
BSc Thesis Applied Mathematics

Gradient Descent with Random
Minibatches in the Linear
Model

Yazan Mash’al

Supervisors: G. Clara, J. Schmidt-Hieber, A. Faizan

June, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Acknowledgements

I am grateful to everyone who supported and guided me through the completion of this
bachelor thesis. I want to thank Gabriel Clara. His unwavering support, keen insights,
and patient mentorship have been indispensable throughout this journey. His exceptional
guidance has not only enriched this research but also significantly shaped my academic
growth and understanding of the field.

I would also like to extend my sincere thanks to Dr. Johannes Schmidt-Hieber and Dr.
Ahmed Faizan. Their expertise and feedback in the theoretical and practical underpinnings
of this paper have been invaluable, providing additional perspectives and enhancing the
quality of this work. I appreciate their contributions and the opportunities they offered
for thoughtful discussions.

Furthermore, I am deeply thankful to my family and friends, whose constant encourage-
ment and belief in my abilities have been a tremendous source of strength. Your support
has been instrumental in navigating the challenges of this project.

Lastly, I wish to acknowledge the body of existing research and other scholars’ pioneering
work in machine learning and optimization. Their foundational contributions have been
integral to the development of this thesis.



Gradient Descent with Random Minibatches in the Linear
Model

Yazan Mash’al∗

June, 2024

Abstract

This thesis explores the dynamics and convergence properties of gradient descent
algorithms when integrated with dropout techniques and random minibatch sampling
in the context of linear regression. Dropout, a form of regularization, and minibatch
gradient descent are both crucial in developing robust machine learning models that
generalize well to unseen data. This paper aims to showcase the theoretical properties
and practical implications of using these two methods.

Keywords: Gradient Descent, Dropout, Random Minibatch Sampling, Linear Regres-
sion, Machine Learning, Optimization

1 Introduction

In machine learning, regularization is used for developing models that are not only pre-
dictive but also robust and generalizable to unseen data. Regularization techniques, such
as lasso (L1) regression and ridge (L2) regression, are used to prevent models from over-
fitting by penalizing the coefficients associated with each feature in the model. These
regularization methods, well-established in the statistical literature [3], focus on control-
ling the model complexity through direct penalties on the coefficients. In contrast, modern
algorithmic regularization methods, such as dropout, originate from the machine learning
domain and are less understood but effective in practice. This distinction highlights a
qualitative difference in how the two communities — statistics and machine learning —
approach regularization.

Despite the effectiveness of L1 and L2 regularization, these techniques have limitations,
especially when dealing with high-dimensional data. High-dimensional datasets are charac-
terized by many features, which require complex models to capture the underlying patterns.
As the number of features increases, the volume of the feature space grows exponentially.
Specifically, each additional feature increases the dimensionality of the dataset, vastly ex-
panding the search space for potential solutions.

In light of these challenges, alternative approaches to regularization have been explored.
One notable method, introduced by [12], is the use of dropout as a form of regulariza-
tion that involves randomly omitting units from a neural network during training. This
technique can be viewed as adding noise to the training process, preventing units from
co-adapting too closely.

∗Email: y.mashal@student.utwente.nl

1



While dropout can be compared to L2 regularization in certain contexts, particularly in
linear regression models, it induces a more complex form of regularization known as the ℓ2-
path norm in deep linear networks, as discussed in Proposition 2.1 of [7]. This regularizer
is distinct from the traditional L2-penalty and highlights the nuanced effect of dropout in
deeper and more complex networks.

This thesis aims to delve deeper into the mechanism of dropout and its implications for
model training and regularization. By exploring the theoretical underpinnings of dropout
and its practical applications, this paper seeks to showcase how the introduction of noise
through dropout can mimic traditional L2 regularization effects and the conditions that
lead to statistically optimal outcomes. Furthermore, this research extends the investiga-
tion to the convergence properties of gradient descent with minibatches and dropout in
the context of linear regression models. Such an aspect is crucial for understanding how
the dynamics of model training change with the incorporation of minibatches, a common
practice in the training of large-scale machine learning models. Through thoroughly exam-
ining these themes, this thesis contributes to the broader understanding of regularization
techniques in machine learning, offering insights into how models can be made more gener-
alisable and less prone to over-fitting in the face of high-dimensional data challenges.

1.1 Outline

The research begins by providing an introduction to dropout, including its various schemes
and how it influences the optimization process within neural networks. We then go into the
specifics of gradient descent augmented with dropout, highlighting the impact on model
regularization and convergence.

Following this, we examine the effects of integrating random minibatch sampling with gra-
dient descent and dropout. Through mathematical analysis and Monte Carlo simulations,
we demonstrate how these techniques affect the convergence speed and stability of gradient
descent in specific settings.

The primary aim in Section 5 is to simulate model averaging procedures traditionally
performed with Markov Chain Monte Carlo (MCMC) methods, without the substantial
computational overhead these methods typically entail. MCMC methods can be compu-
tationally intensive and impractical for very large datasets and complex models, such as
those frequently encountered in deep learning. By simulating model averaging through
dropout, this method provides a computationally efficient way to integrate out over differ-
ent network architectures, promoting the development of robust features. This approach
has shown promise, particularly in the training of deep neural networks, where it encour-
ages the model to learn features that are useful across many different random subsets of
the other neurons.

Our findings reveal that incorporating dropout with minibatch sampling (random mini-
batch sampling) mitigates the risk of overfitting and improves the convergence behaviour
of gradient descent. The simulations in Section 5 validate the theoretical models, showing
that dropout and minibatch sampling effectively regularize the training process and reduce
model variance.

This thesis contributes to the broader understanding of regularization and optimization in
machine learning, offering insights into how these techniques can be effectively combined to
tackle the challenges posed by high-dimensional data. Future work will explore extending
these methodologies to more complex models and larger datasets, aiming to further enhance
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their applicability and effectiveness in real-world scenarios.

1.2 Research questions

The main research question of this paper is: "How does the integration of random mini-
batches in gradient descent affect the convergence behaviour and covariance structure of
the parameter estimates?"

To effectively explore this main question, we will break it down into several sub-research
questions that are more focused and manageable within the scope of this paper.

Firstly, we will address the foundational question: "What is dropout, and how does it
work?". This question, in Section 2, provides an opportunity to introduce the dropout
technique, discussing its theoretical foundation and implementation in the training of neu-
ral networks.

Secondly, we will examine the relationship between dropout and gradient descent by asking:
"How does dropout affect the convergence speed of gradient descent in the linear model?".
This exploration, in Section 3, will focus on understanding how the inclusion of dropout
influences the gradient descent process to converge, and how different dropout rates impact
this convergence.

Lastly, we will extend our investigation to consider the combined effects of dropout and
minibatches with the question: "How does random minibatch sampling affect the conver-
gence behaviour and covariance structure of the parameter estimates in the linear model?".
Here, in Section 4, we will analyze whether combining dropout with minibatch training
enhances the convergence of the parameter estimates.

These questions aim to provide a comprehensive understanding of how dropout, especially
when integrated with minibatches, influences the training dynamics and performance of
gradient descent in the linear model. We extend our validation in Section 5 to neural
networks, specifically in the context of the MNIST dataset.

1.3 Literature review

This review will cover the concept of dropout, its theoretical foundations, variations and
implementations, as well as its impact on the field of deep learning.

Dropout, introduced by [12], emerged as a regularization technique designed to reduce the
overfitting phenomenon in deep learning models. Unlike classical regularization methods,
dropout provides a novel approach by randomly deactivating a subset of neurons dur-
ing the training process, thereby reducing the model’s reliance on any single neuron and
encouraging a more distributed and robust feature representation.

