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Abstract

The process of radioembolization would work efficiently if the particles have mixed with the blood stream
before entering the vessels that feed the tumor. Currently, the exact reasons and mechanisms of this mixing
are unknown. Despite low Reynolds and Womersley numbers, the flow in hepatic artery is expected to
depart from a laminar regime because of the presence of irregular diameters causing stenosis and expansion
in the artery.

It is hypothesized that the non-laminar flow in the hepatic artery will cause the particles that emanate
from the catheter to mix with the blood. To test this hypothesis and understand the fluid dynamics of the
underlying process, an eccentric stenosis is constructed where flow has been shown to exhibit turbulent
characteristics in a number of studies. An artificial catheter is then inserted in the stenosis and injected
microspheres from it at various time instances of a sinusoidal cardiac cycle.

Subsequent investigations revealed that at extremely low Reynolds numbers (200), when the flow in the
stenosis does not depart from laminar regime, the particles are not well mixed and are confined towards the
center of the stenosis throat. Upon an increase in the stenosis Reynolds numbers (700) within physiologic
ranges, as soon as the post stenotic jet breaks down to impart vorticity, the injected particles start mixing
with the flow in the lumen. The location of mixing coincides with the location of the jet breakdown, and
the particles mix fully with the blood within two diameters of downstream of the jet breakdown location.
A subsequent relaminarization of the flow does not affect the particle mixing as the extent of turbulent
activity appears sufficient to well mix the particles with the blood.

Keywords: Lattice Boltzmann Method; Computational Fluid Dynamics; Musubi; Right Hepatic Artery;
Radioembolization; Stenosis; Onset of Turbulence; Microsphere Injection; Mixing behaviour; Particle
Distribution
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Nomenclature

Physical Parameters

µ Dynamic viscosity [kg/m · s]

ν Kinematic viscosity [m2/s]

ρ Density [kg/m3]

T Temperature [K]

P Pressure [kg/m · s2]

τ Relaxation time [1/s]

F Force [kg ·m/s2]

m Mass [kg]

t Time [s]

E Energy [kg ·m2/s2]

ξ Velocity [m/s]

Abbreviations

LBM Lattice Boltzmann Method

CFD Computational Fluid Dynamics

SIRT Selective Internal Radiation Therapy

TARE Transarterial Radioembolization

HCC Hepatocellular Carcinoma

HAS Hepatic Artery Stenosis

FEM Finite Element Method

FVM Finite Volume Method

NSE Navier Stokes Equations

MDM Molecular Dynamics Methods

BTE Boltzmann Transport Equation

LGA Lattice Gas Automata

BC(s) Boundary Contition(s)
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6 NOMENCLATURE

BPM Beats Per Minute

C.o.G. Center of Gravity

CoV Coefficient of Variation

TKE Turbulent Kinetic Energy

CFV Centerline Flow Velocity

PSD Power Spectral Density

Re Reynolds number

Wo Womersley number

Kn Knudsen number

Ma Mach number

Kn Stokes number

Sr Strouhal number



List of Figures

2.1 Supine position of the patient for treatment; A) Incision location for the catheter; B) Arterial
structure; C) Location of hepatic artery [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Radiation emission for 90Y and 166Ho [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Liver vasculature, right hepatic artery in red [3]. . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The cardiac cycle expressed in several measures 1) Pressure; 2) Volume flow rate; 3)

Electrocardiogram; 4) Sound [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Simple particle collision model in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Maxwell-Boltzmann distribution for oxygen and hydrogen at different temperatures. . . . 24
3.3 Three common lattice types for 1D, 2D and 3D. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 D2Q9 stencil with distribution functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Streaming step for D2Q9 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Four steps of the Bounceback Boundary Condition for D2Q9 configuration. . . . . . . . . 32
3.7 Dirichlet Boundary Condition for D2Q9 configuration. . . . . . . . . . . . . . . . . . . . . 33
3.8 Overview continuum models as function of Knudsen number. . . . . . . . . . . . . . . . . 37

4.1 APES Simulation Framework [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Octree procedure [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Range of values for ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 3D images of the model; A) Full model; B) Radial view; C) Catheter closeup. . . . . . . . 47
5.2 Schematic overview of the stenosis in a lengthwise cross-section and an area cross-section.

