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "G", size = 4, hjust = 1.1, vjust = 1.1) 
 
figure3_1 <- ggplot(out_ceaf_SCF3, aes(x=WTP, y=Proportion, color = Strategy)) + 
  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF3, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF3$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 3" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
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    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "E", size = 4, hjust = 1.1, vjust = 1.1) 
   
figure6_1 <-ggplot(out_ceaf_SCF6, aes(x=WTP, y=Proportion, color = Strategy)) + 
  geom_line() + 
  geom_point(size = 1.5) + 
  geom_rect(data=subset(out_ceaf_SCF6, On_Frontier), aes(xmin=WTP-1000, xmax=WTP+1000, ymin
=Proportion-0.05, ymax=Proportion+0.05), fill="transparent", color="black") + 
  scale_x_continuous(breaks = unique(out_ceaf_SCF6$WTP), labels = function(x) x/1000, expan
d = c(0, 0))+ 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, 0.25), expand = c(0, 0)) + 
  scale_color_manual(values = c("SOC" = "tomato3", "E.health" = "turquoise4")) + 
  labs( 
    x = "WTP in €1000/QALY", 
    y = "Pr cost-effective", 
    title = "Scenario 6" 
  ) + 
  theme_bw() + 
  theme( 
    axis.title.x = element_text(size = 10), 
    axis.title.y = element_text(size = 10), 
    plot.margin = unit(c(0.2,1.5,0.2,0.2), "lines"), 
    panel.background = element_rect(fill = "gray95"), 
    plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "H", size = 4, hjust = 1.1, vjust = 1.1) 
 
grid.arrange( 
  arrangeGrob(figure3, figure4, ncol = 2), 
  arrangeGrob(figure1_1, figure4_1, figure2_1, 
              figure5_1, figure3_1, figure6_1, ncol = 2, nrow = 3), 
  nrow = 2 
) 
 
grid.arrange( 
  arrangeGrob(figure1, figure2, ncol = 2), 
  arrangeGrob(figure1_1, figure4_1, figure2_1, 
              figure5_1, figure3_1, figure6_1, ncol = 2, nrow = 3), 
  nrow = 2 
) 
################################################################### 
 
## 
data_EVPPI_SCF6 <- data.frame( 
  Parameter = c("p.adh", "c.DMII", "p.t1_M_40to59", "p.t2to5_M_40to59", "p.t6to9_M_40to59", 
"p.t10tox_M_40to59", 
                "p.t1_M_60to80", "p.t2to5_M_60to80", "p.t6to9_M_60to80", "p.t10tox_M_60to80
", "p.t1_M_80tox", 
                "p.t2to5_M_80tox", "p.t6to9_M_80tox", "p.t10tox_M_80tox", "p.t1_F_40to59", 
"p.t2to5_F_40to59", 
                "p.t6to9_F_40to59", "p.t10tox_F_40to59", "p.t1_F_60to80", "p.t2to5_F_60to80
", "p.t6to9_F_60to80", 
                "p.t10tox_F_60to80", "p.t1_F_80tox", "p.t2to5_F_80tox", "p.t6to9_F_80tox", 
"p.t10tox_F_80tox", 
                "p.KL_M_O", "p.KL_F_O", "p.KL_M", "p.KL_F", "p.TKA_FBp_M_45to60", "p.TKA_FB
p_F_45to60", 
                "p.TKA_FBp_M_60to80", "p.TKA_FBp_F_60to80", "p.TKA_FBp_M_80tox", "p.TKA_FBp
_F_80tox", 
                "p.rTKA_FBpr_M_45to60", "p.rTKA_FBpr_F_45to60", "p.rTKA_FBpr_M_60to80", "p.
rTKA_FBpr_F_60to80", 
                "p.rTKA_FBpr_M_80tox", "p.rTKA_FBpr_F_80tox", "p.FB.NBp_rTKA_M_45to65", "p.
FB.NBp_rTKA_F_45to65", 
                "p.FB.NBp_rTKA_M_65to80", "p.FB.NBp_rTKA_F_65to80", "p.FB.NBp_rTKA_M_80tox"
, "p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,659000,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
data_EVPPI_SCF6 <- data_EVPPI_SCF6[order(-data_EVPPI_SCF6$PopulationEVPPI), ] 
data_EVPPI_SCF6 <- data_EVPPI_SCF6[data_EVPPI_SCF6$PopulationEVPPI != 0, ] 
plot_evppi_SCF6 <- ggplot(data_EVPPI_SCF6, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 6", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
   