At its core, dropout operates under the following principle: during each training iteration, a
random fraction of the nodes (neurons) in the network layers are "dropped out," meaning
they are temporarily removed along with all their incoming and outgoing connections
[12]. This randomness introduces a form of noise that helps to break up co-adaptations
of neurons, forcing the network to learn more robust features that are not dependent on
specific neural pathways. The mathematical formulation of dropout involves adjusting the
network’s weights during training, which can be viewed as training a "thinned" network,
offering insights into its effectiveness as a regularization strategy.
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The adaptability of the dropout concept has led to the development of several variants
aimed at optimizing its regularization capabilities across different neural network architec-
tures. These include DropConnect in [13], DropBlock in [2], and selective dropout tech-
niques, each tailored to specific network structures or training challenges. For instance,
DropConnect modifies the connectivity pattern within the network, while DropBlock fo-
cuses on dropping contiguous regions of feature maps in convolutional neural networks
(CNNs). These variations underscore the flexibility of dropout as a regularization concept,
capable of being customized to enhance model performance across a wide array of deep
learning applications.

The introduction of dropout has had a profound impact on the field of deep learning, sig-
nificantly advancing the state-of-the-art (SOTA) across various domains [6]. An important
contribution in the recognition of dropout’s potential was its application in the AlexNet
model, which achieved a high performance in the ImageNet challenge, as detailed in [5].
This work generated significant interest in dropout due to its role in enhancing model
performance in large-scale image classification tasks.

The effectiveness of dropout in improving model generalization has been demonstrated
through empirical research, including performance comparisons using benchmark datasets,
as done in [12]. Dropout techniques have been shown to enhance the robustness of models
against input noise and variance, contributing to the development of more reliable and
stable deep learning systems.

Moreover, the exploration of dropout in various network architectures, such as recurrent
neural networks (RNNs) and transformers, highlights its versatility. Dropout’s potential
to improve model performance extends beyond traditional feedforward networks, offering
benefits across a wide range of deep learning applications.

1.4 Notation and definitions

Column vectors are denoted in bold, e.g., x = (x1, . . . , xd)
⊤. The Euclidean norm of a

vector x is defined as ∥x∥2=
√
x⊤x, but since we are only going to use the Euclidean norm,

the subscript is going to be emitted for brevity. The d × d identity matrix is denoted by
Id, or simply I when the dimension d is clear from the context. For a given square matrix
A ∈ Rn×n, Diag(A) extracts the diagonal elements of A and forms a diagonal matrix D.
If A = [aij ], then Diag(A) = D is defined as:

D = Diag(A) where Dij =

{
aii if i = j,

0 if i ̸= j.

Additionally, we define A = A−Diag(A). For a scalar p ∈ (0, 1), the matrix Ap is defined
as Ap = pA+ (1− p)Diag(A). This expression rescales the off-diagonal entries of A by p
while retaining the diagonal entries. The smallest eigenvalue of a symmetric matrix A is
denoted by λmin(A). We also define the Gram matrix, denoted by X := X⊤X.

The operator norm of a linear operator T : V → W between normed linear spaces is given
by ∥T∥op= sup∥v∥V ≤1∥Tv∥W . The spectral norm, which is also known as the operator
norm for matrices, is denoted ∥·∥ and equals the maximum singular value.
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2 What is dropout?

Dropout is a regularisation technique used in the training of machine learning models,
which was first introduced in [12]. It involves adding noise during the training epoch
to reduce the generalisation error. In an abstract sense, dropout can be considered as
approximating a Bayesian sampling method, where all the sub-graphs of the neural network
are averaged and the final model is assembled [12]. An example of dropping neurons during
the training epoch and its effect on the network can be seen in Figure 1.

Figure 1: Dropout applied to a neural network. Panel (a) shows a standard neural
network, and panel (b) shows a neural network after applying dropout (Adapted from
[12])

2.1 Description of the neural network model with dropout

This section describes the dropout neural network model. More formally, as presented in
[12], consider a neural network with L hidden layers. Let l ∈ {1, . . . , L} index the hidden
layers of the network. Denote by z(l) the vector of inputs into layer l, and by Y(l) the
vector of outputs from layer l (note that Y(0) = x is the input). W(l) and b(l) represent
the weights and biases at layer l, respectively. The feed-forward operation of a standard
neural network can be described as, for l ∈ {0, . . . , L− 1} and any hidden unit i,

z
(l+1)
i = W

(l+1)
i Y(l) + b

(l+1)
i ,

Y
(l+1)
i = f(z

(l+1)
i ),

where f is an activation function, for instance, f(x) = 1
1+exp(−x) . With dropout, the

feed-forward operation becomes:

r
(l)
j ∼ Bernoulli(p),

ỹ(l) = r(l) ◦Y(l),

z
(l+1)
i = W

(l+1)
i ỹ(l) + b

(l+1)
i ,

Y
(l+1)
i = f(z

(l+1)
i ),

where ◦ denotes the element-wise product, and r(l) is a vector of Bernoulli random variables,
which are used to "drop" (zero out) elements of Y(l). However, given that this model is
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beyond the scope of this paper, we are going to observe the emerging properties in a linear
regression model instead.

3 Gradient descent with dropout in linear regression

We commence by examining a linear regression model characterized by a fixed n×d design
matrix X and an n× 1 outcome vector Y, shown by the relationship:

Y = Xβ∗ + ϵ, (1)

where β∗ is an d×1 vector that symbolizes the unknown parameter vector that characterizes
the regression model and ϵ is normally distributed noise with E[ϵ] = 0 and Cov(ϵ) =
In. The objective is to deduce β∗ from the given data (X,Y). Should X incorporate a
null column, its corresponding regression coefficient would be non-influential to Y. Thus,
excluding both the null column and its associated coefficient simplifies the model.

The estimator of β∗, β̃, uses the following least squares criterion as the cost function:

β 7→ 1

2
∥Y −Xβ∥2.

Using a constant learning rate α > 0, gradient descent iteratively refines the estimate
according to the following update function:

β̃k+1 = β̃k − α∇β̃k

1

2
||Y −Xβ̃k||2= β̃k + αX⊤(Y −Xβ̃k), (2)

where k indexes the iteration steps, initiating from a potentially stochastic baseline β0.

Dropout, as shown in [12], modifies the standard gradient descent by incorporating gra-
dients from a stochastically reduced model in each iteration. We define a d × d diagonal
dropout matrix D as a p-dropout matrix, where Dii ∼ Bernoulli(p) for p ∈ (0, 1). This
results in approximately pd entries of D being 1, with the remainder zero. In theory, the
dropout methodology aims to approximate Bayesian model averaging across all possible
network configurations, as discussed in [12].

To implement dropout, we introduce a sequence of i.i.d. dropout matrices {Dk}, where Dk

represents the matrix used in the kth iteration. The gradient descent update function in
(2), when incorporated with dropout for any vector β̃k+1 under a dropout matrix Dk+1,
becomes:

β̃k+1 = β̃k − α∇β̃k

1

2
||Y −XDk+1β̃k||2= β̃k + αDk+1X

⊤(Y −XDk+1β̃k), (3)

indicating the adoption of a model reduced by Dk+1.

3.1 The different dropout schemes

We are going to mention two dropout approaches, as was discussed in [1]: one applies
dropout directly within the gradient descent step, and another applies dropout to the
gradient before the update step. The first method alters the design matrix X to XDk+1

in iteration k + 1, affecting the gradient computation by the randomness of Dk+1. The
latter, simplified dropout, only modifies the gradient post-computation with Dk+1.
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When the columns of X are orthogonal, the dropout approaches coincide, as diagonal
matrices commute. The effectiveness of dropout, motivated from a model averaging per-
spective, aims at approximating Bayesian model averaging over network configurations.
This method has been supported by empirical successes across various network architec-
tures and tasks.

