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Abstract

For fully connected neural networks the width, depth, and activation functions used
are usually picked using intuition of what has worked well before. It would be better
if we can know what structure of a neural network works well before starting training.
For this purpose we can calculate the Neural Tangent Kernel (NTK). We show that
the speed of training can be bounded using the smallest eigenvalue of the NTK. We
look at how the smallest eigenvalue changes between networks with different widths,
depths, and activation functions, and also how this bound may not directly correlate
with the speed of training.
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1 Introduction

Neural networks have become a very mainstream topic in the 2020’s, with more and more
research in the field being done each day. One newer topic is the study of the neural tangent
kernel (NTK), whose properties can tell us much about the network it is associated with.
One of the properties of the NTK is its eigenvalues. This leads us to our research question
which is:

How do the eigenvalues of the neural tangent kernel impact the speed of
training for networks with varying widths, depths, and activation functions?

We will answer the research question by looking at the theory behind the neural tangent
kernel and its eigenvalues, after which we will compute the eigenvalues for many different
network architectures. Finally we will perform training on some networks to see how the
theoretical results have impact on the training in practice.

2 Neural Networks & The Neural Tangent Kernel

2.1 Neural Network

A fully connected neural network is a function fθ : Rn0 → RnD , where fθ(x) is normally
defined as follows:

x(0) = x

xl = σ(W (l)x(l−1) + b(l))

xD = W (D)x(D−1) + b(D)

fθ(x) = xD.

(1)

We use θ to denote the collection of all the weights W l ∈ Rnl×nl−1 and biases bl ∈ Rn
l .

All the elements of θ are called the learnable parameters which we will take a closer look
at in the next section. The dimensions nl are called the width of layer l. The number
of layers D is referred to as the depth of the network. Finally, the function σ is called
the activation function and is used to introduce some nonlinearity to the network. Many
different activation functions are used for this which we will also see later.

2.2 Learning

We can try to approximate any function with a neural network, which means that we want
to find the optimal parameters for the best possible approximation.

For this, a loss function is used to compare the output of a network on a specific training
sample f(xn) to the target yn. A common loss function is the Mean Squared Error loss
function:

L(θ) =
1

N

N∑
n=1

||yn − fθ(xn)||22

for a data set ((x1, y1), ..., (xN , yN )). We can also write it as

1

N
(y − fθ(x))

T (y − fθ(x)),
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where y = (y1, ..., yN )T and fθ(x) = (fθ(x1), ..., fθ(xN ))T .

To find the best parameters, we need to find the minimum of the loss function. The
usual method to do this is with gradient descent. The parameters are initialised randomly
to obtain θ(0). Some learning rate η is chosen, and then the parameters are updated:

θ(k+1) = θ(k) − η∇θL(θ
(k)). (2)

When the learning rate is sufficiently small, this process guarantees that the loss approaches
a (local) minimum.

2.3 Neural Tangent Kernel

The Neural Tangent Kernel (NTK) arises when we look at the dynamics of the network
during training.
We can rearrange equation (2) into the following form:

−∇θL(θ
(k)) =

θ(k+1) − θ(k)

η
.

When η approaches 0, this will become the derivative of θ with respect to time t, so

−∇θL(θ
(t)) =

dθ(t)

dt

When we now want the derivative of the network over time: dfθ(x)
dt , we can use the chain

rule to do the following derivation. We will omit the t from θ(t) but keep in mind that the
parameters are always dependent on the time.

dfθ
dt

(x) = (∇θfθ(x))
dθ

dt
= −(∇θfθ(x))∇θLMSE(θ)

= −(∇θfθ(x))
1

N
∇θ((y − fθ(x))T (y − fθ(x)))

= − 2

N
(∇θfθ(x))(∇θfθ(x))

T (y − fθ(x)).

(3)

The term (∇θfθ(x))(∇θfθ(x))
T is known as the empirical neural tangent kernel. The size

of the NTK is N ×N . Its elements have size nD×nD. For simplicity, we will only consider
a network with a single output, so fθ(x) ∈ R i.e. nD = 1.

