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Abstract—An ultrasound-guided biopsy is a cost-effective and mini-
mally invasive approach to taking biopsies from a subcutaneous lesion.
These are primarily done by hand, leaving room for human error. In-
troducing a needle guidance system to aid the operator could enhance
the accuracy and speed of the procedure, reducing time and costs. This
paper introduces such an application, capable of tracking a lesion and
manipulating the angle of the needle to assist during the biopsy. Experi-
ments on a phantom and in vivo videos show that the tracking algorithm
can track the target with deviations below 2mm. The needle guide can
accurately reach the lesion with a deviation of 0.6± 0.4mm on ex vivo
tests, compared to 1.1mm to 2.9mm in state-of-the-art research on in
vivo tests. In conclusion, the proposed system can accurately target a
lesion for biopsies while still being simple, portable, and cost-effective.

1 INTRODUCTION

1.1 Clinical background

Percutaneous core needle biopsy (CNB), guided by imaging
techniques, is one of the best and most prevalent diagnostic
methods for breast lesions and an alternative to biopsies
requiring exposure to radiation or surgery [1]–[5]. A CNB
performed on a breast can be seen in Figure 1. The needle
is inserted to extract some tissue (a specimen). There are
several benefits regarding percutaneous image-guided
CNB compared to biopsies using surgery or stereotactic
radiosurgery. Since it is less invasive, faster, and cheaper
[6].

Fig. 1: Core needle biopsy on a breast [7].

Various medical imaging techniques can guide the needle
by visualizing the needle and the target, like ultrasound
(US), magnetic resonance imaging (MRI), and computer
tomography (CT) [4], [8], [9]. Using US for imaging offers
several benefits since the procedure typically can be done
in real-time and is faster and cheaper than CT scans and
MRIs. It also generates images without exposing the patient
to ionizing radiation, which happens with CT scans. [4].
Nonetheless, CNB guided by ultrasonography is not perfect
since multiple (3-4) specimens are often needed [10], [11].
This could be because the needle deviation during a breast
biopsy is around 2.4mm which could result in a specimen
that does not contain part of the lesion [12]. This procedure

would become more appealing if the amount of necessary
specimens could be reduced, obtained quicker, and obtained
more accurately.

Fig. 2: The system consists of a US probe, needle, servo motor,
and a 3D-printed needle holder, servo holder, and probe sleeve.

In the United States alone 1.6 million breast biopsies are
performed each year [13]. As such, it would be beneficial
if CNB with US guidance could be improved to reduce
operating time and cost. Designing a system that could
assist the operator in guiding the needle to the lesion could
enhance the appeal of CNB.

1.1.1 State of the Art

The needle guidance tools that presently exist often consist
of a physical tool that assists the operator in enhancing the
accuracy, software that indicates the path of the needle, or a
combination of the two [14]–[16]. Brattain et al. created an
arm attached to the US probe that could assist the operator
[14]. The arm keeps the needle in the probe’s scanning field
and the projected needle path is indicated with sensors in
the arm. There is no motor in the arm to assist with the
angle control, only sensors to indicate the expected needle
path. Tielens et al. show a needle guide that indicates the
predicted trajectory of the needle [15]. Abayazid et al.
introduce an application that tracks and controls a flexible
needle with 3D US [16]. Research has also been done into
contour tracking of a target on US images [17].
Additionally, research exists into investigating applications
that combine these two and use a certain degree of
automation to assist the operator, see Figure 3.

The following examples use ultrasound and robots for
biopsies. However, these systems use big, complex robots
or additional imaging forms, making the process time-
consuming and the system not portable. Research into
systems that solely rely on US, are simple and portable is
less extensively documented. Maris et al. and Welleweerd
et al. mention a robot arm with a 7-DOF serial manipulator
with a needle guide using US [18], [19]. However, this
application is not portable and still depends on MRI,
making it expensive and time-consuming. Kronreif et al.
discuss another US-guided biopsy robot, but this device
also uses CT scans, is more expensive, and is big [20], [21].
Similarly, Kettenbach et al. propose the B-Rob I, a 7-DOF
robot compatible with US- and CT-guided biopsies, and the
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Fig. 3: Various state-of-the-art robots used for breast biopsies. A - Maris et al. & Welleweerd et al. [18], [19]; B - Kronreif et al. [20];
C & D - Kettenbach et al. [21], [22] ; E - Jácobo-Zavaleta et al. [23]; F - Liang et al. [24].

B-Rob II a 4-DOF robot used for percutaneous interventions
[21], [22]. Jácobo-Zavaleta et al. mention another biopsy
robot using 3D ultrasonography [23]. Expanding on the
3D-US, Liang et al. mention a 3D-US-assisted autonomous
biopsy robot. This application uses image thresholding to
automatically find a lesion on the US scan [24]. Megali et al.
mention a US-assisted needle guide robot using an 8-DOF
robot arm where the operator indicates a target point and
the needle’s insertion point on the US frame [25]. Yang et
al. discuss a US-assisted telerobot with a 6-DOF robot arm
for remote-controlled biopsies [26].

1.2 Needle guidance for biopsies
This paper discusses an approach to automate part of the
US-guided CNB procedure. The aim is to develop a simple
and portable system that tracks a user-defined target on the
US image. The target is the lesion that requires a biopsy.
The operator can indicate the lesion with a target window.
The projected needle path can be displayed in the frame to
aid the operator.
Subsequently, the system uses a motor to manipulate the
needle angle so the needle points to the lesion. The needle
can then be inserted manually.
The motor can be controlled based on the target window’s
centroid (hereafter called the CoM) location. This
technological development could assist the doctor in
guiding the needle to the lesion in a more accurate and
precise manner. This could reduce the possibility of wrong
insertions, the patient’s recovery time, the duration of the
operation, and as a result, the cost of the operation.

Hence, the objective is to develop a US-guided CNB system
that tracks the needle and the target in the body. The main
goal is to determine how accurately a motorized needle
guide attached to an ultrasound probe can be aligned with
a lesion that is being tracked in real-time.
To achieve this goal, this research specifically investigates
how a target lesion can be tracked on a live feed and how
a motor can be controlled in a functional system such that
the needle guide is steered toward the tumor. Research is
also done to determine how a functional design for the
application can be made. The tracking accuracy is evaluated
for both in vivo and ex vivo situations. The biopsy accuracy
is evaluated for ex vivo situations, compared to the required
accuracy. Additionally, the advantages and disadvantages of
the system are discussed.
First, the theoretical background will be discussed (Section
2), followed by the design method of the application and
the experimental setup (Section 3). After this, the results of
the experiments (Section 4) will be discussed followed by a
discussion and conclusion (Sections 5 & 6).

2 THEORY

2.1 Ultrasound

Ultrasonography or ultrasound, is a medical imaging
technique that can produce images of the inside of the body
using high-frequency sound waves [17], [27], [28]. Despite
creating a less accurate image, it is an attractive form of
imaging since it is in real-time, inexpensive, and does not
expose the patient to radiation, unlike CT scans and X-rays.
Additionally, it is portable and does not require the patient
to be put into a small space, as opposed to MRI scans.
Furthermore, using US during an operation like a biopsy is
possible. This is not possible with a CT or PET scan and it
is complicated with an MRI due to the magnetic field and
the lack of space [29].

Fig. 4: B-mode US scan of benign lesions in a breast [30].