data_EVPPI_SCF5 <- data.frame( 
  Parameter = c("p.adh", "c.DMII", "p.t1_M_40to59", "p.t2to5_M_40to59", "p.t6to9_M_40to59", 
"p.t10tox_M_40to59", 
                "p.t1_M_60to80", "p.t2to5_M_60to80", "p.t6to9_M_60to80", "p.t10tox_M_60to80
", "p.t1_M_80tox", 
                "p.t2to5_M_80tox", "p.t6to9_M_80tox", "p.t10tox_M_80tox", "p.t1_F_40to59", 
"p.t2to5_F_40to59", 
                "p.t6to9_F_40to59", "p.t10tox_F_40to59", "p.t1_F_60to80", "p.t2to5_F_60to80
", "p.t6to9_F_60to80", 
                "p.t10tox_F_60to80", "p.t1_F_80tox", "p.t2to5_F_80tox", "p.t6to9_F_80tox", 
"p.t10tox_F_80tox", 
                "p.KL_M_O", "p.KL_F_O", "p.KL_M", "p.KL_F", "p.TKA_FBp_M_45to60", "p.TKA_FB
p_F_45to60", 
                "p.TKA_FBp_M_60to80", "p.TKA_FBp_F_60to80", "p.TKA_FBp_M_80tox", "p.TKA_FBp
_F_80tox", 
                "p.rTKA_FBpr_M_45to60", "p.rTKA_FBpr_F_45to60", "p.rTKA_FBpr_M_60to80", "p.
rTKA_FBpr_F_60to80", 
                "p.rTKA_FBpr_M_80tox", "p.rTKA_FBpr_F_80tox", "p.FB.NBp_rTKA_M_45to65", "p.
FB.NBp_rTKA_F_45to65", 
                "p.FB.NBp_rTKA_M_65to80", "p.FB.NBp_rTKA_F_65to80", "p.FB.NBp_rTKA_M_80tox"
, "p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1125000,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
data_EVPPI_SCF5 <- data_EVPPI_SCF5[order(-data_EVPPI_SCF5$PopulationEVPPI), ] 
data_EVPPI_SCF5 <- data_EVPPI_SCF5[data_EVPPI_SCF5$PopulationEVPPI != 0, ] 
plot_evppi_SCF5 <- ggplot(data_EVPPI_SCF5, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 5", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
 