In this case, element i, j of the NTK is

Θij = (∇θfθ(xi))
T (∇θfθ(xj)) =

∑
θ

df(xi)

dθk

df(xj)

dθk
. (4)

2.4 Initialisation

To start the learning process we need to choose the initial values for all the parameters.
When analysing the neural tangent kernel, NTK parametrisation is used which slightly
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tweaks the structure of the network:

x(0) = x

xl = σ(
1

√
nl
W (l)x(l−1) + b(l))

xD = W (D)x(D−1) + b(D)

fθ(x) = xD.

(5)

The only difference with between the equations in (1) and those in (5) is the factor 1√
nl

,
so this new definition does not change what functions are learnable, but it prevents the
gradients from getting too large when calculating the gradient using backpropagation, for
networks with very large widths. for this reason this network definition and initialisation
is usually used when studying the neural tangent kernel, starting with the first paper on
the NTK [3].
Lastly, with this definition the weights and biases are all initialised using a normal distri-
bution with mean 0 and standard deviation 1.

3 Properties of the Neural Tangent Kernel

3.1 Change in Time

We will now see how the network changes in time.
Recall from equation (3) that

dfθ(x)

dt
= − 2

N
Θ(y − fθ(x)).

Since the training targets y are independent of time we can also state the following:

d

dt
(y − fθ(x)) =

dfθ(x)

dt
= − 2

N
Θ(y − fθ(x)), (6)

which looks a lot like an ordinary differential equation. In fact, if Θ would be independent
of time then we can solve the differential equation like

d

dt
(y − fθ(x)) = − 2

N
Θ(y − fθ(x))

=⇒ (y − fθ(x)) = e−
2
N
Θt(y − fθ(0)(x))

=⇒ fθ(x) = y − e−
2
N
Θt(y − fθ(0)(x)).

(7)

But as stated previously this is only valid if the neural tangent kernel is independent of
time which it clearly is not since the parameters θ change over the course of training and
as such the gradient with respect to θ will change, which is part of the definition of the
NTK.
However, a famous result from Jacot et al. [3] introducing the NTK as a field of study proves
that the neural tangent kernel does stay constant when the width of the network tends
to infinity. This makes sense, because as the width increases, the amount of parameters
goes up as well, so when a step of gradient descent is applied, each individual parameter
is changed by a smaller amount.
This result means that we can approximate the evolution of the network over the training
time with

fθ(x) = y − e−
2
N
Θ(0)t(y − fθ(0)(x)),
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where Θ(0) is the neural tangent kernel at time 0, so before any training. This greater the
width of the network, the better this approximation will be.

3.2 Smallest Eigenvalue

The eigenvalues of the neural tangent kernel tell much about the neural network it came
from. This is not a novel concept; in fact the eigenvalues of the NTK have been heavily
studied, such as in [5], [6], [8], which all also link the eigenvalues to training speed in some
way.

When we train our model, we are trying to minimise the loss. Let us calculate the change
of the loss over time.

dL(θ)

dt
=

d

dt
((y − fθ(x))

T (y − fθ(x)))

= 2(y − fθ(x))
T d

dt
(y − fθ(x)).

We can use equation (6) to continue with the above:

dL(θ)

dt
= 2(y − fθ(x))

T (− 2

N
Θ(y − fθ(x))) = − 4

N
(y − fθ(x))

TΘ(y − fθ(x)). (8)

There exists a theorem that links the above to the smallest eigenvalue of Θ.

Rayleigh’s theorem [2, p. 234-235] states, among others:
For all real vectors x and symmetric real matrices A,

xTAx

xTx
≥ λmin

Where λmin is the smallest eigenvalue of A.