US images are created with acoustic waves with a frequency
range typically between 2 and 18 MHz [27]. The waves are
produced by supplying a current to piezoelectric crystals
in the probe [31]. In turn, the returning waves cause the
piezoelectric crystals to vibrate, creating a current that can
be converted to an ultrasound image. For this image, the
assumption is made that the speed of sound in the human
body is uniformly 1540m s−1 [32].
The transducer is placed on the skin so the high-frequency
waves travel into the body. The echoes are used to
distinguish between different tissues and boundaries,
which generates images of the inside of the body in real-
time. The tissues have differing properties like elasticity and
density. When the waves reach the boundaries of tissues
with different properties the waves are partially reflected to
the transducer, the other part is scattered in other directions.
The received waves are processed and, using the echos, the
locations of the reflections are reconstructed. As a result,
the boundaries become visible on the ultrasound image,
making it possible to distinguish between objects. When
different parts have similar acoustic properties it can be
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hard/impossible to see them on a US scan. In the case
of a lesion that is not detectable on US video but can be
detected on MRI or CT, it is called a US/sonographically
occult lesion [33], [34]. Additionally, some parts of the body
reflect a lot of the acoustic waves to the transducer, other
parts conduct the waves and return barely any waves. As
a result objects on ultrasound can be classified into three
categories: anechoic, hypoechoic, and hyperechoic [35].
Anechoic objects do not scatter the sound waves, because
they are homogenous and conduct the waves well. Since no
echos are reflected for these parts they appear black on the
ultrasound image. Think of objects filled with fluids like
cysts and veins. Hypoechoic parts reflect some echoes and
as a result, they appear darker than surrounding tissues
on the ultrasound image. This is the case for tumors and
lymph nodes. The hyperechoic category consists of parts
that reflect most of the waves, resulting in relatively bright
parts on the ultrasound image. Hyperechoic objects are
bones, fat, and lungs since the lungs contain air.

The most prevalent way to use US in medical imaging
is the B-mode or brightness mode, seen in figure 4 [36].
This mode shows a cross-sectional image of the different
tissues and their boundaries. Each boundary and tissue
type has different properties and will return a different
echo of the US waves. The echos are shown on the US
image at the point corresponding with the point in the body
where the echo originates. A grayscale value represents the
strength of the echo. The brighter the point the stronger the
echo. This results in a black-and-white image that shows a
cross-section of the body in the probe’s plane.

2.2 Software

This section discusses the theory behind the algorithms
used in the application, (Section 3).
The software for this application consists of three parts.
First, the US images from the transducer are retrieved. This
will be represented in a live video feed. Second, the images
are processed to track a user-defined window. Third, a
motor steers the needle to the CoM of the window. In
the optimal case, the CoM of this window aligns with the
CoM of the lesion. At this point, the operator can insert the
needle when a stable tracker position has been reached.
The software created for the tracking consists of Gaussian
blur to compensate for noise and the tracking is done by the
Mean Shift and CamShift algorithm. The performance of
these two will be compared to see which works better. The
angle is controlled through a transformation matrix which
converts the target’s pixel coordinates in the frame of the
US transducer to coordinates in the frame of the needle on
the motor. With these coordinates the required angle can be
calculated using trigonometric identities.

2.2.1 Mean Shift
Mean Shift is a clustering technique to find the CoM of a
density function [37]. It is widely used in image processing
for segmentation and tracking.
The working principle of Mean Shift, shown in Figure

5, involves a window or kernel that is iteratively shifted
towards the maximum density or the CoM of the data
distribution of the confidence map within the image. In
the case of an image, each pixel is seen as a data point,
located in a feature space. The distribution of these points
is described by the density function.

In the case of tracking a target on a US video, a window
(hereafter referred to as the region of interest (ROI)) is
selected. The ROI is a part of the US image. The intensities
or grayscale values in the ROI can be represented by a
histogram which serves as a probability density function
(PDF).
Based on the histogram, a mask or confidence map is cre-
ated, indicating the probability that each pixel in the image
is part of the ROI.
The density of high confidence points is calculated and the
difference between the CoM of the ROI and the CoM of
the confidence points is determined with the Mean Shift
vector. This vector indicates the direction where the increase
in density is the greatest. The ROI is then adjusted based
on the Mean Shift vector. Once the CoM of the window
corresponds with the highest density of points, the target is
found.

Fig. 5: Schematic of the Mean Shift algorithm [38]. It looks for
the CoM of the pixels within the ROI.

2.2.2 CamShift
One limitation of Mean Shift is that the ROI is not variable
in size. So if a target changes in size, due to a different
positioning of the US transducer, the ROI cannot change
with it. As a result, it might not indicate the CoM of the
target but another place on the target. So, an enhancement
of the Mean Shift algorithm is proposed, namely CamShift
(Continuously Adaptive Mean Shift) [38]–[41]. It works sim-
ilarly to the Mean Shift algorithm, but the ROI is adaptable
in size. So if a target increases or decreases in size, the ROI
size will adapt. This could increase the chance of the ROI’s
CoM corresponding with the target’s CoM. The downside is
that it is slower and can react more to outliers. A schematic
is shown in Figure 6. In this case, the ROI is shaped so that
the data fits better within the ROI.

2.2.3 Gaussian blur
Gaussian blur is a technique within computer vision used
for image filtering and processing [42]. A Gaussian kernel is
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Fig. 6: Schematic of the CamShift algorithm [38]. It looks for the
CoM of the pixels within the ROI. The ROI is adaptable in size
to better fit the data.

convolved with an image, which results in a smoother and
blurred version of the original image. This could be useful
when an image contains noise that negatively impacts the
used computer vision algorithm. This can make a process,
like tracking, more robust.

2.2.4 Angle control
The angle control is used to guide the needle to the target us-
ing a servo motor. Essentially two calculations are necessary
for this. The coordinates need to be defined in the coordinate
frame that has the needle guide as its origin. After this,
a trigonometric identity has to be applied to calculate the
angle.
To define the coordinates of the target in the frame of the
servo the following formula can be used:

P s = Hs
t P

t (1)

Where P s is the coordinate vector represented in the servo

coordinate frame: P s =

 xs
p

ysp
1

 and P t is the coordinate

vector represented in the coordinate frame of the transducer:

P t =

 xt
p

ytp
1

. Hs
t is the 3 × 3 transformation matrix. The

standard form is: a b c
d e f
0 0 1


The 3 × 3 matrix can facilitate scaling, shearing, and ro-
tational and translational transformations in the 2D space.
In this matrix c and f are translational transformations,
signifying the displacement of the origin. In this case, the
displacement of the origin of the servo coordinate frame
with regards to the origin of the transducer coordinate
frame. a, b, d, and e factor in the scaling and shearing. They
can also indicate rotations if these are involved. The bottom
row is always the same.

3 METHOD

3.1 Design
The application has three main components: The biopsy
needle, the US transducer, and the RC servo motor. A
design has been created that combines these components.

Fig. 7: The CAD design of the needle guidance system. It con-
sists of the top part of the sleeve for the probe (red), the bottom
part of the sleeve connected to the servo holder (yellow), and
a needle guide on top of the servo motor (green). The servo,
probe, and needle are visible in the CAD design for reference.

The transducer and servo (through an Arduino) are
connected to a laptop. The design ensures that the needle
has two degrees of freedom. One translational degree of
freedom, for insertion, and one rotational degree of freedom
in the US transmission plane so the needle is visible on
the US image. Movement in the other two rotational and
translational planes is restricted. The hypothesis is that this
movement restriction paired with the angle control could
reduce the deviation from the needle to the lesion’s CoM.