data_EVPPI_SCF4 <- data.frame( 
  Parameter = c("p.adh","c.DMII","p.t1_M_40to59","p.t2to5_M_40to59","p.t6to9_M_40to59","p.t
10tox_M_40to59", 
                "p.t1_M_60to80","p.t2to5_M_60to80","p.t6to9_M_60to80","p.t10tox_M_60to80","
p.t1_M_80tox", 
                "p.t2to5_M_80tox","p.t6to9_M_80tox","p.t10tox_M_80tox","p.t1_F_40to59","p.t
2to5_F_40to59", 
                "p.t6to9_F_40to59","p.t10tox_F_40to59","p.t1_F_60to80","p.t2to5_F_60to80","
p.t6to9_F_60to80", 
                "p.t10tox_F_60to80","p.t1_F_80tox","p.t2to5_F_80tox","p.t6to9_F_80tox","p.t
10tox_F_80tox", 
                "p.KL_M_O","p.KL_F_O","p.KL_M","p.KL_F","p.TKA_FBp_M_45to60","p.TKA_FBp_F_4
5to60","p.TKA_FBp_M_60to80", 
                "p.TKA_FBp_F_60to80","p.TKA_FBp_M_80tox","p.TKA_FBp_F_80tox","p.rTKA_FBpr_M
_45to60","p.rTKA_FBpr_F_45to60", 
                "p.rTKA_FBpr_M_60to80","p.rTKA_FBpr_F_60to80","p.rTKA_FBpr_M_80tox","p.rTKA
_FBpr_F_80tox","p.FB.NBp_rTKA_M_45to65", 
                "p.FB.NBp_rTKA_F_45to65","p.FB.NBp_rTKA_M_65to80","p.FB.NBp_rTKA_F_65to80",
"p.FB.NBp_rTKA_M_80tox","p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,0,0,276500,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1608000,0,0,121900
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,0,1931000,471100,0,0,0,0,0,0,0,0,0,3681000,0,0,0,0,129900,0,0,0)) 
data_EVPPI_SCF4 <- data_EVPPI_SCF4[order(-data_EVPPI_SCF4$PopulationEVPPI), ] 
data_EVPPI_SCF4 <- data_EVPPI_SCF4[data_EVPPI_SCF4$PopulationEVPPI != 0, ] 
plot_evppi_SCF4 <- ggplot(data_EVPPI_SCF4, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 4", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
 
data_EVPPI_SCF3 <- data.frame( 
  Parameter = c("p.adh","c.DMII","p.t1_M_40to59","p.t2to5_M_40to59","p.t6to9_M_40to59","p.t
10tox_M_40to59", 
                "p.t1_M_60to80","p.t2to5_M_60to80","p.t6to9_M_60to80","p.t10tox_M_60to80","
p.t1_M_80tox", 
                "p.t2to5_M_80tox","p.t6to9_M_80tox","p.t10tox_M_80tox","p.t1_F_40to59","p.t
2to5_F_40to59", 
                "p.t6to9_F_40to59","p.t10tox_F_40to59","p.t1_F_60to80","p.t2to5_F_60to80","
p.t6to9_F_60to80", 
                "p.t10tox_F_60to80","p.t1_F_80tox","p.t2to5_F_80tox","p.t6to9_F_80tox","p.t
10tox_F_80tox", 
                "p.KL_M_O","p.KL_F_O","p.KL_M","p.KL_F","p.TKA_FBp_M_45to60","p.TKA_FBp_F_4
5to60","p.TKA_FBp_M_60to80", 
                "p.TKA_FBp_F_60to80","p.TKA_FBp_M_80tox","p.TKA_FBp_F_80tox","p.rTKA_FBpr_M
_45to60","p.rTKA_FBpr_F_45to60", 
                "p.rTKA_FBpr_M_60to80","p.rTKA_FBpr_F_60to80","p.rTKA_FBpr_M_80tox","p.rTKA
_FBpr_F_80tox","p.FB.NBp_rTKA_M_45to65", 
                "p.FB.NBp_rTKA_F_45to65","p.FB.NBp_rTKA_M_65to80","p.FB.NBp_rTKA_F_65to80",
"p.FB.NBp_rTKA_M_80tox","p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
data_EVPPI_SCF3 <- data_EVPPI_SCF3[order(-data_EVPPI_SCF3$PopulationEVPPI), ] 
data_EVPPI_SCF3 <- data_EVPPI_SCF3[data_EVPPI_SCF3$PopulationEVPPI != 0, ] 
plot_evppi_SCF3 <- ggplot(data_EVPPI_SCF3, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 3", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
 