3.2 Averaged dropout in gradient descent

In the linear regression framework introduced in (1), the implementation of dropout aims to
reduce over-fitting by randomly reducing the model complexity during training iterations.
While the end goal remains to minimize the original loss function β 7→ E[∥Y −Xβ∥2|Y],
the introduction of dropout transforms this into a regularized surrogate loss. The expected
loss to be minimized is given by

β 7→ E
[
∥Y −XDβ∥2

∣∣Y]
, (4)

where D represents the dropout mask applied to the matrix X. The dropout mask D
varies across iterations, introducing stochasticity into the training process. Contrary to
the initial expectation that the law of large numbers would average out the stochastic effects
of dropout, it is observed that the process does not simply converge to a minimizer of the
expected loss in the traditional sense [1]. Instead, the randomness induced by dropout
leads to a more complex form of regularization, shaping the optimization landscape in a
way that encourages better generalization.

For a detailed discussion on how dropout affects the convergence and optimization process,
refer to Section 3 in [1]. This updated discussion provides insights into why the averaging
effect of the law of large numbers does not straightforwardly apply and how dropout instead
alters the path and properties of the convergence in a nuanced manner.

3.2.1 Analysis of the averaged loss with dropout

Consider the Gram matrix X := X⊤X, then the squared norm under dropout can be
expressed as:

∥Y −XDβ∥2= ∥Y∥2−2Y⊤XDβ + β⊤DXDβ. (5)
Taking the expectation over D, and noting that E[D] = pI and

E[DAD] = E
[
DAD +DDiag(A)D

]
= p2A+ pDiag(A) = p (pA− pDiag(A) + Diag(A)) = pAp.

(6)

Here, we have that Ap = pA+ (1− p)Diag(A). We now arrive at:

E
[
∥Y −XDβ∥2

]
= ∥Y∥2−2pY⊤Xβ + pβ⊤Xβ + p(1− p)β⊤Diag(X)β. (7)

This formulation aligns with a Tikhonov regularization framework, asserting that the min-
imizer β can be determined by differentiating the averaged loss to find:

β̃ := argmin
β∈Rd

E
[
∥Y −XDβ∥2|Y

]
= X−1

p X⊤Y, (8)

where Xp := pX+ (1− p)Diag(X) acts as the effective design matrix under dropout. This
result provides an insightful interpretation of how dropout influences the design matrix,
effectively averaging the original matrix X with its diagonal component weighted by (1−p)
and off-diagonal entries by p. For a detailed analysis of this estimator and its properties,
refer to Section 2 of [1], which studies this estimator comprehensively.
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3.3 Analysis of iterative dropout schemes

Gradient descent within the linear model framework, particularly with a small yet fixed
learning rate as previously discussed, ensures exponential convergence over iterations. This
section delves into the details of iterative dropout schemes and how convergence comes
about with a fixed learning rate α.

3.4 Convergence analysis of gradient descent with dropout

We examine the statistical characteristics of the dropout approach shown in (3):

β̃k+1 = β̃k + αDk+1X
⊤(Y −XDk+1β̃k).

We are first going to rewrite this update equation in order to facilitate the study of its
characteristics. Utilizing the idempotent nature of Dk, and recognizing the commutative
property of diagonal matrices, we have that:

β̃k+1 − β̃ = (I − αDk+1XDk+1)(β̃k − β̃) + αDk+1X(pI −Dk+1)β̃.

Herein, the secondary term inherently has a zero mean, independent across iterations,
attributable to the stochastic independence of Dk+1 and the vector pair (β̃, β̃k+1).

3.5 Contractive mapping and convergence guarantees

Assumption 3.1. The learning rate α and the dropout probability p are chosen such that
αp∥X∥< 1, the initialization β0 is a square-integrable random vector that is independent of
the data Y and the model is in reduced form, meaning that X does not have zero columns.

As was shown in [1], we are going to utilise Assumption 3.1 to meet the convergence
condition. The expectations of the random matrices (I − αDkXDk) and (I − αDkXp),
under a sufficiently small learning rate α, act as contractive mappings. Assumption 3.1
stipulates the conditions under which this contractivity ensures convergence of dropout
iterates. This is taken from Lemma 1 of [1].

Theorem 3.2. Given Assumption 3.1, ∥I − αpXp∥≤ 1− αp(1− p) min
i

Xii < 1, and for
any iteration k,

∥E[β̃k − β̃]∥≤ ||I − αpXp||k∥E[β0 − β̃]∥.

This lemma showcases the expected exponential rate at which the expectation of dropout
iterates approach β̃. While exponential convergence is generally characteristic of linear
models, dropout does not inherently enhance this convergence rate. In fact, dropout in-
troduces additional noise and effectively reduces the learning rate, which can slow down
convergence compared to standard gradient descent. Therefore, while dropout contributes
to regularization and improved generalization, it does so at a slower convergence rate due
to the reduced effective learning rate.

For now, we are not going to analyze the behaviour of the second moment, given by
E[(β̃k − β̃)(β̃k − β̃)⊤]. These are analyzed in [1], but for the scope of this paper, the
previous results introduced aim to aid our analysis in the coming section. We are going
to move on to a different version of dropout, one that incorporates random minibatches
during the update iterations.
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4 Gradient descent with random minibatch sampling

We are now going to reinterpret random minibatch sampling within the gradient descent
algorithm as a form of dropout. Instead of treating dropout and random minibatch sam-
pling as separate techniques, we view random minibatch sampling as a dropout mechanism.
This perspective allows us to analyze random minibatch sampling using the theoretical
frameworks established for dropout. By employing random subsets of the dataset in each
iteration, random minibatch sampling introduces a form of stochasticity similar to dropout,
leading to comparable effects on the optimization process.

Again, suppose we have a dataset (X,Y), where X is n × d and the response vector Y
is n × 1. The objective function remains the same and it is to minimize the expected
loss:

argmin
β∈Rd

E
[
∥(Y −Xβ)∥2|Y

]
. (9)

4.1 Batch stochastic gradient framework

At its essence, the classical stochastic gradient method would pick a point from the dataset
at random and then compute the gradient iterates. The idea behind this process is that
using a single data point at a time results in updates that are cheaper than a full gradient
step. However, as proposed in [11], using a single component does not necessarily lead to
convergence. Therefore, we consider gradient updates that utilise a subset of the dataset.
This allows for quicker gradient updates, as opposed to utilising the whole dataset, and
also allows for specific convergent properties to arise.

In the gradient updates, a random subset of (Y−Xβ) is taken in every step when multi-
plying by an n × n dropout matrix D. The equation for such implementation of random
minibatch gradient descent is given by:

β̄k+1 = β̄k − α∇β̄k

1

2
∥Dk+1(Y −Xβ̄k)∥2= β̄0 − α

k∑
l=1

∇β̄l

1

2
[Dl+1∥Y −Xβ̄l∥2]. (10)

Here, the dropout matrices function to select a random subset of data points in each itera-
tion, reflecting principles akin to randomly weighted least squares and resampling method-
ologies. This method is also related to randomly weighted least squares and resampling
techniques. Overall, two batch regimes can be distinguished:

• Dk has a dense diagonal, which has a cost essentially equivalent to that of a full
gradient update.

• Dk has a sparse diagonal. This results in random minibatch sampling.