3.1.1 Mechanical design

Three parts are needed for the device. These are designed in
SolidWorks. The proposed design can be seen in Figure 7,
and the realized design can be seen in Figure 2. The parts are
3D-printed using tough PLA. The first is a part that guides
the needle (green). This part is placed on top of the servo
motor.
The needle holder can be attached to the top of the servo
with a screw. It has a hollow conical part that fits exactly
around the rotating part of the servo to prevent slipping.
A hole is also needed in the front. This hole is placed off-
center, away from the probe. As a result, the operating area
of the application in the scanning field is bigger compared
to a needle holder with a hole in the center.
A 14 gauge needle is used, which corresponds to a 2.1mm
outer diameter. Since the 3D printer makes the holes slightly
smaller than designed a 2.1mm drill bit is used. Which
guarantees that the holes have the same diameter as the
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needle. This ensures the needle can move forward and back-
ward while restricting movement in the other directions.
Having two partitions further ensures the needle can only
move along one axis.
The other two parts are a sleeve encompassing the trans-
ducer (red and yellow) and a box for the servo (yellow). The
box is made of four walls with one wall having a cutout for
the wires. A ridge with holes at the back ensures the servo is
fixed in place by screwing the box to the motor. The sleeve
is made to fit snugly around the transducer to ensure it is
not too thick. The transducer sleeve is printed in two parts
that can be fixed together with screws.
The servo box and sleeve are combined so the needle is in
the scanning field of the transducer and can be seen on the
US scan. It should not enter the field from above with a
downward angle or below with an upward angle. In such a
case the needle would only be partly visible in the scanning
field. As a result, the servo is located lower than the probe.
Additionally, it needs to be strong enough to handle the
forces applied to it. So it should not be too brittle or thin.
There also needs to be enough space between the servo
and the transducer so the range of motion of the servo and
needle is not limited.
Despite the size and location of the servo (holder) and the
holes for the screws, the handling is still comfortable. A
limitation of this device is that the needle cannot access all
parts within the scanning field, but the device can be moved
to ensure the target comes within reach of the needle.
A second motor could be added to increase the operating
range of the application within the scanning field. However,
this increases the complexity of the mechanical design and
algorithm. It also makes the design more bulky. As a result,
the probe would be harder to maneuver and it could be
more challenging to examine certain spots with a bigger and
bulkier application.

3.2 Software

The software consists of three parts: the US software
retrieves the US frames from the US scanner and shows the
US live feed, the tracking algorithm, and the needle-guiding
algorithm. A flowchart, showing an overview of the code,
can be found in Figure 8.

The first part is part of the US scanner and can be used as is.
The tracking software is used to select and track a target and
the needle-guiding algorithm points a needle to the CoM of
the target using a servo motor.
The tracking algorithm consists of two parts: selecting and
tracking the target. The user indicates the target using a
mouse. This will be done using a rectangular region of
interest (ROI) with a cross indicating the CoM. It is rect-
angular and not a contour of the lesion because the tracking
algorithm depends on the intensity of the target and no
geometric information is taken into account. So if the lesion
deforms the ROI would not be accurate anymore. If the
geometric information is accounted for, an ROI window
could be made to fit the lesion’s shape. Extra measures
should then be taken to ensure that the ROI can adapt to
deformations of the lesion.

3.2.1 Target tracking

The tracking part should be (close to) real-time to make the
algorithm run smoothly. The bigger the delay is, the slower
the operator should move the transducer and the longer
they need to wait for the needle to be guided to the lesion.
A delay of around 100ms is acceptable, according to Ries et
al. [43]. The paper mentions a latency smaller than 114ms
was allowed. So algorithms that are computationally very
expensive can not be used
One thing to consider is that no moving objects are in
the frame. This is because there is barely any relative
motion when moving the transducer, apart from differences
in the deformation of the different tissues. Because of
this, conventional algorithms that rely on background
subtraction or relative movement are not useful for this
application [44]. Additionally, the different tissues, like
bones, tendons, tumors, and veins, deform differently. Some
other challenges also arise regarding the tracking of the
target.
Firstly, the US feed is noisy, so the algorithm needs to be
robust to noise.
Secondly, the human body is soft, meaning that the target
can be deformed when the transducer is moved. The target
can also disappear from the frame when the transducer is
moved. So the algorithm should be robust to deformations
and occlusions.

The tracking of the target is done using Mean Shift and
CamShift [37]. The explanation for these algorithms and
the Gaussian blurring applied to the frame can be found
in Section 2.
One limitation of this algorithm is that the skin in the top
part of the frame is hypoechoic. So, if a lesion has a similar
hypoechoic appearance it can pose problems when it is close
to the skin or disappears from the frame. In this case, the
tracker could mistake the skin for the target. By setting
the top part of the confidence mask to zero confidence this
problem can be resolved since it will not be seen as a target.
Additionally, parts in the frame can have similar intensity
values as the targeted lesion, so they will also be marked as
high confidence. Sometimes these parts are other objects, but
sometimes they can also be specks of noise. These smaller
specks can be removed or mitigated using Gaussian blurring
to increase the robustness of the tracker.
With this mask, the Mean Shift algorithm can find the
confidence peak, which should correspond to the target’s
CoM. The initial window for the Mean Shift function is
the user-defined ROI location. So even if other points in
the frame have high confidence the function will track the
correct target. This way the ROI can be tracked in the live
feed. The downside of this method is that the 2D image is
reduced to a 1D grayscale representation. So information
about geometry and edges is lost. As long as the lesion is
relatively homogeneous in color and has some contrast with
the surrounding tissue this should not be a problem.
Since the Mean Shift algorithm has a fixed window size this
could pose problems when the lesion size changes on the
US image. Because of this, CamShift will also be tested to
compare the performance. As explained in Section 2, this
algorithm has a variable window size, which could help get
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Fig. 8: A flowchart of the entire algorithm highlighting the different operations. It starts with displaying the live feed after which
the tracking is performed and the motor is controlled with the pixel coordinates obtained from the tracker.

a better approximation of the CoM of the target, but could
also be more vulnerable to noise.
To decrease the effect of noise or objects similar in intensity
to the target, the mask is set to zero for the part of the frame
50 pixels above and 50 pixels below the initial ROI. This
corresponds to almost 20% of the height of the frame since
the total height is 512 pixels. This addition is made since
the lesion cannot change in depth, apart from some change
due to tissue deformation. This ensures that noise below
and above the lesion is removed. 50 pixels (corresponding
to 3.9mm) was chosen since this will make sure the vast
majority of lesions will be fully visible on the mask. Making
the size a lot bigger can introduce more noise while not
adding a lot of benefits (since such a large lesion should be
big enough to be targeted correctly by the needle guide).
Making the size smaller would also not be beneficial since
it could mean that a larger portion of a big lesion is not ac-
counted for during tracking, and it would be less forgiving
on deformations.

3.2.2 Motor control
The motor, a Futaba s3003 (Futaba Corp., Mobara, Japan),
is controlled with an Arduino UNO and an Adafruit mo-
tor shield V2 (Adafruit Industries, New York City, United
States). The position of the target’s CoM is known since the
algorithm keeps track of it. However, this location is given in
pixel coordinates within the transducer frame. To define the
coordinates in a relevant way for the servo motor equation
1 can be used. In this case, Pt is already known. As such a
definition for the transformation matrix is needed to get the
coordinates in the coordinate frame of the servo. The two
frames can be seen in figure 9.