data_EVPPI_SCF2 <- data.frame( 
  Parameter = c("p.adh","c.DMII","p.t1_M_40to59","p.t2to5_M_40to59","p.t6to9_M_40to59","p.t
10tox_M_40to59", 
                "p.t1_M_60to80","p.t2to5_M_60to80","p.t6to9_M_60to80","p.t10tox_M_60to80","
p.t1_M_80tox", 
                "p.t2to5_M_80tox","p.t6to9_M_80tox","p.t10tox_M_80tox","p.t1_F_40to59","p.t
2to5_F_40to59", 
                "p.t6to9_F_40to59","p.t10tox_F_40to59","p.t1_F_60to80","p.t2to5_F_60to80","
p.t6to9_F_60to80", 
                "p.t10tox_F_60to80","p.t1_F_80tox","p.t2to5_F_80tox","p.t6to9_F_80tox","p.t
10tox_F_80tox", 
                "p.KL_M_O","p.KL_F_O","p.KL_M","p.KL_F","p.TKA_FBp_M_45to60","p.TKA_FBp_F_4
5to60","p.TKA_FBp_M_60to80", 
                "p.TKA_FBp_F_60to80","p.TKA_FBp_M_80tox","p.TKA_FBp_F_80tox","p.rTKA_FBpr_M
_45to60","p.rTKA_FBpr_F_45to60", 
                "p.rTKA_FBpr_M_60to80","p.rTKA_FBpr_F_60to80","p.rTKA_FBpr_M_80tox","p.rTKA
_FBpr_F_80tox","p.FB.NBp_rTKA_M_45to65", 
                "p.FB.NBp_rTKA_F_45to65","p.FB.NBp_rTKA_M_65to80","p.FB.NBp_rTKA_F_65to80",
"p.FB.NBp_rTKA_M_80tox","p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,917500,0,0,0,0,0,0,152200,0,919
900,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
data_EVPPI_SCF2 <- data_EVPPI_SCF2[order(-data_EVPPI_SCF2$PopulationEVPPI), ] 
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data_EVPPI_SCF2 <- data_EVPPI_SCF2[data_EVPPI_SCF2$PopulationEVPPI != 0, ] 
plot_evppi_SCF2 <- ggplot(data_EVPPI_SCF2, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 2", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
 
data_EVPPI_SCF1 <- data.frame( 
  Parameter = c("p.adh","c.DMII","p.t1_M_40to59","p.t2to5_M_40to59","p.t6to9_M_40to59","p.t
10tox_M_40to59", 
                "p.t1_M_60to80","p.t2to5_M_60to80","p.t6to9_M_60to80","p.t10tox_M_60to80","
p.t1_M_80tox", 
                "p.t2to5_M_80tox","p.t6to9_M_80tox","p.t10tox_M_80tox","p.t1_F_40to59","p.t
2to5_F_40to59", 
                "p.t6to9_F_40to59","p.t10tox_F_40to59","p.t1_F_60to80","p.t2to5_F_60to80","
p.t6to9_F_60to80", 
                "p.t10tox_F_60to80","p.t1_F_80tox","p.t2to5_F_80tox","p.t6to9_F_80tox","p.t
10tox_F_80tox", 
                "p.KL_M_O","p.KL_F_O","p.KL_M","p.KL_F","p.TKA_FBp_M_45to60","p.TKA_FBp_F_4
5to60","p.TKA_FBp_M_60to80", 
                "p.TKA_FBp_F_60to80","p.TKA_FBp_M_80tox","p.TKA_FBp_F_80tox","p.rTKA_FBpr_M
_45to60","p.rTKA_FBpr_F_45to60", 
                "p.rTKA_FBpr_M_60to80","p.rTKA_FBpr_F_60to80","p.rTKA_FBpr_M_80tox","p.rTKA
_FBpr_F_80tox","p.FB.NBp_rTKA_M_45to65", 
                "p.FB.NBp_rTKA_F_45to65","p.FB.NBp_rTKA_M_65to80","p.FB.NBp_rTKA_F_65to80",
"p.FB.NBp_rTKA_M_80tox","p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI = c(0,0,0,0,61550,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185800,0,0,0,0,0,0,64940,0,
414500,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
data_EVPPI_SCF1 <- data_EVPPI_SCF1[order(-data_EVPPI_SCF1$PopulationEVPPI), ] 
data_EVPPI_SCF1 <- data_EVPPI_SCF1[data_EVPPI_SCF1$PopulationEVPPI != 0, ] 
plot_evppi_SCF1 <- ggplot(data_EVPPI_SCF1, aes(x = reorder(Parameter, PopulationEVPPI), y = 
PopulationEVPPI)) + 
  geom_bar(stat = "identity", width = 0.1) + 
  coord_flip() + 
  labs(title = "Population EVPPI, Scenario 1", 
       x = "Parameter", 
       y = "Population EVPPI") + 
  theme_bw() 
 