Section 3 of [1] provides insights into the averaging effect of the law of large numbers
and how dropout instead alters the path and properties of the convergence in a nuanced
manner.
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4.2 Analysis of averaged dropout with minibatches

Since D⊤ = D and D2 = D, the squared norm under dropout of stochastic gradient descent
with minibatches can be expressed as:

∥D(Y −Xβ)∥2 = (D(Y −Xβ))⊤D(Y −Xβ)

= (Y −Xβ)⊤D(Y −Xβ).

Taking the expectation over D, and noting that E[D] = pI, we arrive at:

E
[
∥D(Y −Xβ)∥2|Y

]
= E[(Y −Xβ)⊤D(Y −Xβ)|Y]

= pE[||Y −Xβ)||2|Y].

The solution to (9) minimizes the expectation such that

β̄ := argmin
β∈Rd

E[||(Y −Xβ)||2|Y] = X−1X⊤Y.

In this case, the estimator β̄ corresponds to the usual linear least squares estimator, given
by β̂ = X−1X⊤Y, assuming that X is invertible.

However, if X is not invertible, the linear least squares problem does not have a unique
solution. In such cases, the most natural (but not unique) minimizer is given by X+Y,
where X+ denotes the Moore-Penrose pseudo-inverse of X. This pseudo-inverse provides
a generalized solution to the least squares problem.

While a detailed discussion on the Moore-Penrose pseudo-inverse is beyond the scope of
this section, it serves as an essential tool in handling cases where X is singular or not full
rank.

4.3 Analysis of iterative minibatch dropout schemes

In equation (10), the gradient with respect to β̄k is ∇β̄k

1
2∥Dk+1(Y−Xβ̄k)∥2= −X⊤Dk+1(Y−

Xβ̄k). We can therefore rewrite the minibatch iterates in (10) as follows:

β̄k+1 = β̄k + αX⊤Dk+1(Y −Xβ̄k).

As we did in the previous section, we look at the statistical properties of the dropout
scheme given by (10). The update mechanism can be reformulated as:

β̄k+1 − β̄ = β̄k + αX⊤Dk+1(Y −Xβ̄k)− β̄

= β̄k + αX⊤Dk+1(Y −Xβ̄k)− β̄ + αX⊤Dk+1(Y −Xβ̄)− αX⊤Dk+1(Y −Xβ̄)

= (I − αX⊤Dk+1X)(β̄k − β̄) + αX⊤Dk+1(Y −Xβ̄),
(11)

where β̄ is a least squares estimator solving the normal equations X⊤Y = Xβ̄. This
reformulation reveals the stochastic character of minibatch dropout in linear regression
frameworks. For small learning rates α, the term (I − αX⊤Dk+1X) acts as a contractive
map in expectation. The expected value is E[I − αX⊤Dk+1X] = I − αpX. Thereby,
this gives us the same condition as in Section 3 in Assumption 3.1, where αp∥X∥< 1
is a necessary condition to ensure the scheme converges in expectation. However, while
Assumption 3.1 is necessary for the convergence of β̃k, it is not sufficient for β̄k. The
following condition must also hold such that β̄k converges.
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Assumption 4.1. The inverse X−1 must exist such that the estimator converges as k →
∞.

More specifically, the property we aim to derive is that the null space of X is empty, which
can be achieved when X has full rank. This means that all eigenvalues λ of X are greater
than zero (λ > 0 for all λ). We shall assume that the null space of X is trivially empty,
meaning that there does not exist any non-zero vector v such that Xv = 0.

To clarify, an empty null space implies that the matrix X is invertible, which ensures that
every non-zero vector v is mapped to a non-zero vector under X. If some v ̸= 0 is in the
null space of X, then the matrix X would fail to be invertible.

This is important because if such a v ̸= 0 exists, then for the expression (I − αpX)v, we
have:

(I − αpX)v = v − αpXv = v.

This indicates that the mapping is not contractive. For the iterative process in (12), this
non-contractiveness implies that the norm of the iterations does not converge to zero,
preventing the convergence of the iterative solution.

There exists a relationship between the null space, eigenvalues, and the norm for ensuring
convergence. In particular, the matrix X being invertible implies that its eigenvalues are
all non-zero, which is directly related to the contractive nature of the mapping (I −αpX).
For a more detailed discussion about these properties, see Theorems 5.6.9 and 5.6.12 in [4],
which provide deeper insights into matrix invertibility and contraction mappings.

Given Assumption 3.1 and that X is invertible, we are going to show that these two
conditions are in fact sufficient. To show this directly, we use the fact that if the spectral
radius of a matrix A is less than 1, then I−A is invertible and its norm is less than 1.

To understand the convergence properties of the iterative method, we analyze the spectral
properties of the matrix I − αpX.

Lemma 4.2. Given that αp∥X∥< 1 and X is a normal matrix, the spectral radius of
I−αpX is less than 1. Consequently, ∥I−αpX∥< 1, implying that I−αpX is a contractive
mapping.

Proof. Let λ be an eigenvalue of αpX with corresponding eigenvector v. Then, the corre-
sponding eigenvalue of I − αpX is 1 − λ. Given that αp∥X∥< 1, all eigenvalues λ of αpX
satisfy 0 < λ < 1. Since the eigenvalues of I−αpX are 1−λ, this ensures that the spectral
radius of I −αpX is less than 1. Then, we have αpXv = λv. Consider the matrix I −αpX
acting on v:

(I − αpX)v = v − αpXv = v − λv = (1− λ)v.

Thus, the eigenvalue of I − αpX corresponding to λ is 1− λ.

Given αp∥X∥< 1, the eigenvalues λ of αpX satisfy |λ|< 1. Since X is invertible (implying
X has full rank and all its eigenvalues are positive), we have 0 < λ < 1.

Therefore, for all eigenvalues λ of αpX, the corresponding eigenvalues 1 − λ of I − αpX
satisfy 0 < 1 − λ < 1. This means that the spectral radius of I − αpX, defined as the
maximum absolute value of its eigenvalues, is less than 1.

When X is a normal matrix (which includes symmetric matrices), we can infer from the
spectral radius condition that:

∥I − αpX∥< 1.

11



This ensures that I − αpX is a contractive mapping.

To assert the convergence of E[β̄k+1− β̄], we want to establish a decaying upper bound on
the expectation. This will ensure that the expected dropout iterates converge exponentially
fast in the number of iterations to the expectation of the estimation β̄. We show that the
second term in (11) has the following expectation:

E[αX⊤Dk+1(Y −Xβ̄)|Y] = αpE[X⊤(Y −Xβ̄)|Y]

= αpE[X⊤Y − Xβ̄|Y]

= αpE[Xβ̄ − Xβ̄|Y]

= 0

We now condition on all randomness except Dk+1 in (11), and get the following

E[β̄k+1 − β̄|β̄, β̄k] = (I − αpX)(β̄k − β̄). (12)

By the tower rule, we have that E[β̄k+1− β̄] = (I−αpX)E[β̄k− β̄], so induction on k gives
us

E[β̄k+1 − β̄] = (I − αpX)k+1E[β̄0 − β̄],

where β̄0 is a potentially stochastic baseline. Sub-multiplicativity of the spectral norm
implies ∥(I − αpX)k+1∥≤ ∥(I − αpX)∥k+1, proving the following result.

Theorem 4.3. For every k = 0, 1, 2, . . .

∥E[β̄k+1 − β̄]∥≤ ∥(I − αpX)∥k+1∥E[β̄0 − β̄]∥. (13)

4.3.1 Analysis of the second moment dynamics

We next turn our attention to covariance analysis and try to establish bounds on the
covariance matrix of β̄k.

Lemma 4.4. The covariance of AZ = −ADu+ADv is given by:

Cov(AZ) = ACov(Z)A⊤

= Ap(1− p) (Diag(Bu) + Diag(Buv) + Diag(Bvu) + Diag(Bv))A
⊤,

where Buv = uv⊤, Bu = uu⊤, Bv = vv⊤, Bvu = vu⊤, and A is a deterministic matrix.