The origin of the servo is used since this is irrespective of
any rotation. Since the needle is positioned left of the axis
in figure 9 a correction needs to be made to account for this
offset.
Since the transformation from the transducer frame to the
servo axis frame does not involve any rotation and only
involves a displacement of the origin and a scaling factor
(pixels to millimeters) the transformation matrix will look
as follows: sx 0 dx

0 sy dy
0 0 1


where dx and dy are the origin displacements in the x
(width) and y (depth) direction of the origin in the servo
frame relative to the origin of the transducer frame and
sx and sy are the scaling factors in the x and y direction,
respectively.
To calculate dx and dy it is necessary to determine the
displacement from the transducer origin to the servo origin.
From the CAD model, it can be derived that (x,y) equals
(32.90, 11.25) mm.

To determine the scaling the scanning width and depth can
be divided by the amount of pixels in the US image.
The amount of pixels can be determined with a Python
function and by checking the resolution of the frame. It is
512 pixels in both directions.
The used transducer is the L12-5L40S-3 [45]. The width is
40mm and the depth, which can be set between 20mm to
70mm, is set at 40mm to create a square frame. Dividing
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Fig. 9: The two frames that are used for the needle guide with
the x-axis (red and horizontal) and y-axis (green and vertical).
The transducer frame’s origin is located on the (0,0) point of the
pixels on the US feed and is used to track the target. The servo
frame, placed in the center of the axis, is used to determine the
necessary angle to aim the needle towards the point P.

these by the pixel values gives the following values in the
matrix:

Hs
t =

0.078125 0 32.90
0 0.078125 11.25
0 0 1

 (2)

Using this matrix and the coordinates of the point in the
frame of the transducer the coordinates can be defined in
the frame of the needle guide.

Once this is done the angle can be calculated from these
coordinates. Since the distances in x (adjacent) and y (oppo-
site) directions are now defined the arctangent can be used
to calculate the angle.
However, this is the angle between the axis of the servo and
the target. As mentioned, the needle has an offset to the left
of the axis of 8.08mm, illustrated in Figure 10.
This can be accounted for with equation 3. on is the needle
offset in millimeters and θs is the servo angle in degrees. The
correction is subtracted from the initially calculated angle.

θs = arctan

(
ysp
xs
p

)
− arcsin

 on√
xs
p
2 + ysp

2

 (3)

This calculated value is then communicated to the Arduino.
To reduce the possibility of errors the angle is sent in a

Fig. 10: To compensate for the offset of the needle 8.08mm to the
left, the angle (red arc) needs to be calculated. This is done with
the arcsine since the opposite side (offset) and the hypotenuse
(distance of the axis to the target) are known.

specific format. An angle of 30.45 degrees is formatted as
”A30.45*”. This angle is then mapped to a microsecond
value used for the servo pulse. Using the angle directly
can result in an error since every servo is slightly different.
As a result, angles can deviate multiple degrees, which
was the case for this servo. So, using a calibration code for
the Arduino and servo one can visually check how many
microseconds the pulse, supplied to the servo, should be to
result in angles of 0 and 90 degrees. The other angles can
then be mapped in this range.
The servo can only rotate counterclockwise from the
0-degree point and should operate from 0 to 60 degrees. So
during calibration, the 0 point ensures the needle points
east (into the transducer) and the 90-degree point ensures
the needle points north. Before using the needle guide the
calibration code can be used to visually validate that the
microsecond values corresponding to 0 and 90 degrees are
still correct.

To visually aid the operator during the procedure a projec-
tion is made for the needle path, represented by a semi-
transparent red line based on the computed angle and point
where the needle enters the frame.
The entrance point can be determined using Equation 4
with the scaling factors and origin translations from the
transformation matrix.

yint = tan(θs)(dx+ on sin(θs))sx− (dy − on cos(θs))sy (4)

yint is the intersection point on the US frame in pixels.
The horizontal distance between the transducer and the
servo axis is known. An extra factor is necessary to
compensate for the offset. In the horizontal direction, this
offset is on when the servo angle is 90 degrees (pointing
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north) and 0 when it is 0 degrees (pointing east). For
the vertical direction, this is flipped. The angle is known
(Equation 3), so the vertical distance to the frame’s border
can be determined.
The distance from the servo axis to the probe’s origin is also
known. After accounting for the offset this distance can be
subtracted from the total vertical distance. The result needs
to be scaled from millimeters to pixels. This final value,
yint, is the needle’s entry point on the US frame.
Using this point and the known angle the path of the needle
can be extrapolated and shown on the US frame.

During testing on the phantom the difference in speed of
sound in the plastisol phantom compared to human tissue
needs to be accounted for [46]. The scan is made with
the assumption that the speed of sound in the tissue is
1540m s−1, but the speed of sound in plastisol is around
1400m s−1. When testing on a plastisol sample with a
thickness of 45mm the US image displayed a thickness of
around 50mm. So a correction needs to be made to the
height coordinate used for the motor control as it needs to
be scaled to compensate for this difference.
Initially, the needle did not align with the CoM and the
projected path. Due to this, a calibration was proposed.
Since the deviation was mostly in the y direction the y-value
used for the angle calculation was multiplied with a factor
to ensure the needle would hit the target. After multiple cal-
ibration attempts it was concluded that a calibration in the
y-direction, used in equation 3, of 1.265 would successfully
and consistently hit the target. Calibration values below 1.15
and above 1.30 would often miss the target. Values inside
this range, like 1.25 and 1.28 did hit the target but during
calibration, it could be seen that they slightly deviated from
the predicted path. At a value of 1.265, the needle seemed to
align the best with the projected path of the needle, which
crosses the target’s CoM.

3.3 Experimental setup

Two kinds of experiments will be performed. First, the
tracker performance will be evaluated with ex vivo and in
vivo tests. Second, the needle guide performance will be
assessed with ex vivo tests.

Fig. 11: The performance is evaluated by tracking a tumor in a
breast phantom.

3.3.1 Ex vivo

Ex vivo testing is done on a breast phantom, see Section 3.3.2
and Figure 11. This plastic phantom can contain tumors,
represented by plastic objects with varying scattering levels.
Since this can be created and manipulated by the maker it
is easier to test on this than on a human, because the image
will be less noisy and borders between tissues are better
defined. Moreover, it is also more convenient than testing
on a human.
First, the tracker will be tested by selecting a lesion on the
live video feed. The performance can be determined by
checking how quickly and accurately the tracking works. It
can also be checked if the target can still be found after it
exits and returns to the feed.
For the first test, a video of the tracker on different lesions
is made. The probe is first held stationary. Then the probe
is moved at varying speeds and distances. These tests are
done to test the robustness of the tracker.
Additional tests are done where the probe is moved in a
slow and controlled manner before being held still for a
couple of seconds. This could give a better representation of
the performance of the tracker during a normal procedure.

The position of the CoM of the ROI is obtained from the
algorithm. The CoM of the lesion is approximated by
drawing a rectangular ROI around the lesion. The start
point and dimensions of the box are known so the CoM
can be calculated. The Euclidean distance is then used to
determine the deviation of the indicated CoM and the real
CoM. This is done for multiple frames per video to see
how the deviation changes over time. The mean and max
deviation can then be obtained, as can the diagonal length
of the lesion. Dividing the mean and max deviations by the
diagonal length gives a relative mean and max value. Since
lesions differ in size this metric can better showcase the
deviation.