The bold line represents the axisymmetric boundaries of the vessel, the dashed straight line
the vessel centerline and the dashed curved lines the eccentric case. . . . . . . . . . . . . . 47

5.3 ProgreatTM [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Centerline probes pre-stenosis at various locations. . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Comparison of cross-sections of the model regarding the mesh convergence study. . . . . . 50
5.6 Input pulse for the flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.7 Gaussian vs Uniform particle distribution in 3D. . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 Gaussian vs Uniform particle distribution in 2D. . . . . . . . . . . . . . . . . . . . . . . . 54
5.9 Initial particle distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 2D Longitudinal cross-section plots of velocity field for class I. . . . . . . . . . . . . . . . . 57
5.11 2D Longitudinal cross-section plots of flow direction for class I at t = 1.250 s . . . . . . 57
5.12 2D Longitudinal cross-section plots of vorticity for class I at t = 1.250 s . . . . . . . . . 57
5.13 Flow-profile for class I at t = 1.250 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.14 2D Longitudinal cross-section plots of velocity field for class II. . . . . . . . . . . . . . . . 58
5.15 2D Longitudinal cross-section plots of flow direction for class II at t = 1.250 s . . . . . 58
5.16 2D Longitudinal cross-section plots of vorticity for class II at t = 1.20 5s . . . . . . . . 59

7



8 LIST OF FIGURES

5.17 Flow-profile for class II at t = 1.250 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.18 2D Longitudinal cross-section plots of velocity field for class III. . . . . . . . . . . . . . . . 60
5.19 2D Longitudinal cross-section plots of flow direction for class III at t = 1.250 s . . . . . 60
5.20 2D Longitudinal cross-section plots of vorticity for class III at t = 1.250 s . . . . . . . . 60
5.21 Flow-profile for class III at t = 1.250 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.23 I-B: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.25 I-C: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.27 I-D: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.28 Flowclass II, 2D cross-sectional particle distribution. . . . . . . . . . . . . . . . . . . . . . 67
5.29 Flowclass II, 3D particle trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.30 II-C: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.31 III-B: Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.32 III-B: Sectional density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.33 III-B: Snapshots in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.34 III-B: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.35 III-C: Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.36 III-C: Sectional density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.37 III-C: Snapshots in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.38 III-C: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.39 III-D: Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.40 III-D: Sectional density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.41 III-D: Snapshots in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.42 III-D: Mean and Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 III-B, normal density: Pre (t=1.125 s ) and Post (t=1.250 s ). . . . . . . . . . . . 79
6.2 III-B, high-density: Pre (t=1.125 s ) and Post (t=1.250 s ). . . . . . . . . . . . . . 79
6.3 III-C, normal density: Pre (t=1.250 s ) and Post (t=1.375 s ). . . . . . . . . . . . 79
6.4 III-C, high-density: Pre (t=1.250 s ) and Post (t=1.375 s ). . . . . . . . . . . . . . 80
6.5 III-D, normal density: Pre (t=1.375 s ) and Post (t=1.500 s ). . . . . . . . . . . . 80
6.6 III-D, high-density: Pre (t=1.375 s ) and Post (t=1.500 s ). . . . . . . . . . . . . . 80
6.7 III-B 2D post-stenosis particle trajectory comparison. . . . . . . . . . . . . . . . . . . . . . 81
6.8 III-B snapshots of trajectories at similar time-steps. . . . . . . . . . . . . . . . . . . . . . . 81
6.9 III-B Statistical comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.10 III-C 2D post-stenosis particle trajectory comparison. . . . . . . . . . . . . . . . . . . . . . 83
6.11 III-C snapshots of trajectories at similar time-steps. . . . . . . . . . . . . . . . . . . . . . . 83
6.12 III-C Statistical comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.13 III-D 2D post-stenosis particle trajectory comparison. . . . . . . . . . . . . . . . . . . . . 85
6.14 III-D snapshots of trajectories at similar time-steps. . . . . . . . . . . . . . . . . . . . . . 85
6.15 III-D Statistical comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 III-B Centerline velocity probes at interval locations. . . . . . . . . . . . . . . . . . . . . . 88
7.2 III-B Combined y− and z−velocity deviations, initial positions of deflection marked by red

dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 III-C Centerline velocity probes at interval locations. . . . . . . . . . . . . . . . . . . . . . 90
7.4 III-C Combined y− and z−velocity deviations, initial positions of deflection marked by red

dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.5 III-D Centerline velocity probes at interval locations. . . . . . . . . . . . . . . . . . . . . . 91
7.6 III-D Combined y− and z−velocity deviations, initial positions of deflection marked by red

dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



LIST OF FIGURES 9

7.7 II-B Centerline velocity probes at interval locations. . . . . . . . . . . . . . . . . . . . . . 92
7.8 Boundary layer flow on a flat plate, developing from laminar- via transitional- to turbulent

flow. Parameter γ is the intermittent factor; γ = 0 indicates the onset of spike generation,
γ = 1 indicates the completion of turbulent transition [8]. . . . . . . . . . . . . . . . . . . 93

7.9 Energy spectrum E(k) as a function of the Wave number k = 2πf
c . Note the log-log plot

layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.10 PSD plots for different locations post-stenosis. . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.11 Guide for reading the final simulation overviews. . . . . . . . . . . . . . . . . . . . . . . . 97
7.12 Combined overview average centerline distance for II-B, III-B, III-C and III-D. . . . . . . 101



Contents

List of Figures 7

1 Introduction 12
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Goal/Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Radioembolization: Procedure and State of research 14
2.1 Radioembolization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Arterial flow dynamics & Cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Current state of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Theory: Lattice Boltzmann Method 21
3.1 Kinetic Theory of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Maxwell-Boltzmann distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 BGK approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 LBM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 Bounceback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Software: APES Simulation Framework 38
4.1 Mesh generator: Seeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 LBM Solver: Musubi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 High performance computing: Snellius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Analysis of turbulence induced particle mixing 46
5.1 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Geometry set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Flow conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.4 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10



CONTENTS 11

5.2 Analysis of flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Analysis of particle mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Preliminary simulation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Comparison mixing behaviour with higher density particles 78
6.1 High-density particle simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.2 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Implications of turbulence induced particle mixing 87
7.1 Fluid mechanical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Final overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Discussion, Conclusions and Recommendations 102
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107



Chapter 1

Introduction

1.1 Problem statement
Radioembolization is a procedure in which microspheres are injected via a catheter into the bloodstream

through the right hepatic artery. These particles travel with the blood flow through the liver vasculature
to the cancerous cells, driven by pulsatile flow. At this point, the flow experiences relatively low Reynolds
numbers, depending on the subject and travelled distance. During this period, the flow could exhibit
(transition to) turbulent behaviour, or at least posses non-laminar flow characteristics, as it enters the
hepatic artery due to tortuous vessels and changes in diameters. The procedure of radioembolization
works in clinical practice. However, the exact mechanisms leading to the working of the procedure remain
unknown. In a scenario of radioembolization, the particles should mix well before the first bifurcation. In
order to test this, it is hypothesized that the flow in the artery could become turbulent. To model and
study this, flow in a stenosed pipe is investigated, where the stenosis acts as an onset for turbulence in
the model.

1.2 Goal/Objectives
As derived from the problem statement, the main goal of this thesis is to investigate the mixing behaviour

of microspheres before the first bifurcation in the right hepatic artery for a stenosed pipe flow configuration
for varying Reynolds numbers. The surrounding blood flow is modelled after physical pulsating flow, and
the core parameter, injection time-instant, is varied and investigated across a range of Reynolds numbers.
An additional objective is to quantify the mixing performance of each simulation for comparison. The
final goal is to conclusively relate the assessed turbulence to particle mixing, providing insight into the
implications for radioembolization treatment procedures.

1.3 Research question
The goal of the research translates into the following main research question:

How can the possibility of turbulence in the lumen of the hepatic artery explain mixing
of microspheres with the blood and consequent efficacy of the procedure?

Several sub-questions are addressed to aid in answering the main research question:

1. Can flow leave laminar regime in the hepatic artery? Mapping the range of flow conditions
based on literature values and implementing them into the computational model provides the basis
for the flow of the simulations.