data_EVPPI_Mix <- data.frame( 
  Parameter = c("p.adh","c.DMII","p.t1_M_40to59","p.t2to5_M_40to59","p.t6to9_M_40to59","p.t
10tox_M_40to59", 
                "p.t1_M_60to80","p.t2to5_M_60to80","p.t6to9_M_60to80","p.t10tox_M_60to80","
p.t1_M_80tox", 
                "p.t2to5_M_80tox","p.t6to9_M_80tox","p.t10tox_M_80tox","p.t1_F_40to59","p.t
2to5_F_40to59", 
                "p.t6to9_F_40to59","p.t10tox_F_40to59","p.t1_F_60to80","p.t2to5_F_60to80","
p.t6to9_F_60to80", 
                "p.t10tox_F_60to80","p.t1_F_80tox","p.t2to5_F_80tox","p.t6to9_F_80tox","p.t
10tox_F_80tox", 
                "p.KL_M_O","p.KL_F_O","p.KL_M","p.KL_F","p.TKA_FBp_M_45to60","p.TKA_FBp_F_4
5to60","p.TKA_FBp_M_60to80", 
                "p.TKA_FBp_F_60to80","p.TKA_FBp_M_80tox","p.TKA_FBp_F_80tox","p.rTKA_FBpr_M
_45to60","p.rTKA_FBpr_F_45to60", 
                "p.rTKA_FBpr_M_60to80","p.rTKA_FBpr_F_60to80","p.rTKA_FBpr_M_80tox","p.rTKA
_FBpr_F_80tox","p.FB.NBp_rTKA_M_45to65", 
                "p.FB.NBp_rTKA_F_45to65","p.FB.NBp_rTKA_M_65to80","p.FB.NBp_rTKA_F_65to80",
"p.FB.NBp_rTKA_M_80tox","p.FB.NBp_rTKA_F_80tox"), 
  PopulationEVPPI_Scenario1 = data_EVPPI_SCF1$PopulationEVPPI, 
  PopulationEVPPI_Scenario2 = data_EVPPI_SCF2$PopulationEVPPI, 
  PopulationEVPPI_Scenario3 = data_EVPPI_SCF3$PopulationEVPPI, 
  PopulationEVPPI_Scenario4 = data_EVPPI_SCF4$PopulationEVPPI, 
  PopulationEVPPI_Scenario5 = data_EVPPI_SCF5$PopulationEVPPI, 
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  PopulationEVPPI_Scenario6 = data_EVPPI_SCF6$PopulationEVPPI) 
data_long <- tidyr::pivot_longer(data_EVPPI_Mix, cols = c(PopulationEVPPI_Scenario1, Popula
tionEVPPI_Scenario2, PopulationEVPPI_Scenario3, PopulationEVPPI_Scenario4, PopulationEVPPI_
Scenario5, PopulationEVPPI_Scenario6), 
                                 names_to = "Scenario", values_to = "PopulationEVPPI") 
data_long <- data_long %>%  
  arrange(Scenario, desc(PopulationEVPPI)) 
data_long <- data_long %>%  
  group_by(Scenario) %>%  
  mutate(Parameter = factor(Parameter, levels = rev(unique(Parameter)))) %>%  
  ungroup() %>% 
  filter(PopulationEVPPI != 0) 
 