In addition to evaluating the accuracy of the tracker the
time it takes to find the target again after an occlusion is
also assessed. If the lesion leaves the scanning field, due to
an incorrect angle, disengaging the probe, or moving the
probe away from the lesion, the tracker loses the lesion.
To ensure a low procedure time the tracker should be able
to find the lesion again and find it quickly. During testing
the probe is disengaged, tilted, and moved away from the
lesion. After the lesion becomes visible again in the scanning
field, the time it takes for the tracker to find the lesion again
is measured.
The delay of the system can be evaluated by filming the US
feed and the test setup simultaneously with a high-speed
camera on a tripod. The needle can be moved in or out of
the phantom or the probe could be placed on or disengaged
from the phantom. The delay between the real action and
the action on the US feed can then be determined.
The parameters needed for making the confidence map
can also be tuned and tested in this way. The influence of
Gaussian blur, the number of bins in the histogram, scaling
of the histogram, and filtering of smaller areas with high
confidence can be tested and changed for an optimal mask.
This can be done by altering one of the parameters and
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seeing how well the mask can distinguish the target from
surrounding tissue and how well the noise is reduced.

After this, the needle guidance performance can be
observed by tracking the lesion and inserting the needle.
The difference between the location of the CoM and the
needle can then be measured. This distance is measured
perpendicular to the needle. The projected path of the
needle can also be displayed as a visual aid for the operator.
Additionally, biopsies can be taken of the phantom to check
how often a correct sample is taken. Since the tumors are
colored this could be verified visually. This gives a binary
success or failure result.

3.3.2 Breast phantom
For the ex vivo testing, a breast phantom was made to test
the tracking of the needle. The breast has a harder outer
layer representing the skin and a softer inside. The skin is
made with soft plastisol with 2 percent by mass of silica
gel (60-200 µm) to create some scattering. This is heated
to 160 degrees Celsius in a microwave and poured into a
3D-printed mold in a water bath. A 3D-printed breast is
placed in the mold to create the skin around the breast.
The inside is made similarly to the skin but with soft
plastisol with 30 percent by mass of softener added and
no silica. To ensure it attaches to the skin but does not
penetrate the skin, it should be added when the skin has
almost cooled down. When this has cooled down to below
120 degrees Celsius the tumors can be added, to prevent
the tumors from sinking a lot.
Additionally, to create a more challenging US scan, one can
add ribbons of the same material as the skin to create more
scattering in the breast. When this has almost cooled down
another layer of the skin should be added to cover the
bottom of the breast. The final result can be seen in figure
12a

Three types of tumors were made.
Blue tumors: Consist of soft plastisol heated to 160 degrees
Celsius in a microwave. No silica gel was added, to prevent
scattering. However, the air bubbles were not sucked out so
the tumor is mostly anechoic with specks of white.
Green tumors: Created in the same way as the blue tumor.
0.4 percent by mass of silica gel was added and air bubbles
were sucked out with a vacuum pump. This tumor is closer
to a hypoechoic tumor.
Red tumors: Made the same way as the other tumors, but
with 5 percent by mass of silica gel added. Air bubbles
were removed using the vacuum pump. This tumor is
hyperechoic. Due to the amount of silica, the distribution
was homogenous since more silica settled on the bottom of
the mold.
These tumors are added to various depths and different
shapes to test the robustness of the tracking algorithm
concerning the depth of the tumor, the shape of the tumor,
and the grayscale intensity of the tumor.
A second phantom, seen in figure 12b, is used for additional
testing since this phantom has tumors with lower contrast
to the surrounding tissue. This phantom was made before
this research. The same mold and approach were used as

(a) First breast phantom used
for testing.

(b) Second breast phantom used
for testing.

with the first phantom. This phantom contains hypoechoic
tumors of various degrees and shapes. Some are a lot
darker and some a lot lighter. The scattering in the tissue
lowers the contrast with the lighter hypoechoic tumors. A
third phantom, similar to the second phantom, was used
to test the accuracy of the needle guide. This phantom only
contains two tumors, a small green tumor, and a blue tumor.
A fourth phantom was used to calibrate the needle to align
with the projected path and the CoM. This phantom, similar
to the second phantom, has no tumors. The ROI was placed
at a fixed point and the needle was inserted to check how
well it lined up with the projected path.

3.3.3 In vivo
For in vivo testing, videos were made of the author’s body.
Videos were made of the carotid artery on the neck and
a hematoma on the shin. Tracking these features could be
a lot more challenging because, unlike the phantom, the
densities, surrounding tissue, and shapes in the body cannot
be controlled. In vivo and ex vivo results will be compared
to see the differences in the tracker’s accuracy and how
quickly it finds the lesion when it re-emerges in the frame.
Since it is tested on a human the needle guide will not be
tested.

4 RESULTS

4.1 Tracking
The tracking performance was evaluated by selecting and
tracking lesions in a phantom and on in vivo videos. Before
the tracking was tested the parameters for the confidence
mask had to be tuned. The experiments and results needed
for the tuning are presented in Appendix 1.
The tracker performance was assessed by measuring the
deviation between the real CoM of the tumor and the CoM
of the ROI. Additionally, the (relative) mean and maximum
deviations were calculated. The following tests are per-
formed to test the robustness of a tracker. The probe is held
stationary, moved around fast and slow, and disengaged
and re-engaged to see how fast the tumor is localized
again. The following phantoms and tumors were selected
as targets for the tracking tests:

1) Test 1: phantom 1 with a hyperechoic spherical
tumor, as shown in Figure 13.

2) Test 2: phantom 1 with a hypoechoic ellipsoidal
tumor. It has quite some contrast with surrounding
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Fig. 13: Ultrasound frame of the first test using Mean Shift.
The red line indicates the needle path and the blue box with
the cross indicates the ROI with the CoM. This tumor was also
used for the CamShift tests.

tissue, but there are also similar objects in the frame.
See Figure 22a.

3) Test 3: phantom 2 with a hypoechoic cubical tumor.
This tumor is darker and larger and has significantly
less contrast with surrounding tissue than the tumor
in test 2. It is the largest tumor used for testing. See
Figure 22b

4) Test 4: phantom 2 with a hyperechoic tumor. This
tumor has less contrast with the surroundings than
test 1, so it should be more challenging. It is also the
smallest tumor that is used for testing. See Figure
22c

5) Test 5: phantom 1 with a cubic hypoechoic tumor.
It has some contrast with the darker immediate sur-
roundings, but less contrast with the deeper tissue
and the skin. This could pose a challenge when the
algorithm needs to find the tumor when it leaves
and re-enters the frame. See Figure 22d

The results for Mean Shift can be seen in Tables 1 and 2. The
tables show the size of the tumor, the mean deviation, and
the max deviation. They also present the relative mean and
max deviation to account for differences in tumor size. Each
test has between ten and twenty data points.
The CamShift results can be found in Tables 3 and 4.
The CamShift algorithm was selected for the needle guide
tests since it has smaller deviations than the Mean Shift
algorithm. Most CamShift measurements show a deviation
below 2mm, but there are outliers. These mostly occur right
after the tracker finds the lesion again after an occlusion.
The deviations for the CamShift algorithm across five tests
are shown in Figure 14. Figure 15 shows the corresponding
boxplots with the bigger outliers (Z-score > 1) removed. The
deviation is 1.00 ± 2.26mm (range: 0.08mm to 15.3mm)
for the ex vivo tests and 1.36 ± 2.13mm (range: 0.00mm to
11.6mm) for the in vivo tests. The big standard deviation
and range are due to the few outliers present. Since these
large deviations occur after wild movements or occlusions

we could also ignore them (using the Z-score) to get a
representation that would correspond more to a normal pro-
cedure. In this case, the deviation becomes 0.55 ± 0.61mm
(range: 0.08mm to 3.12mm) for the ex vivo tests and 0.83 ±
0.61mm (range: 0.00mm to 3.12mm) for the in vivo tests.