2. Does this non-laminar regime result in better mixing?
By the introduction of particles in the simulation, the subsequent trajectories and mixing behaviour

12



1.4. SCOPE 13

of the ejected particles can be determined and assessed based on statistical criteria.
3. How does the injection timing influence the mixing, if at all?

By prescribing temporal variations in flow, a model heartbeat is established. Several distinct particle
release-instances are evaluated based on their final microsphere distribution.

1.4 Scope
All outcomes in this thesis are results of simulations of the Lattice Boltzmann solver Musubi, part of

the APES package. Utilization of this approach, given its suitability for the fluid-mechanical problem
at hand, is justified. Musubi has been used in previous research and its validity has been established
through numerous in-vitro experiments, strengthening the confidence in its applicability. However, LBM
has its limitations and is, at all times, a model to capture the essence of complex real-life flow phenomena.
The inherent limitations of Musubi are elaborated upon when appropriate. Simulation results solely be
applicable to the geometry of a stenosed pipe configuration, which has been extensively studied and broadly
accepted as models for turbulence onset in arteries.

1.5 Outline
The research is structured in eight chapters, which roughly follows the standard headings of a scientific

paper, namely: introduction, literature review, methodology, results, discussion and conclusion. Chapter
1 identifies the problem constructs the research questions and provides the research outline. Chapter 2
provides the necessary background information regarding the treatment procedure of radioembolization,
the current state of research regarding microsphere distributions and arterial particle mixing and the
connection with this research and simulations. Chapter 3 elaborates on the theory behind the Lattice
Boltzmann Method. This aims to provide sufficient background knowledge about the working principles
and implementation of the LB solver package APES in Chapter 4. The modelling basis to outline the
simulation, accompanied by a mesh convergence study is presented in the first part of Chapter 5, where the
first two sub-questions are addressed. Additionally, an overview of the initial results of the simulation cases
is given. In Chapter 6 the influence of an increased particle density is investigated and compared to previous
results. Chapter 7 further elaborates on the flow characteristics and aims to link the onset of turbulence to
particle mixing. Here, the third sub-question is answered. The final chapter, Chapter 8, contextualizes the
findings, draws conclusions, and provides recommendations for future research directions. To recapitulate,
an answer to the main research question is presented as well.



Chapter 2

Radioembolization: Procedure and State of
research

The following sections provide the necessary background information regarding the research objective.
In order to better understand modelling simulations and interpret results, a basis of knowledge about
radioembolization is required. Additionally a concise background of the system in terms of liver vasculature
and cardiac cycle is provided. In this chapter, the connection between the treatment of radioembolization
and the procedure of modelling is discussed, paired with a study highlighting the current state of research.

2.1 Radioembolization
Selective Internal Radiation Therapy (SIRT) or transarterial radioembolization (TARE) is a clinical

procedure which is primarily used to treat liver cancer. The medical operation applies to hepatocellular
carcinoma (HCC), the most common type of primary liver cancer and metastatic liver tumours, where
cancerous cells have spread from the original sites. These two conditions are characterized by their
inoperability and inability to be treated with chemotherapy, leaving radioembolization as a last resort
option for patients. It is typically employed as a method to enhance the quality of life or extend the life
of a patient rather than curing them completely. Additionally, secondary goals are to slow the progression
of the spread of the disease and to control and alleviate symptoms. Due to the complex nature and the
patient-specifics, every procedure is individually accessed and tailored for each patient. Pre-treatment,
the imaging technique angiography is regularly used. It utilizes the deposition of injected dye into the
bloodstream, which is then visualized by taking X-ray images. This can help map the arterial structure
and aid the medical professionals in their insight. Post-treatment, imaging can again validate in-vivo
simulations and delivery can be adjusted for follow-up treatment.

The procedure, see Figure 2.1, consists of the injection of radioactive microspheres via a catheter into
the hepatic artery supplying the tumour cells in the liver. The blood flow in the artery transports the
microspheres to the hepatic arterioles, the branches of the liver vasculature. The objective of the procedure
is to direct the microspheres to the correct location, in the vicinity of the malicious tumour cells. Over
time, the particles form a cluster and build up at the site, where they emit ionizing radiation. The
crucial principle which allows radioembolization to be feasible is the fact that (hepatic) tumour cells
are predominantly supplied with blood delivered by the hepatic artery. Blood for healthy liver tissue is
accounted for via the portal vein, hence reducing the risk of destruction of healthy tissue.