Proof. To find the covariance of Z = −Du+Dv, we use the definition of covariance:

Cov(Z) = E[ZZ⊤]− E[Z]E[Z⊤].

First, we calculate E[Z]:

E[Z] = E[−Du+Dv] = −pu+ pv = p(−u+ v).

Next, we compute E[ZZ⊤]. Given Z = D(−u+ v), we expand:

E[ZZ⊤] = E[D(−u+ v)(−u+ v)⊤D].

12



We use the identity for the expectation of DAD in (6) where D is a dropout matrix, which
states that:

E[DAD] = pAp,

where Ap = pA − pDiag(A) + Diag(A), and A is a matrix. This identity simplifies our
computation. Applying it, we get:

E[ZZ⊤] = p((Bu)p − (Buv)p − (Bvu)p + (Bv)p).

Subtracting the mean product E[Z]E[Z⊤], we have:

Cov(Z) = p((Bu)p − (Buv)p − (Bvu)p + (Bv)p)− p2(−u+ v)(−u+ v)⊤.

Simplifying the mean product term:

p2(−u+ v)(−u+ v)⊤ = p2(Bu −Buv −Bvu +Bv).

Combining these, we get:

Cov(Z) = p((Bu)p − (Buv)p − (Bvu)p + (Bv)p)− p2(Bu −Buv −Bvu +Bv).

After further simplification, and noting that p(Bu)p−p2Bu = p(1−p)Diag(Bu) we obtain:

Cov(Z) = p(1− p)(Diag(Bu) + Diag(Buv) + Diag(Bvu) + Diag(Bv)).

This completes the proof.

We determine the second moment using the law of total covariance. Given a random vector
U and a random element V , observe that

E[Cov(U | V )] = E[UU⊤]− E[E[U | V ]E[U | V ]⊤].

Substituting U = β̄k+1 − β̄ and V = (β̄k, β̄), as well as defining the second moment
as

Ak+1 := E[(β̄k+1 − β̄)(β̄k+1 − β̄)⊤].

By the law of total covariance, we have that

Ak+1 = E
[
E
[
β̄k+1 − β̄ | β̄k, β̄

]
E
[
β̄k+1 − β̄ | β̄k, β̄

]⊤]
+ E

[
Cov

(
β̄k+1 − β̄ | β̄k, β̄

)]
Recall E

[
β̄k+1 − β̄ | β̄, β̄k

]
= (I − αpX)

(
β̄k − β̄

)
from (12), and so

E
[
E
[
β̄k+1 − β̄ | β̄k, β̄

]
E
[
β̄k+1 − β̄ | β̄k, β̄

]⊤]
= (I − αpX)Ak (I − αpX)

Evaluating the conditional variance Cov(β̄k+1 − β̄ | β̄k, β̄) is the more challenging part.
Recall that the expression in (11) can be used as follows

Cov(β̄k+1− β̄ | β̄k, β̄) = Cov
(
(I − αX⊤Dk+1X)(β̄k − β̄) + αX⊤Dk+1(Y −Xβ̄) | β̄k, β̄

)
Since the covariance is invariant under shifts and sign flips, so

13



Cov(β̄k+1 − β̄ | β̄k, β̄) = Cov
(
(I − αX⊤Dk+1X)(β̄k − β̄) + αX⊤Dk+1(Y −Xβ̄) | β̄k, β̄

)
= α2Cov

(
−X⊤Dk+1X(β̄k − β̄) +X⊤Dk+1(Y −Xβ̄) | β̄k, β̂

)
In doing this, we can create an expression for the E[Cov(β̄k+1 − β̄|β̄k, β̄)]. We have that
by using Lemma 4.4 and setting A := X⊤, u := X(β̄k − β̄), v := (Y−Xβ̄) along with the
fact that the E[D] = p:

Ak+1 = E
[
E
[
β̄k+1 − β̂ | β̄k, β̂

]
E
[
β̄k+1 − β̂ | β̄k, β̂

]⊤]
+ E

[
Cov

(
β̄k+1 − β̂ | β̄k, β̂

)]
= (I − αpX)Ak (I − αpX)
+ α2p(1− p)X⊤E[Diag(Bu) + Diag(Buv) + Diag(Bvu) + Diag(Bv)]X.

The term in the square brackets is going to be expanded as follows: Diag(Bu)+Diag(Buv)+
Diag(Bvu)+Diag(Bv) = Diag(X(β̄k−β̄)(β̄k−β̄)⊤X⊤)+Diag(X(β̄k − β̄)(Y⊤ − β̄⊤X⊤))+
Diag((Y −Xβ̄)(β̄k − β̄)⊤X⊤)+Diag((Y−Xβ̄)(Y⊤−β̄⊤X⊤)). Then, we have that,

Ak+1 = E
[
E
[
β̄k+1 − β̄ | β̄k, β̄

]
E
[
β̄k+1 − β̄ | β̄k, β̄

]⊤]
+ E

[
Cov

(
β̄k+1 − β̄ | β̄k, β̄

) ]
= (I − αpX)Ak (I − αpX) + α2p(1− p)X⊤E

[(
Diag(X(β̄k − β̄)(β̄k − β̄)⊤X⊤)

+ Diag(X(β̄k − β̄)(Y⊤ − β̄⊤X⊤)) + Diag((Y −Xβ̄)(β̄k − β̄)⊤X⊤)

+ Diag((Y −Xβ̄)(Y⊤ − β̄⊤X⊤))
)]

X.

Since the expectation is a linear operator, we have that E[Diag(A)] = Diag(E[A]). By
claiming that, we can rewrite the expression for Ak+1 as follows:

Ak+1 = (I − αpX)Ak (I − αpX) + α2p(1− p)X⊤
(
Diag(E[X(β̄k − β̄)(β̄k − β̄)⊤X⊤])

+ Diag(E[X(β̄k − β̄)(Y⊤ − β̄⊤X⊤)]) + Diag(E[(Y −Xβ̄)(β̄k − β̄)⊤X⊤])

+ Diag(E[(Y −Xβ̄)(Y⊤ − β̄⊤X⊤)])
)
X.

(14)

Theorem 4.5. (Second Moment - Recursive Formula). Under Assumption 3.1, for every
k = 1, 2, · · ·

∥E[(β̄k+1 − β̄)(β̄k+1 − β̄)⊤]− S(E[(β̄k+1 − β̄)(β̄k+1 − β̄)⊤])∥
≤ 2α2p∥X∥3∥B0∥∥(I − αpX)∥k,

(15)

where the affine operator S : Rd×d → Rd×d is defined as

S(A) :=(I − αpX)A(I − αpX)

+ α2p(1− p)X⊤
(
Diag(XAX⊤) + Diag(I −XX−1X⊤)

)
X.

(16)

We claim that the second moment evolves as the affine operator up to an exponentially
decaying remainder.
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Proof. To see this, we note that β̄ = X−1X⊤Y = X−1X⊤(Xβ∗ + ε) = β∗ +X−1X⊤ε. We
can now use this to compute Y−Xβ̄ = Xβ∗+ ε−Xβ∗−XX−1X⊤ε = (I −XX−1X⊤)ε.
If X is square and invertible, then this expression equals zero. The E[Y −Xβ̄] = E[(I −
XX−1X⊤)ε] = 0. Along with that, we also want to define the E[(Y − Xβ̄)(Y − Xβ̄)⊤]
such that E[(Y − Xβ̄)(Y − Xβ̄)⊤] = E[(I − XX−1X⊤)ε((I − XX−1X⊤)ε)⊤] = (I −
XX−1X⊤)(I−XX−1X⊤)⊤ = (I−XX−1X⊤). This expression involves a projection matrix.
Let P = X(X⊤X)−1X⊤ be the projection matrix onto the column space of X. I − P is
the projection matrix onto the orthogonal complement of the column space of X. Thereby,
I − P is idempotent and symmetric such that

(I −X(X⊤X)−1X⊤)(I −X(X⊤X)−1X⊤)⊤ = I −X(X⊤X)−1X⊤.