Fig. 14: Deviations of the CamShift algorithm for the in vivo
and ex vivo tests. The in vivo tests were performed on a
leg hematoma and a carotid artery. The ex vivo tests were
performed on five different tumors across two breast phantoms.

Fig. 15: A boxplot representing the same data as Figure 14.
Outliers (Z-score > 1) were removed to better visualize the
median, upper quartile, and lower quartile deviations.

The performance of the Mean Shift and CamShift algorithm
during a more controlled procedure was also assessed. The
ex vivo test was performed on the tumor from test 4, seen
in Figure 22c. The in vivo test was done on the hematoma
in the leg. The mean, maximum, and minimum deviations
per test can be seen in Table 5. The results are visualized in
Figure 16.
This shows an increased accuracy and precision for the
CamShift algorithm compared to Mean Shift. During wild
movements or when the target is found right after an
occlusion, the CamShift algorithm could deviate from the
target more than the Mean Shift algorithm. However, during
a normal, controlled procedure this does not occur and it
becomes clear that CamShift is more advantageous for this
application.
The time it takes for the tracker to find the lesion after
occlusion was measured for both the CamShift and Mean
Shift algorithms for the in vivo and ex vivo experiments. The
results can be found in Figure 17. The CamShift algorithm
outperformed the Mean Shift algorithm in this case.
Most of the time there are specks of noise or other objects
similar to the target in the frame. In this case, the CamShift
algorithm caused the ROI to become big and take in some
noise and the target, before centering on the target again.



12

Fig. 16: Boxplots comparing the performance of CamShift (or-
ange) and Mean Shift (blue) for both in vivo and ex vivo exper-
iments. These tests were performed in a slow and controlled
manner before keeping the probe stationary.

The Mean Shift algorithm does not have an expanding ROI.
So, sometimes it got stuck in a local minimum. If this local
minimum was close to the target it would shift to the target.
However, if the local minimum was far away (so deeper
tissue or a part of the skin) or was a comparable object
bigger than the lesion, the tracker would get stuck and the
target needed to be indicated again by the operator.
When the lesion did not move significantly from its last
position when appearing again, so when changing the tilt
or moving outside of the scanning field, the tracker had
no problem finding it. For instances where the probe was
disengaged and re-engaged in such a way that the location
of the lesion was completely different, the tracker had more
trouble finding the target. As seen in Figure 17 the CamShift
algorithm found the target in under two seconds in most
cases, which is an acceptable delay since it barely affects the
procedure.
The framerate is around nine FPS (frames per second).
However, this does not accurately reflect the total delay
between an action in the scanning field and its appearance
on the US frame. To determine this delay a high-speed
camera was used. This showed a delay of roughly 150ms.
This delay is acceptable for the application and is similar to
the 100ms delay mentioned in Section 2.

4.2 Needle guide
Tests were done on multiple tumors in the second phantom.
The tests were done on various tumors in three different
phantoms. The results can be seen in Table 6.
The US live feeds of eleven of the thirteen tests were
recorded. Seven of these videos could be used to determine
the needle accuracy. In the remaining four videos, the tumor
was either too close to the entry point of the needle or the
needle was hardly/not visible. When the needle entered the
tumor the path of the needle was extrapolated to determine
the deviation of the needle perpendicular to the CoM of the
tumor. The tests showed a deviation of 0.636± 0.369mm
(range: 0.228mm to 1.18mm).

Fig. 17: Boxplots comparing how fast the trackers find a target
after occlusion. The tests were done for the CamShift (orange)
and Mean Shift (blue) algorithms for both in vivo and ex vivo
experiments.

5 DISCUSSION

Results show that the tracking using the CamShift algorithm
results in deviations below 2mm and that the CoM of the
tracker is consistently located on the lesion when used in
a controlled manner. The in vivo and ex vivo tests with
wild movements and occlusions of the lesion show that
the tracker is robust to quick and slow movements and
can quickly find the lesion after losing sight due to occlu-
sions. However, the tracker can have problems with large
deformations and if the surrounding tissue is comparable
in intensity to the target it can introduce a deviation in the
CamShift algorithm. This occurs most often during quick
and big movements or right after finding the target after
an occlusion. In this case, surrounding noise can be seen as
part of the target, resulting in an increase of the ROI and a
deviation of the window from the CoM of the lesion. This
problem is often resolved within a few seconds once the
probe is stationary. Since the probe is stationary during the
needle insertion these are only minor problems, although
an effort can be made to remove the noise more efficiently.
However, deformation occurs during needle insertion, mak-
ing it beneficial to find a solution to make the tracker more
robust to deformations.
The in vivo and ex vivo tests with normal movements of
the probe show that the mean errors are 0.568 ± 0.231mm
and 0.844 ± 0.347mm, respectively. Moreover, this is the
accuracy during the entire procedure. Once the probe is
stationary the error becomes smaller with the CamShift
algorithm. Since tumors targeted for biopsies are often at
a minimum of 5mm in diameter, this accuracy indicates a
high success rate for lesion tracking.

During the testing of the needle guide, the needle
consistently entered the phantom too shallow, meaning that
the angle seemed correct but the point of entry was too
close to the probe. This caused the needle to miss the CoM
and in some cases the lesion. This indicated a systematic
error in the system. More research is required to identify
the source of this error.
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It should be noted that the servo calibration was done
visually, introducing a human error since one cannot
accurately see if the servo angle is at 0 and 90 degrees
during the calibration. An alternative can be proposed
where the calibration is done with a camera and a marker
or with a laser and a reflective surface on the needle holder.
This should improve the servo calibration
Table 6 shows that most biopsies performed on different
lesions, result in specimens that contain parts of the lesion.
Two of the tests resulted in a failed biopsy without any
tissue. However, on the US feed, the needle could be seen
penetrating the tumor. The lesion in this case was small
and perforated multiple times before. Whether the system
caused the failure, the lack of tissue in the tumor, or the
operator’s inexperience in using the needle mechanism,
was not clear in this case.
The tests to evaluate the system’s delay were done with a
high-speed camera. However, with the setup it was hard
to get great visuals of the screen and the exact moment the
needle was inserted or when the probe was placed on the
phantom. It was also hard to link this exact moment to the
same moment on the screen. When the probe is disengaged
it is not removed instantaneously. There is a gradual (but
quick) movement where the pressure of the probe on the
phantom becomes smaller and smaller. The angle needed to
film both this movement and the screen makes it possible
to see when the probe is being disengaged but it is hard to
see the exact moment it disengages. Similarly, on the screen
one can see the moment the probe is firmly pressed on
the phantom and the moment it is removed, but the time
in between also takes 20ms to 30ms. The measured delay
seems to be around 150ms but could have a deviation
of 20ms to 30ms. Using a setup that shows the screen
and the probe better or using a square phantom with
fewer impurities could improve the accuracy of the delay
measurements.

When losing sight of the lesion the tracker sometimes needs
a couple of seconds to find the lesion again. Improving the
tracker by using more information, like geometry or edges,
could ensure that fewer parts in the frame correspond to
the target. This could result in a faster localization of the
target. An attempt was made to add geometric information
by combining the intensity histogram with a histogram of
oriented gradients (HOG). However, this caused the frame
rate to drop to two frames per second, which is insufficient
for this application. Improving the frame rate could also
increase the speed of the algorithm. Since the algorithm was
written in Python switching to C++ or C could be beneficial
to reduce execution time and increase the framerate.