Recall from equation (4)

Θij = (∇θfθ(xi))
T (∇θfθ(xj)) =

∑
θ

df(xi)

dθk

df(xj)

dθk

=
∑
θ

df(xj)

dθk

df(xi)

dθk
= (∇θfθ(xj))

T (∇θfθ(xi)) = Θji,

so the NTK is a symmetric matrix and thus we apply Rayleigh’s theorem to obtain

(y − fθ(x))
TΘ(y − fθ(x))

(y − fθ(x))T (y − fθ(x))
≥ λmin,

where λmin is the smallest eigenvalue of Θ.
We can use the above to continue equation (8):

dL(θ)

dt
= − 4

N
(y−fθ(x))

TΘ(y−fθ(x)) ≤ − 4

N
λmin(y−fθ(x))

T (y−fθ(x)) = −4λminL(θ)t.

(9)

Note the inequality sign switching because we multiplied the inequality by −4
N .

From the above we now obtain an upper bound for the loss function in continuous time:

dL(θ)

dt
≤ −4λminL(θ)

=⇒ L(θ(t)) ≤ L(θ(0))e−4λmin .

(10)
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4 Experiments

We will first explore the structure of the NTK in section 4.1, after which we will look at
the eigenvalues in section 4.2. To answer our research question we will then see how the
training proceeds for some of these networks in section 4.3. Finally the results will be
explained in section 4.4.

4.1 Graphical Representation of the NTK

We will take use a network described as in (5), also initialised using the initialisation stated
there.

The dataset we use is the Fashion-MNIST database [7], which contains 6000 grayscale
images of 28 by 28 pixels for 10 different pieces of clothing. This is a very commonly used
toy dataset in machine learning research.
Because we would like to have a network with a single-dimensional output, we will make a
network whose purpose is to differentiate between images of a T-shirt/Top (which have 0
as target) and images of an Ankle Boot (which we will give 1 as target). These restrictions
on the input and output means that in our network n0 = 28 ∗ 28 = 784 and nD = 1.
We will also use the same depth for all layers in between, i.e. ni = nj for all i, j with
0 < i, j < D.

We have 12000 data points (images) to work with, but we cannot use these all because we
will be unable calculate a 12000× 12000 NTK. Instead we will use a very small database
for all our experiments consisting of 100 images of a T-Shirt/Top and 100 images of an
Ankle Boot so that we can perform calculations with the NTK.

The networks that we will compare will have widths between 50 and 1000 in order have
a somewhat wide network in order to be able to use the theoretical results for infinite
width networks, but not too wide as to keep the calculations in a reasonable time. This is
supported by figure 1 in [4] shows us that the NTK is fairly consistent for a width of 50,
and nearly constant for a width of 1000.
We will consider a depth of 2 (1 hidden layer) as the smallest, since if we recall equation
(5), the activation function is not used in the last layer which means it will not appear in
a network of depth 1. We will consider a maximum depth of 10 to see how the eigenvalues
will change for some deeper networks.

The activation functions that we will compare are some of the most widely used activation
functions and include the following:

ReLU(x) =

{
x x ≥ 0

0 x < 0

ELU(x) =

{
x x ≥ 0

ex − 1 x < 0

LReLU0.01 =

{
x x ≥ 0

0.01x x < 0

Sigmoid(x) =
1

1 + e−x

6



With this in place, we can take a look at what the NTK looks like for some different widths,
heights, and activation functions.

Figure 1: Visual representation of the NTK for a network using ReLU as activation
function, a width of 800 and depth 3. A brighter color indicates a higher value for
(∇θfθ(xi))

T (∇θfθ(xj)).

There are some observations to be made from figure 1. We can see that i ranges from 0 up
to 200 on the x-axis, and the same for j on the y-axis. The brightness of one of the pixels
in the image corresponds to a high value for

Θij = (∇θfθ(xi))
T (∇θfθ(xj)) =

∑
θ

df(xi)

dθk

df(xj)

dθk
.

This is the case when for many parameters θk, the value of df(xi)
dθk

is similar to that of df(xj)
dθk

,
or in other words the training images contain similar patterns.