This result shows that the product of the projection matrix I − P with its transpose
simplifies to the projection matrix itself, confirming its idempotent nature. We also note
that multiplying by X⊤ and X results in 0 since X⊤(I − X(X⊤X)−1X⊤)X = X⊤X −
X⊤X = 0.

We also need one more result, and that is to bound Bk := E[(β̄k − β̄)(Y − Xβ̄)]. From
(11), we can rewrite our expression of interest as follows:

Bk+1 = E[(I − αX⊤Dk+1X)(β̄k − β̄)(Y −Xβ̄)] + E[αX⊤Dk+1(Y −Xβ̄)(Y −Xβ̄)]

= (I − αpX)Bk + αpX⊤(I −XX−1X⊤)

= (I − αpX)Bk.

Induction on k now leads to Bk+1 = (I − αpX)k+1B0. Therefore, sub-multiplicativity of
the spectral norm and Assumption 3.1 imply ∥Bk∥→ 0 since ∥Bk∥≤ ∥(I−αpX)∥k∥E[(β̄0−
β̄)(Y −Xβ̄)]∥.

Together with (14), we have that E
[
Cov

(
β̄k+1 − β̄ | β̄k, β̄

)]
= S(Ak+1)−(I−αpX)Ak+1(I−

αpX) + ρk+1, where

ρk+1 = α2p(1− p)X⊤
(
Diag(E[X(β̄k − β̄)(Y⊤ − β̄⊤X⊤)])

+ Diag(E[(Y −Xβ̄)(β̄k − β̄)⊤X⊤])
)
X.

To ensure convergence, we still need to assert the decaying of the remainder. To do so, we
use the fact that ∥Diag(A)∥≤ ∥A∥, which has proof that can be found in lemma 13 of [1].
We prove that ∥ρk+1∥→ 0 as k → ∞ using the triangle inequality as follows:

∥ρk+1∥ = ∥α2p(1− p)X⊤(Diag(XBk) + Diag((XBk)
⊤))X∥

≤ α2p(1− p)∥X∥2(∥Diag(XBk)∥+∥Diag((XBk)
⊤))∥)

≤ α2p(1− p)∥X∥2(∥XBk∥+∥(XBk)
⊤∥)

≤ α2p(1− p)∥X∥3(∥[I − αpX]∥k∥B0∥+∥[I − αpX]∥k∥B0∥)
= 2α2p(1− p)∥X∥3∥B0∥∥[I − αpX]∥k.

In (16), α acts as the learning rate and is a key hyperparameter that controls the step size
of the gradient descent updates. As described in lemma 2 of [1], α must be chosen such
that the operator norm of Slin is less than 1.
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We now move on to defining the value of α that ensures convergence. Define S0 := S(0)
and Slin(A) := S(A) − S0. Therefore, S0 = α2p(1 − p)X⊤(Diag(I − XX−1X))X, and
Slin(A) = (I − αpX)A(I − αpX) + α2p(1 − p)X⊤(Diag(XAX⊤))X. We are going to try
to establish a bound on the linear part of the S operator.

Lemma 4.6. The linear operator Slin satisfies ∥Slin ∥op ≤ ∥I − αpX∥ < 1, provided that

α < min

{
1

p∥X∥
,

λmin (X)
(2− p)∥X∥4)

}
,

where λmin (X) denotes the smallest eigenvalue of X.

Proof. For an arbitrary matrix A, the triangle inequality, lemma 13 of [1], and sub-
multiplicativity of the spectral norm imply that

∥Slin(A)∥ = ∥(I − αpX)A(I − αpX) + α2p(1− p)X⊤(Diag(XAX⊤))X∥
≤ ∥(I − αpX)∥2∥A∥+α2p(1− p)∥X∥4∥A∥= (∥(I − αpX)∥2+α2p(1− p)∥X∥4)∥A∥.

Note that ∥I − αpX∥= 1 − αpλmin(X). Therefore, ∥I − αpX∥2= 1 − 2αpλmin(X) +
α2p2λ2

min(X) ≤ 1 − 2αpλmin(X) + α2p∥X∥4. We use the fact that λmin(X) ≤ ∥X∥2,
which has proof in Appendix A. This results in

∥Slin(A)∥ ≤ (1− 2αpλmin(X) + α2p∥X∥4+α2p(1− p)∥X∥4)∥A∥
≤ (1− 2αpλmin(X) + α2p((2− p)∥X∥4)∥A∥.

(17)

If we let α < λmin(X)
(2−p)∥X∥4 , then α2p((2− p)∥X∥4) ≤ αpλmin(X) and in turn ∥Slin∥op≤ ∥I −

αpX∥. The constraint α < 1/(p∥X∥) enforces that αp∥X∥< 1 such that ∥I−αpX∥< 1.

From a geometric perspective, we observe that the choice of α in (17) leads to a quadratic
formulation. Specifically, the term α2p((2−p)∥X∥4) behaves quadratically with respect to
α. By bounding α, we effectively control this quadratic term, preventing it from becoming
excessively large. This control ensures that the expression 1 − 2αpλmin(X) + α2p((2 −
p)∥X∥4) remains less than 1. Consequently, this bound guarantees the boundedness of the
spectral norm ∥Slin∥.

Figure 2 illustrates the quadratic dependence on α from (17). In this graph, we demonstrate
how varying the hyperparameters α and p influences the quadratic term. It is important
to note that while we can adjust α and p as hyperparameters, the properties of the data
matrix X, such as λmin(X) and ∥X∥4, are intrinsic to the dataset and not under our direct
control.

The proof of the following theorem essentially follows from the proof of Theorem 2 in [1],
with the exception of the constant C.

Theorem 4.7. (Second Moment - Limit Formula). In addition to Assumption 3.1 suppose
α < λmin(X)

(2−p)∥X∥2) , then, for any k = 1, 2, . . .∥∥∥E [(
β̄k − β̄

) (
β̄k − β̄

)⊤]− (id− Slin )−1 S0

∥∥∥ ≤ Ck ∥I − αpX∥k−1 ,
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Figure 2: The quadratic in α from (17), where the inequality from 4.6 is highlighted in
grey.

with constant C given by

C :=
∥∥∥E [(

β̄0 − β̄
) (

β̄0 − β̄
)⊤]− (id− Slin)

−1 S0

∥∥∥+ α2p(2 + p)∥X∥3∥B0∥.

This means that, E[(β̄k−β̄)(β̄k−β̄)⊤] converges exponentially to the limit (id −Slin )−1 S0.
Theorem 2 in [1] also establishes that

Cov
(
β̄k

)
→ Cov(β̄) + (id− Slin)

−1 S0, as k → ∞,

with an exponential rate of convergence. Taking the trace and noting that |Tr(A)|≤ d∥A∥,
we obtain a bound for convergence with respect to the squared Euclidean loss,∣∣∣E [∥∥β̄k − β̄

∥∥2]− Tr
(
(id− Slin )−1 S0

)∣∣∣ ≤ Cdk ∥I − αpX∥k−1 .