The needle path projection is a helpful visual aid for the
operator. Two shortcomings are that the needle could devi-
ate from the path and that it is impossible to determine the
distance between the needle tip and the target’s CoM since
it only indicates the predicted path. Using needle detection
could be an alternative to determine the distance and visual-
ize the needle in real-time. In this case, an extra motor could
be added to automate the insertion. The downside is that
this would be more computationally expensive and should
be very robust and precise.

During biopsies of a lesion, the ROI might start moving once
the needle is inserted in the tumor, due to deformations.
The algorithm can be stopped as soon as a sample has been
taken, to prevent the motor from moving when retracting
the needle. An addition could be made where the motor
angle gets locked during insertion so it cannot move in case
the tracker starts to deviate due to deformations
The accuracy of this research is comparable to the accuracy
in cited studies (1.1mm to 2.9mm for in vivo tests and
1.8mm for ex vivo tests) [19], [22], [25], [26]. The accuracy
could be increased by improving the system calibration and
by improving the tracker to be more robust to deformities
during the needle insertion.
It should be noted that the needle accuracy is only tested
on a breast phantom. The accuracy values from other US-
assisted robotized needle guides were obtained from in vivo
tests. The needle accuracy for in vivo tests is expected to be
lower than for ex vivo tests.
A real breast is more deformable than the phantoms used
for this research. It is possible to make a more accurate
phantom by making it softer. However, this would mean
that the phantom is less stable and cannot be punctured as
often as a more rigid breast. So fewer tests can be done on
one breast, making this process more labor intensive since
more phantoms need to be made. Additionally testing the
initial performance of the tracker and needle guide would
have been harder on a very soft phantom. For these reasons,
only stiffer phantoms were used during this research.
The main reason this stiffness is relevant is because one
problem that was observed was the deformation of the
tissue during the needle insertion. This caused the lesion to
deform and the tracker could start to deviate from the lesion.
Because a real breast is more deformable it is expected that
the tracker will have more trouble staying on the lesion
during needle insertion. This can negatively impact the
accuracy.

6 CONCLUSION

This research offers an accurate and simple US-assisted
robotized needle guide for breast biopsies. The handheld
device can assist an operator by pointing the needle toward
the lesion. This can reduce room for error and operating
time.
The developed system utilizes the CamShift algorithm with
back projection to track a user-defined rectangular ROI.
The servo motor is controlled using an Arduino Uno, and
inverse kinematics and trigonometry are applied to point
the needle to the lesion to assist an operator. The application
is brought together in a functional design, designed in
SolidWorks.
The CamShift tracking showed an error sub 2mm when
using it in a controlled manner for both in vivo and ex vivo
tests. To test the robustness the probe was moved in a less
controlled manner. In this case, the probe was moved with
varying speeds and jerky movements, and the target was
moved outside the frame. For this approach the mean error
was also below 2mm, although there were more outliers.
Since biopsies are mostly performed on lesions of 5mm
and above this result means that the tracker performs well
enough to target such a lesion.
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Additionally, the algorithm quickly found the target again
after occlusion (below 2 seconds most of the time). With a
framerate of roughly nine FPS and a total delay of around
150ms, the device is fast enough to not hinder an operator
during the procedure. The tracking algorithm performed, in
most cases, better for the ex vivo tests. This can be attributed
to the bigger contrasts and the smaller deformations in the
phantom compared to human tissue.
The needle guide, with a needle accuracy of 0.6± 0.4mm,
is comparable to the state of the art. It should be noted
that most of the state-of-the-art results are based on in vivo
biopsies. The needle accuracy results in this study are based
on ex vivo tests. Since a breast is more deformable than the
used phantoms, it can be expected that the accuracy will
decrease when tested in vivo.
This system is an attractive option compared to state-of-the-
art robots for various reasons. It is handheld, cheap, and
simple, it uses US which is noninvasive, real-time, quick,
and does not expose the patient to ionizing radiation. A
disadvantage is that certain lesions, that might be visible
on MRI or CT scans, could be invisible on US scans. Ad-
ditionally, the device is handheld, and needle insertion is
performed by an operator. Because of this, there is still room
for human error, which depends on the operator’s skill.
Overall the presented device is a real-time non-invasive and
accurate option for breast biopsies.

6.1 Future research
To improve the accuracy of the device, a couple of additions
and changes could be made to the tracker and the needle
guide.
Currently, the tracker solely works on information regarding
the intensity of the target. Other parts in the frame can have
a similar intensity, which would result in unwanted noise.
To prevent this, geometric information like edges or corners
could be used to represent the target more accurately. This
could improve the tracking of the target. One foreseeable
issue is that, during needle insertion, the lesion deforms.
If the algorithm also takes shape/geometry into account,
this could negatively impact the tracking. So if this were to
be applied it would be necessary to update the geometric
information to account for deformations continuously. On
top of that, segmentation or machine learning could be
employed to assist the operator with automatic lesion or
needle detection.
Furthermore, the amount of human error could be reduced
by adding an extra motor to insert the needle. However, this
would increase the complexity of the system. Additionally,
the calibration method of the servo could be improved to
ensure that the insertion angle is correct.
To improve the needle accuracy the servo calibration could
be done with a camera and a marker to decrease the error in
the servo angle.
With these possible improvements incorporated the system
could have a positive effect in clinical use by reducing
operation time and cost and by increasing the accuracy of
the biopsy.
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APPENDIX 1: CONFIDENCE MASK

The confidence mask shows the likelihood that a certain
pixel belongs to the ROI. Certain parameters influence this
mask: the number of bins for the grayscale histogram, the
Gaussian blur, and the area under the histogram.
These parameters were tested by keeping the other
parameters the same and varying one of the parameters
to see the influence on the mask. For this experiment, the
same anechoic tumor was used.

The first test was performed by varying the number of bins.
The grayscale has 256 values from 0 (black) to 255 (white).
Using 256 bins means that each grayscale value has its bin.
Using for example 64 bins means that each bin contains
four pixel values. The results can be seen in Figure 18. It can
be observed that a higher amount of bins results in more
detail and accuracy since only the pixels present in the ROI
are selected. The reason that the mask with more bins is less
visible is that the area under the curve for the histogram
is the same. So more bins result in lower values per bin.
This can be solved by scaling the area under the curve to a
higher value
The downside to having more bins is that, due to the
amount of detail, parts that belong to the tumor but are
not as represented by the histogram will not be marked
as high confidence. Resulting in a target that is not very
homogeneous. Due to this, the tracker could shift more
since the target contains holes. Fewer bins result in more
false positives but also create a more homogeneous target.
A balance is needed so the target has few holes and other
parts are not marked as high confidence.

(a) Mask with 16 histogram bins.

(b) Mask with 64 histogram bins.

(c) Mask with 128 histogram bins.

(d) Mask with 256 histogram bins.
Fig. 18: Influence of number of histogram bins on the confi-
dence mask.

The effect of the area under the curve and its scaling can
also be observed, as seen in Figure 19. The default area
under the curve equals 255. This can then be scaled to make
the confidence peaks more pronounced. Figure 19 shows
that the default scaling was inadequate since the target was
barely distinguishable from the background. Increasing the
scaling gave better results. However, increasing the area
under the curve too much results in a confidence map that
highlights too many false positives.