The operational principles of radiation can be outlined as follows: Beta radiation is emitted from the
isotopes, which carry ionizing radiation. These are high-energy electrons that penetrate tissue up to a
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Figure 2.1: Supine position of the patient for treatment; A) Incision location for the catheter; B) Arterial
structure; C) Location of hepatic artery [1].

small depth. While travelling, the particles continuously emit radiation which damages the structure of
the cell DNA. It utilizes two processes, directly breaking the chemical bonds within the DNA strands or
by formation of reactive oxygen components which indirectly damages the DNA. As stated previously,
the radiation does not distinguish between malicious or healthy cells, so targeting the dose is of high
importance.

These microspheres are very small (D ∼ 40µm) solid beads which carry a radioactive isotope, either
embedded within or coated onto a microsphere particle. The particles themselves are solid, manufactured
from bio-compatible resin of glass. The material acts as a stable matrix to contain the isotope. The exact
type and dimensions of these microspheres are subject to the patient’s needs and differ occasionally. The
most commonly used isotope for this procedure in the medical world is Yttrium-90 (90Y). Its half-life is
64.1 hours, supporting a thorough and slow process in which the tumour can be addressed for a prolonged
period. Patients can experience symptoms and side effects of the operation for up to two weeks. The
beta-emitter isotope has been used quite extensively for radioembolization, resulting in a large body of
clinical data and experience in operating procedures. The first studies with 90Y date back to the 1960s, in
which its usage and applicability for human operations were analysed [9]. In 1999, the US FDA approved
the usage of 90Y for unresectable HCC [10].

An alternative is Holmium-166 (166Ho), which has been studied for its therapeutic properties in recent
years. Smits et al. [11] determined its maximum tolerable radiation dose. Radosa et al. [12] showed
its clinical feasibility, technical success and exclusion of significant hepatotoxicity. Van Roekel et al. [13]
found a same-day treatment procedure feasible. Stella et al. [14] explored future perspectives, including
the possibility of a dual isotope. 166Ho possesses a significantly shorter half-life, 26.8 hours, allowing for
a quicker reduction of the radiation and a shorter recovery period for the patient. Besides beta radiation,
166Ho also emits gamma radiation, which can be used in imaging techniques (especially scintigraphy)
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and consequently aid in dosimetry. This double capacity is called dual-action, see Figure 2.2. Certain
disadvantages of 166Ho over 90Y is its penetration range, which does not allow for reaching more deeply
seated tumours. Secondly, from a logistic angle, 166Ho is less available and more expensive than 90Y.
Finally, the accumulated experience, lengthy and rigorous admission criteria for new medical procedures
and norm of usage of 90Y, hinder the widespread introduction of 166Ho for radioembolization. Nevertheless,
development of 166Ho microspheres is ongoing and this thesis also utilizes these particles in this research.

Figure 2.2: Radiation emission for 90Y and 166Ho [2].

For HCC, a prognosis of untreated patients (n = 600) was found to be heterogeneous with a median
survival rate of 9 months [15]. For colorectal hepatic metastases, with even shorter estimated median
survival rates (4-5 months), 90Y radioembolization treatment (n = 531) was found to prolong the median
survival rate to 10.6 months [16]. Large-scale clinical trials (phase II or III) involving 166Ho radioembolization
have not been performed. A recent study of colorectal metastases (n = 40) found a median survival rate
of 10.7 months for treatment with 166H while emphasizing the importance of personalized dosimetry [17].

Even though radioembolization is usually an option in advanced or terminal stages of liver cancer, its
application is not restricted. In some recorded cases, radioembolization is part of a multimodal treatment
approach, pairing it with other procedures like chemotherapy or surgical intervention. From a clinical point
of view, earlier stages of liver cancer can also benefit and be treated with radioembolization. In clinical
practice however this is unconventional, given the curative intent of early-stage liver cancer treatment and
the accompanying incompatibility of radioembolization. Furthermore, risk-benefit assessment most likely
discourages its usage. At last, standard protocols combined with the current limited clinical evidence
don’t favour early employment but rather exhaust known treatment options first. Nonetheless, ongoing
research on radioembolization might spark discussion for alternative implementation and comprehension
of the procedure, which aids in prolonging the median survival time of patients, albeit with its own set of
challenges.