The visuals in the plot are not surprising. The diagonal is very bright since these are
the gradients of f on a training example compared with itself. The squares we see are
also expected because we have sorted the data. This means that figure 1 tells us the
first 100 images are similar to each other and that the last 100 images are also similar
to each other since these quadrants of the image are bright. We already know this is the
case since the first 100 images are all of T-shirts and the last 100 are images of ankle boots.

The spectrum of this NTK can be seen in figure 2.
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Figure 2: All eigenvalues sorted from highest to lowest of the NTK of a network
with activation function ReLU, width 800 and depth 3.

We see that there are some extremely high eigenvalues, and that most other eigenvalues
sit on a line (the y-axis is logarithmic, so this line is an exponential pattern). The lowest
eigenvalue is approximately 3.664.

The patterns from the visual representation of the NTK in figure 1 are expected, but
they turn out not to show up for some other network structures.
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Figure 3: Similar visual representation of the NTK as before, but with a different
network structure, namely Sigmoid as activation function, width 300, and depth 8.

In figure 3 there do not seem to be any patterns, not even on the diagonal which implies
this type of network does find that any type of images correlate to each other. When we
look at the spectrum in figure 4,

Figure 4: All eigenvalues sorted from highest to lowest of the NTK of a network
with activation function Sigmoid, width 300 and depth 8.

We see that it looks qualitatively very similar to the spectrum in figure 2, but most of

9



the eigenvalues are significantly lower, with the lowest being approximately 3.935 · 10−10.
This implies that this network will likely take much longer to train than the network in
the example above this one.

4.2 Smallest Eigenvalue

Now that we have seen what the NTK and its eigenvalues look like for some network
structures we can now look at the smallest eigenvalues for all network architectures that
we are interested in.

Figure 5: Smallest Eigenvalue
of the NTK for networks using
ReLU.

Figure 6: Smallest Eigenvalue
of the NTK of networks using
ELU.

Figure 7: Smallest Eigenvalue
of the NTK of networks using
Leaky ReLU.

Figure 8: Smallest Eigenvalue
of the NTK of networks using sig-
moid.

The figures show the smallest eigenvalue of the NTK for different widths and depths for a
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network using a certain activation function. The white spaces in the bottom right figure
are where the smallest eigenvalue was calculated to be below 0. For the best performance
in the training of a network we would like the smallest eigenvalue to be as large as possible.
Table 1 contains the greatest eigenvalue per activation function, and for what width and
depth this greatest eigenvalue is found at.

Table 1: The greatest of the smallest eigenvalues per activation function.

Activation Function Greatest Smallest Eigenvalue Width Depth
ReLU 5.490 1000 4
ELU 0.889 850 2

LReLU0.01 5.548 950 3
Sigmoid 0.044 450 2

There are again some observations to be made.

Firstly, in general a larger depth decreases the smallest eigenvalue of the NTK. In fact
for the networks using the ELU and Sigmoid activation functions the greatest smallest
eigenvalue is found at the minimum depth of 2. The greatest smallest eigenvalue for the
other two activation functions are not found at a much higher depth, namely at a depth
of 3 and 4.

Furthermore, for the ReLU, LReLU, and ELU there is also a curve where the smallest
eigenvalue increases as the width increases and also falls off more slowly at higher depth,
for instance at a width of 50 the smallest eigenvalue decreases more rapidly as the depth
increases than for a width of 1000.

As for the networks using the Sigmoid activation function we see that the smallest eigen-
value is mostly independent of the depth and immediately decreases as the depth increases,
and that the smallest eigenvalue even becomes negative at very high width and depth due
to numerical error.

4.3 Verification

We will now execute the training process of some of the networks in order to see if the
previous results hold up in practice.
For all training processes, we will use the same small dataset (N = 200) that we used to
calculate the neural tangent kernel. The precise method that we will use is stochastic gra-
dient descent with a learning rate of 10−3, a batch size of 1 (since the number of training
examples is so low) over 100 epochs.
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Figure 9: Loss over epochs for networks with the activation function, width, and
depth from table 1.