plot_mix <- ggplot(data_long, aes(x = PopulationEVPPI, y = Parameter, fill = Scenario)) + 
  geom_bar(stat = "identity", position = position_dodge2(preserve = "single", width = 3, pa
dding = 0), width = 1) + 
  scale_x_continuous(labels = function(x)x / 1000000, limits = c(0, 4000000), breaks = seq(
0, 4000000, 500000)) + 
  scale_y_discrete(expand = c(0.1, 0)) + 
  labs(title = "Annual popEVPPI by Parameter", 
       x = "Annual popEVPPI (million €)", 
       y = "Parameter", 
       fill = "Scenario") + 
  theme_bw() + 
  theme(plot.title = element_text(size = 10)) + 
  annotate("text", x = Inf, y = Inf, label = "G", size = 4, hjust = 1.1, vjust = 1.1) 
plot(plot_mix) 
## 
evpi_SCF1 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF1) 
evpi_SCF2 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF2) 
evpi_SCF3 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF3) 
evpi_SCF4 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF4) 
evpi_SCF5 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF5) 
evpi_SCF6 <- calc_evpi(wtp = seq(0, 100000, by = 10000), psa = l_psa_SCF6) 
 
evpi_SCF1$pop <- evpi_SCF1$EVPI * 762700 
evpi_SCF2$pop <- evpi_SCF2$EVPI * 762700 
evpi_SCF3$pop <- evpi_SCF3$EVPI * 762700 
evpi_SCF4$pop <- evpi_SCF4$EVPI * 762700 
evpi_SCF5$pop <- evpi_SCF5$EVPI * 762700 
evpi_SCF6$pop <- evpi_SCF6$EVPI * 762700 
 
evpi1 <- ggplot(evpi_SCF1, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 182397666, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
  theme_bw() + 
  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 1" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "A", size = 4, hjust = 1.1, vjust = 1.1) 
 
evpi2 <- ggplot(evpi_SCF2, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 118755905, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
  theme_bw() + 
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  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 2" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "B", size = 4, hjust = 1.1, vjust = 1.1) 
 
 
evpi3 <- ggplot(evpi_SCF3, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 52300339, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
  theme_bw() + 
  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 3" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "C", size = 4, hjust = 1.1, vjust = 1.1) 
 
 
evpi4 <- ggplot(evpi_SCF4, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 228411797, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
  theme_bw() + 
  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 4" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "D", size = 4, hjust = 1.1, vjust = 1.1) 
 
evpi5 <- ggplot(evpi_SCF5, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 120020818, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
  theme_bw() + 
  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 5" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "E", size = 4, hjust = 1.1, vjust = 1.1) 
 
evpi6 <- ggplot(evpi_SCF6, aes(WTP, pop)) + 
  geom_line(size = 0.5) + 
  geom_vline(xintercept = 20000, linetype = "dashed", color = "red", size = 0.5) + 
  geom_hline(yintercept = 33387720.8, linetype = "dashed", color = "red", size = 0.5) + 
  scale_y_continuous(labels = function(x)x / 1000000, limits = c(0, 1000000000), breaks = s
eq(0, 1000000000, 400000000)) + 
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  theme_bw() + 
  theme(panel.grid = element_blank(), 
        plot.title = element_text(size = 10)) + 
  labs( 
    x = "WTP", 
    y = "popEVPI (million €)", 
    title = "Annual popEVPI, Scenario 6" 
  ) + 
  annotate("text", x = Inf, y = Inf, label = "F", size = 4, hjust = 1.1, vjust = 1.1) 
 
 
grid.arrange( 
  arrangeGrob(evpi1, evpi4, evpi2, 
              evpi5, evpi3, evpi6, ncol = 2, nrow = 3), 
  arrangeGrob(plot_mix, ncol = 1), 
  nrow = 2, 
  heights = c(2,1) 
) 
 

 