(a) Confidence mask with a scaling
factor of 1.

(b) Confidence mask with a scaling
factor of 10

(c) Confidence mask with a scaling
factor of 100.

(d) Confidence mask with a scaling
factor of 10000.

Fig. 19: Influence of area under the curve on the confidence
mask.

The effect of Gaussian blur is shown in Figure 20. For this,
the kernel size was varied while the standard deviation
was kept at 0 in Python (meaning that it is automatically
calculated from the kernel size).
Having no Gaussian blur results in more holes in the target.
On the other hand, having a high amount of blur will reduce
noise and give a more homogeneous target, but can result in
more false positives or enlarge wrong areas since grayscale
values will be more connected due to the blurring.

(a) Confidence mask with no Gaus-
sian blurring.

(b) Confidence mask with Gaussian
blur kernel size of 3.

(c) Confidence mask with Gaussian
blur kernel size of 9.

(d) Confidence mask with Gaussian
blur kernel size of 15.

Fig. 20: Influence of Gaussian blur on the confidence mask.

Using the results a decision was made for the various pa-
rameters. For the Mean Shift algorithm, an approach using
64 bins with a scaling factor of 10 for the area and a Gaussian
blur kernel size of (3,3) was chosen since this gave a good
balance between robustness and precision. This version was
tested on a lesion with more challenging surroundings and
less scattering. This result can be seen in Figure 21. As can
be seen, it still picks up quite some noise but there is one
distinct bigger confidence area. Additionally, the skin area’s
confidence is set to zero so the algorithm will not consider
the skin a target.
When moving the probe at a normal pace, the tracker
works well. If the lesion disappears from view, by removing
the probe or going away from the lesion, it can find the
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lesion again. When appearing again close to the last seen
spot it will quickly find the target. When appearing on a
completely different spot it takes a few seconds to detect the
target again due to the noise and the nature of the Mean
Shift algorithm.
When using the CamShift algorithm the amount of bins
was increased to 256. Since this also results in less visible
confidence peaks the scaling was increased to 100. The
reason for this bin change is that it is more precise. The
downside, as mentioned, is that this can create holes in the
target when pixels in the target are missing in the histogram.
For the Mean Shift algorithm, this can cause the ROI to shift
within the target. Since CamShift does not suffer as much
from this problem, the amount of bins can be increased.

Fig. 21: The confidence mask of a more challenging target.

This result could be further enhanced by applying a kernel
and filter that connect areas within proximity and remove
areas under a certain threshold. This addition was not fine-
tuned, since it can be different for different tumors, tissues,
and US settings. The area threshold was set to 10 pixels
squared and the kernel size was set to (1,1). This is mainly
done to remove specks of noise/high confidence points.
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APPENDIX 2: RESULTS

(a) Ultrasound frame of the second test.

(b) Ultrasound frame of the third test.

(c) Ultrasound frame of the fourth test.

(d) Ultrasound frame of the fifth test.
Fig. 22: Ultrasound frame for the tracking tests. The blue box is the ROI where the cross indicates the CoM. The red line indicates
the needle path. These tumors are used for the Mean Shift and CamShift tests.

Test size [mm] Mean deviation [mm] Relative mean deviation [%] Max deviation [mm] Relative max deviation [%]
1 14.1, 9.96 1.60 ±1.14 9.28 ±6.61 3.83 22.2
2 15.0, 7.81 1.38 ±0.841 8.19 ±4.97 3.36 19.9
3 17.6, 12.7 2.68 ±1.78 12.4 ±8.21 6.09 28.1
4 14.5, 9.02 1.11 ±0.505 6.48 ±2.96 1.95 11.4
5 9.92, 13.3 1.75 ±1.38 10.5 ±8.32 4.69 28.2

TABLE 1: The (relative) maximum and mean deviation of the tracker for different tumors.
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Test size [mm] Mean deviation [mm] Relative mean deviation [%] Max deviation [mm] Relative max deviation [%]
1 11.0, 8.82 1.89 ±1.00 13.4 ±7.08 4.45 31.5
2 12.2, 7.70 2.10 ±1.15 14.6 ±7.99 4.06 28.2
3 10.5, 8.55 1.94 ±0.954 14.3 ±7.06 3.98 29.5
4 9.80, 6.01 1.75 ±1.49 15.2 ±12.9 4.84 42.1
5 13.4, 5.59 2.62 ±1.26 18.0 ±8.72 4.92 34.0

TABLE 2: The (relative) maximum and mean deviation of the tracker for different in vivo targets.

Test size [mm] Mean deviation [mm] Relative mean deviation [%] Max deviation [mm] Relative max deviation [%]
1 12.2, 8.55 0.195 ±0.0597 1.31 ±0.400 0.313 2.09
2 15.7, 7.38 0.263 ±0.201 1.52 ±1.16 0.781 4.51
3 16.5, 12.9 2.16 ±3.48 10.4 ±16.6 11.6 55.3
4 17.1, 8.16 0.708 ±0.460 3.73 ±2.42 1.95 10.3
5 15.5, 7.58 0.355 ±0.174 2.05 ±1.01 0.781 4.52

TABLE 3: The (relative) maximum and mean deviation of the CamShift tracker for different tumors.

Test size [mm] Mean deviation [mm] Relative mean deviation [%] Max deviation [mm] Relative max deviation [%]
1 9.69 6.56 1.95 ±2.66 16.7 ±22.7 10.7 91.5
2 6.75, 6.99 2.01 ±1.54 20.8 ±15.9 6.88 70.7
3 8.79, 7.15 2.31 ±3.40 20.4 ±30.0 15.3 135
4 9.80, 4.73 0.344 ±0.161 3.16 ±1.48 0.625 5.74
5 11.4, 5.55 0.547 ±0.660 4.32 ±5.22 2.03 16.1

TABLE 4: The (relative) maximum and mean deviation of the CamShift tracker for different in vivo targets.

Test size [mm] Mean deviation [mm] Max deviation [mm] Minimum deviation [mm]
Ex vivo Mean shift 14.7, 9.4 2.87 ±0.914 3.75 0.625
Ex vivo CamShift 14.8, 9.77 0.844 ±0.347 1.48 0.391
In vivo Mean shift 8.0, 4.0 1.35 ±1.16 3.52 0.234
In vivo CamShift 10.3, 4.88 0.568 ±0.231 1.09 0.234

TABLE 5: The (relative) maximum and mean deviation of the two trackers when moving the probe around in a slow and controlled
manner.

Phantom Tumor Result
Phantom 1 light Hypoechoic Success
Phantom 1 Anechoic, hardly visible Success
Phantom 1 Anechoic, hardly visible Success
Phantom 1 Anechoic (second one), hardly visible Success
Phantom 2 Dark Hypoechoic, superficial Success
Phantom 2 Dark Hypoechoic, deep Success
Phantom 2 Dark Hypoechoic, deep Success
Phantom 3 Dark Hypoechoic, deep Success
Phantom 3 Dark Hypoechoic, deep Success
Phantom 3 light Hypoechoic, superficial Success
Phantom 3 light Hypoechoic, superficial Failure
Phantom 3 light Hypoechoic, superficial Failure
Phantom 3 light Hypoechoic, superficial Success

TABLE 6: Biopsy results of the needle guide on various tumors.
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Fig. 23: Histograms comparing the performance of CamShift (orange) and Mean Shift (blue) for both in vivo and ex vivo
experiments. These tests were performed in a slow and controlled manner before keeping the probe stationary.
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