Since (id− Slin )−1 S0 is a d × d matrix, the term Tr
(
(id− Slin )−1 S0

)
describing the

asymptotic suboptimality of the estimator β̄k can be large in high dimensions d, even if
the spectral norm of (id− Slin )−1 S0 is small.

5 Verification and validation of the gradient descent mod-
els

In this section, we focus on verifying and validating the gradient descent models intro-
duced earlier: gradient descent with dropout and gradient descent with random minibatch
sampling. Our aim is to assess the convergence properties of these models and to evaluate
their performance under various conditions. Specifically, we have proposed bounds on the
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convergence of the estimators (β̄k, β̃k) in expectation and have modelled the behaviour of
the covariance of gradient descent with random minibatch sampling. We are going to lever-
age Theorem 4.3 for the convergence of the estimators (β̄k, β̃k) along with Theorem 4.7
for validating the behaviour of the covariance of gradient descent with random minibatch
sampling.

5.1 Verification and validation using Monte Carlo simulation

Monte Carlo simulations are utilised in statistical analysis to approximate probabilistic
processes through random sampling. In this thesis, the simulations evaluate how modifica-
tions like minibatch dropout influence the performance and robustness of linear regression
models. Monte Carlo simulations are particularly well-suited for this type of analysis
because they can effectively mimic the stochastic nature of minibatch dropout in linear
regression training. By repeatedly sampling from the input data and applying dropout at
different rates, these simulations can provide a detailed distribution of regression outcomes.
This allows researchers to quantify how variability in dropout influences the estimates of
regression coefficients and the overall model performance.

The main objectives of employing Monte Carlo simulations in our analysis include:

1. Exploring the expected distributions of model parameters (β̃, β̄) to understand the
effects of dropout at various rates and varying the dimensionality of the dataset.
This is done for both simple dropout and random minibatch sampling.

2. Assessing the variability and stability of model parameters using the bounds derived
in (15).

5.2 Methodology

The simulation incorporates a standard linear regression model with parameters adjusted
for different rates of dropout, ranging from 0% to 100%, at 5% intervals. This helps in
simulating each scenario across numerous training epochs to gather comprehensive perfor-
mance metrics. In regards to random minibatch sampling, a random subset of the data is
sampled in each iteration to converge to the optimal solution efficiently.

We conduct 10,000 iterations for each of the two dropout configurations (simple and mini-
batch) along with 1,000 samples to ensure statistical reliability. The simulations are per-
formed by maintaining a constant number of features (dimensions), which helps in esti-
mating the optimal dropout rate.

5.2.1 Implementation

The simulation, which can be found in [10], was implemented in Python due to the extensive
availability of resources and libraries that facilitate the simulation process. Python is
widely recognized for its simplicity and versatility, making it a popular choice for scientific
computing and statistical analysis. Several key libraries were utilized to ensure efficient
and accurate simulations:

• NumPy: This library provides support for large, multi-dimensional arrays and ma-
trices, along with a collection of mathematical functions to operate on these arrays.
It is essential for handling the large datasets required for Monte Carlo simulations
and for performing linear algebra operations efficiently.
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• Matplotlib: To visualize the results of the simulations, Matplotlib is used. It is a
plotting library that produces high-quality graphs and figures, allowing us to effec-
tively present the distributions of model parameters and other key findings.

The implementation process involves several steps:

1. Data Generation: Synthetic datasets are generated to simulate different scenarios
of linear regression models. This includes varying the dimensionality of the data and
introducing dropout at different rates.

2. Model Training: The gradient descent algorithms, both with dropout and random
minibatch sampling, are applied to train the linear regression models on the synthetic
datasets. During this phase, the parameters (β̃, β̄) are estimated.

3. Simulation Execution: Multiple iterations of the simulation are run to capture the
stochastic nature of the dropout and minibatch sampling processes. This involves
repeatedly sampling from the datasets and applying the gradient descent algorithms
to obtain a distribution of outcomes.

4. Result Analysis: The results from the simulations are collected and analyzed to
assess the performance and robustness of the models. This includes evaluating the
distributions of the model parameters, the convergence properties, and the adherence
to the theoretical bounds.

5. Visualization: The results are visualized using Matplotlib to create graphs and
plots that illustrate the key findings. These visualizations help in interpreting the
data and communicating the insights gained from the simulations.

By leveraging Python and its robust ecosystem of libraries, the implementation of the
Monte Carlo simulations is both efficient and effective, allowing for a thorough examination
of the gradient descent models and their behavior under various conditions.

5.3 Monte Carlo simulation results

5.3.1 Convergence in expectation using gradient descent with dropout in lin-
ear regression

Analysis of the results indicates significant variability in model performance with different
dropout rates. Here, we define the dropout rate to p, where p is the probability of not
retaining a unit. As the dropout rate increases, there tends to be a steady drop in the
error, but after p ≈ 0.5, we start observing an increase again in model error, highlighting
the trade-off between robustness and accuracy. The sharp edge at p ≈ 0.5 indicates the
lack of samples, for had there been more samples, the edge would have been smoother.
The model achieves the lowest error at a dropout rate of p ≈ 0.5 and error measurement of
≈ 0.24%, which is coherent with the results introduced in [12]. The simulation was carried
out with X ∈ R3×3.

5.3.2 Convergence in expectation using stochastic minibatch gradient descent
in linear regression

In this section, we simulate the influence of implementing stochastic minibatch dropout
within a linear regression model.

It is interesting to note from this simulation the steep increase in percentage error beyond a
dropout rate of 0.8. This suggests a threshold beyond which dropout becomes detrimental,
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Figure 3: Dropout effects on a linear regression model. The Figure depicts the effect of
the dropout rate on the percentage error using dropout.

Figure 4: Dropout effects on a linear regression model. The Figure depicts the effect of
the dropout rate on the percentage error using random minibatch sampling.
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underscoring the importance of increasing the number of iterations k as the proportion of
information dropped increases.

Figure 5: Panel (a) depicts the exponential convergence of β̄k to β̄, along with upper
bound on convergence as shown in (13). Panel (b) showcases the different components of
β̄k converging to β̄.

Figure 5 showcases the effects of random minibatch sampling and its effects on a linear
regression model. In both panels, the iteration count cuts off at 2, 000, but the simu-
lation was done for 10, 000 iterations. This was done in order to emphasize the initial
behaviour of the model, and disregard the behaviour of the iterates after they have arrived
at equilibrium.

In panel (a) of Figure 5, the inequality presented in (13) is validated. Initially, for the
first 20 iterations, the inequality fails to hold, as can be seen by the red region. This is
attributed to the stochastic nature of the model and is treated as a "warm-up" period until
the model arrives at equilibrium. For the remaining iterations, the inequality holds. Panel
(b) of Figure 5 showcases the convergence of β̄k to β̄. The components of both vectors are
graphed, and convergence can be observed.
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5.3.3 Convergence of covariance using stochastic minibatch gradient descent
in linear regression

In Figure 6, we aim to verify the inequality introduced in (15). This is done in two ways:
We first graph the inequality and highlight in red the region(s) where the inequality does
not hold and secondly, we graph the values of E[(β̄k+1 − β̄)(β̄k+1 − β̄)⊤] and S(E[(β̄k+1 −
β̄)(β̄k+1 − β̄)⊤]).

The behaviour observed in both panels is as expected, as the covariance converges to the
affine operator in (16) in the limit. However, as was seen earlier, the inequality posed in
(16) does not hold for the first 20 iterations, which can be seen by the red region. This can
again be attributed to the stochastic nature of the model, where a dozen or so iterations
are needed such that model reaches equilibrium.