Note that for these results, there is a small bit of variance because of the initialisation, but
the general conclusion from figure 9 is that the networks with ReLU, Leaky ReLU, and
Sigmoid as activation function train about equally well, while the network with ELU lags
behind in training.

We will also take a look at how the training will go in for the networks that generated the
visual NTK representations from figures 1, 3. This loss can be seen in figure 10.
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Figure 10: Loss compared between the networks for which we saw the NTK in
figures 1, 3

.

4.4 Explanation

From the results from table 1 we would expect that the networks with the ’optimal’ width
and depth with the ReLU and Leaky ReLU activation function would train about equally
as well. The ’optimal’ network with the ELU activation function would train worse than
these two, and the network with Sigmoid would train even worse.
When we look at what actually happens during training this hypothesis is not really true.
The explanation is likely simple.
Let us look at the bound we obtained for the loss over the course of training from equation
(10). We cannot use this bound exactly since it relies on a continuous training. Simon S.
Du et al. [1] showed that there also exists a bound for the discrete training that is normally
used.
For this bound we need a width at least in the order N6

λmin
and a learning rate in the order

of λmin
N2 , which imply that the loss is bounded like

L(θt) ≤ (1− ηλmin

2
)tL(θ(0)).

If we compare this to the loss of the ReLU network from figure 9. Our width is not even
close to the order of magnitude to 2006

5.490 . Our learning rate is a little closer to the required
order 5.490

2002
≈ 1.3731̇0−4. Because our parameters are not the sufficient size, this upper

bound might not hold. But if we plot this,
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Figure 11: Loss of a ReLU network compared to its supposed upper bound.

We see in figure 11 that our loss fits very well under the upper bound for discrete gradient
descent.
The reason why the eigenvalues from table 1 do not seem to have much of an impact on the
actual training is likely due to the fact that the upper bounds induced by these eigenvalues
are too high to be meaningful for our simpler task.

On the other hand, we do see something that we expect in figure 10. We see that the
network with the ReLU activation function learns the dataset, albeit more slowly than the
Rely network in figure 9. As for the network with the sigmoid activation function, recall
that all targets are 0 or 1, which means that the steady average loss of 0.5 means the
network is merely guessing the correct outcome.
This corresponds to the fact that the NTK of the ReLU network seemed very organised
while the NTK of the Sigmoid network was very chaotic. The impact that an ’organised’
neural tangent kernel has on the performance and training of a network is an interesting
point for further study.

5 Conclusion

We have seen that in theory, the dynamics of the loss can be bounded using the smallest
eigenvalue of the neural tangent kernel.

For our task of recognising clothing articles in a dataset of size 200, the networks with
ReLU and Leaky ReLU as activation function have the greatest value for the smallest
eigenvalue for many different widths and depths. The network with Sigmoid as activation
function has lower eigenvalues and would be expected to train slower.

In practice, our task is likely too simple to see the impact of these eigenvalues, since
when doing the training the networks with different activation functions performed very
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similarly, with only the network using ELU as activation function doing a bit less well than
the other three networks.

To answer our research question: The eigenvalues of the NTK give a bound to the speed
of training but do not directly correlate to how fast the loss decreases.

6 Discussion

As far as the conclusion goes, we do not prove that the reason the eigenvalues do not corre-
spond to training speed in our experiments is due to the task being too simple, but we can
be sure since the mathematical theory behind the bound is correct and the approximate
bound from [1] is clearly much higher than the actual loss.

We have not concerned ourselves with the actual performance of the network, only the
dynamics of the loss (i.e. the training speed). As such all losses plotted are training losses.
This is because a network which quickly decreases in training loss over the course of its
training will likely also decrease quickly in test loss, at least for a certain number of epochs
at the start.

Finally, we know that the neural tangent kernel is constant in the limit of infinite width,
but it would have been a good idea to verify how much the NTK changes for the widths
that we work with, in order to see how close the NTK is to constant for those widths.
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