Figure 6: The covariance of random minibatch sampling effects on a linear regression
model. Panel (a) showcases the inequality posed in (15), where the shaded the region is
the region where the inequality does not hold. Panel (b) showcases the values of E[(β̄k+1−
β̄)(β̄k+1 − β̄)⊤] and S(E[(β̄k+1 − β̄)(β̄k+1 − β̄)⊤])

5.4 Verification and validation using the MNIST dataset

In order to validate our results to an empirical (real-world) scenario, we chose to train a
neural network with both gradient descent with dropout, as described in section 3, along
with gradient descent with random minibatch sampling as described in section 4. We
trained the neural network using the code provided by [9], where we modified the training
function in order to incorporate either dropout, or gradient descent with random minibatch
sampling. The intricacies of the neural network model are the same as those discussed in
section 2.1. The number of epochs utilised was 30, which was used in order to facilitate
convergence. The dataset we used was the MNIST dataset from [8], where the data was
split into a training set and a test set. [8] also provides an efficiency rate of 95%, which
we are going to use to compare against.

When analysing the effectiveness of gradient descent with dropout, we see that the training
accuracy starts at around 30% and rapidly increases in the initial epochs. By epoch 10, the
training accuracy stabilizes around 70%, indicating that the model is learning effectively.
The close match between training and test accuracy suggests that the model generalizes
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Figure 7: The training and test accuracy of gradient descent using dropout (Panel 1)
and gradient descent with random minibatch sampling (Panel 2) along with training time
of 256.74 and 274.36 seconds respectively.

well to unseen data, due to the dropout regularization.

On the other hand, in the random minibatch gradient descent, the training accuracy starts
at around 90% and increases steadily, reaching over 97% by the end of the training. This
higher initial accuracy compared to dropout can be attributed to the fact that all neurons
are utilized in each iteration, allowing the network to learn more rapidly and effectively
during each epoch. The test accuracy follows the training accuracy closely but starts
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slightly lower at around 91% and reaches approximately 95% by the end of the training.
The gap between training and test accuracy is more pronounced than in the dropout
case, suggesting a slight overfitting where the model performs better on the training data
compared to the test data. This method is slightly slower than dropout, which could be
due to the overhead of managing and shuffling mini-batches randomly, but it provides a
more direct approach to learning without additional regularization.

In conclusion, the choice of method may depend on the importance of generalization versus
achieving high training accuracy.

5.5 Evaluation of the Monte Carlo simulation

Simulation results are compared against theoretical expectations to verify the efficacy of
dropout in reducing overfitting. Specifically, we analyze:

Expectation: The expected value of the model parameters under dropout conditions pro-
vides insight into the average effect of the dropout process. These theoretical expectations
(β̃, β̄) were derived in sections 3 and 4, and their convergence was verified in Section 5.3.2.
For large enough k, which we picked to be 10, 000, the iterates (β̃k, β̄k) converge to the
theoretical expectations (β̃, β̄).

Covariance analysis: Analyzing the sample covariance matrix of the model parameters
across multiple training runs offers insights into the variability introduced by dropout. A
smaller covariance in key parameters may suggest that dropout helps in stabilizing learning,
whereas a large covariance could indicate increased variability, which might be beneficial or
detrimental depending on the specific context and application. For this model, the affine
operator defined in (16) aims to model the behavior of the covariance of β̄. The simulation
in 5.3.3 fits the theoretical limits derived in (15).

Errors: asymptotic statement, picking a finite k: Theoretical analysis often involves
asymptotic behaviors as model complexity increases. By choosing a finite k—the number of
iterations—we can empirically test these asymptotic predictions. This allows us to evaluate
how well the dropout technique scales with increasing model complexity and whether
the asymptotic benefits (e.g., regularization effects) hold in practical, finite-dimensional
settings.

Picking a finite amount of samples: To ensure the robustness of our findings, a
finite but sufficiently large sample size is crucial. This helps in approximating the true
distribution of model parameters and their performance metrics more accurately. The
choice of sample size affects the precision of the estimation and the confidence in the
dropout model’s effectiveness, particularly in terms of statistical significance and the power
of hypothesis tests used in the analysis.

6 Conclusion and Future Work

In this thesis, we explored the connections between gradient descent, dropout, and random
minibatch sampling in the context of linear regression. Our investigation focused on un-
derstanding how these techniques influence the convergence properties and regularization
effects in linear regression models.

We began by introducing the concept of dropout in Section 2, a regularization method
widely used in neural networks, and then applied it to the simpler context of gradient
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descent for linear regression in Section 3. Analyzing dropout in the linear regression model
represents a simplified framework. This simplification allows us to gain a deeper under-
standing of dropout’s effects in a controlled setting.

Our analysis demonstrated that dropout, by introducing noise and stochasticity during
the training process, effectively reduces overfitting and enhances model generalization.
This behaviour aligns with theoretical expectations and underscores dropout’s role as a
regularizer, akin to traditional methods like L2 regularization. Although linear models are
not as complex or widely used in deep learning, these insights can be extended to more
sophisticated models. Understanding dropout in this simplified context paves the way
for applying similar principles to more complex and practically relevant neural network
architectures.

Furthermore, we integrated random minibatch sampling into the gradient descent algo-
rithm in Section 4. This hybrid approach was rigorously examined through theoretical
models and validated using extensive Monte Carlo simulations in Section 5. Our results
demonstrated that combining dropout with minibatch sampling not only accelerates the
convergence of gradient descent but also maintains stability and reduces variance in the
parameter estimates. This contrast between dropout and minibatch sampling proves ben-
eficial in managing the complexity and size of datasets, making the learning process more
efficient and scalable.

6.1 Future Work

While this thesis provides significant insights into the convergence and regularization effects
of combining dropout with random minibatch sampling, several avenues for future research
remain open:

• Extension to non-linear models: The current study primarily focuses on linear
regression models. Future work could extend the analysis to more complex models
such as deep neural networks, where the benefits of dropout and minibatch sampling
might be even more pronounced.

• Dropout variants: Exploring the impact of various dropout techniques, such as
DropConnect or DropBlock, on different types of neural networks could provide fur-
ther insights into their regularization effects and convergence properties.

• Dynamic dropout rates: Developing adaptive schemes for adjusting dropout rates
during training, based on the progress of learning and data characteristics, could lead
to more efficient and effective training processes.
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7 Appendices

A Proof of the Inequality λmin(X) ≤ ∥X∥2

Lemma A.1. Let X be a matrix and X = XTX. Then, the smallest eigenvalue of X
satisfies:

λmin(X) ≤ ∥X∥2

Proof. Let X ∈ Rm×n and consider the matrix X = X⊤X.

First, note that X is symmetric and positive semidefinite. For any vector v ∈ Rn,

v⊤Xv = v⊤(X⊤X)v = (Xv)⊤(Xv) = ∥Xv∥22≥ 0

This shows that X is positive semidefinite, implying that all its eigenvalues are non-
negative.

The spectral norm of a matrix X is defined as:

∥X∥= sup
∥v∥2=1

∥Xv∥2

where ∥v∥2 denotes the Euclidean norm of the vector v. This norm is equal to the largest
singular value of X.

The singular values of X are the square roots of the eigenvalues of X = X⊤X. Let
σ1, σ2, . . . , σn be the singular values of X. Then, the eigenvalues of X are σ2

1, σ
2
2, . . . , σ

2
n.

The spectral norm ∥X∥ is the largest singular value of X:

∥X∥= σmax

where σmax is the largest singular value of X.

Therefore, the smallest eigenvalue of X is:

λmin(X) = minσ2
i

Since σmax is the largest singular value, we have:

λmin(X) ≤ σ2
max

By the definition of the spectral norm, we have:

σmax = ∥X∥

Thus, we get:
λmin(X) ≤ ∥X∥2

This completes the proof.
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