2.2 Arterial flow dynamics & Cardiac cycle
Figure 2.3 displays the anatomy of the liver vasculature. The artery utilized in TARE is the right

hepatic artery, which supplies oxygenated blood to the right lobe of the liver. The total blood supply to
the liver is supplemented by the contribution of the portal vein, which supplies a large proportion of the
blood flow to the liver. The portal vein mainly feeds healthy tissue, while the right hepatic artery usually
feeds the tumorous cells. The blood entering the right hepatic artery originates from the common hepatic
artery, which is connected via the celiac trunk to the abdominal aorta. The right hepatic artery branches
into segments through bifurcations, which reduce the vessel’s diameter and flowrate, a relation consistent
up to the capillaries. The initial bifurcation separates the flow into the anterior- and posterior segmental
branches. The right hepatic artery is typically 3-5 mm in diameter and 40-60 mm in length.



2.2. ARTERIAL FLOW DYNAMICS & CARDIAC CYCLE 17

Figure 2.3: Liver vasculature, right hepatic artery in
red [3].

Figure 2.4: The cardiac cycle expressed in several
measures 1) Pressure; 2) Volume flow rate; 3)
Electrocardiogram; 4) Sound [4].

Characteristics of blood flow into the right hepatic artery result from the interplay between anatomical
features and physiological factors. A cylindrical shape of the vessel can be distinguished. The inner layer
surrounding the lumen is composed of endothelial cells, part of the Tunica Intima, which influence surface
roughness. The diameter might exhibit fluctuations itself, due to health issues such as plaque formation or
inflammation. Moreover, the pressure inside the vessel is dependent on the vessel’s compliance (elasticity
and distensibility). Physiologically, the blood originating from the heart is inherently pulsatile in nature,
a result of the rhythmic contraction and relaxation of the heart muscles. An overview of the cardiac cycle
can be seen in Figure 2.4.

Of particular interest are two basic phases: the diastole (relaxation of muscles, inflow of blood in
chambers) and the systole (contraction of the muscles, ejection of blood from the ventricles). During
diastole, the flow velocity and pressure are low. Both quantities increase to a maximum value at peak
systole. In Figure 2.4, the "LV vol" represents the left ventricular volume, which is emptied during systole.
A periodic nature can be extracted from the out-flowing blood volume curve. Arteries will accommodate
the in-flowing blood by expanding or retracting, however, not all variations can be promptly accounted
for. These fluctuations propagate through the vasculature, affecting shear stress on walls, arterial pressure
and fluid velocity through the vessel.

The intensity of the pulsatility of the flow can be examined by using the Womersley number (Wo, or
α):

Wo = α = L
(ω
ν

) 1
2 (2.1)

Where L is the characteristic length scale [m], ω the angular frequency [1s ] and ν the kinematic viscosity
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[m
2

s ] of the blood. It is a ratio of the transient inertial forces over the viscous forces in the flow. It indicates
the extent to which laminar flow deviates from quasi-steadiness. Two classes are distinguished:

• High Wo (Wo » 1): Applicable in arteries with high pulsatile flowrates, e.g. the aorta. The flow
rapidly responds to acceleration and deceleration induced by the cardiac cycle, hence exhibiting
temporal variations. It is characterized by flow separation, re-circulation and turbulence.

• Low Wo (Wo « 1): Typical for small arteries, where viscous effects dominate, more laminar and
steady flow, thus less temporal variations.

Typical values for Wo in the right hepatic artery are in the range of 1− 4 indicating the significance of
temporal variations.

Another relevant factor to consider, which is grouped as one, is the hematological properties of blood
itself. Hemodynamics in the cardiovascular system significantly depends on these factors, namely:

• Blood viscosity; resistance against shear forces and dictates flow resistance, primarily dependent on
flow composition and temperature.

• Hematocrit; the total percentage of red blood cells compared to white blood cells, platelets and
plasma.

• Plasma proteins; composition may affect blood rheology.
• Oxygen saturation; in-direct alters metabolic demands and tissue perfusion.

Additional factors such as blood pH, coagulation factors, electrolyte levels and remaining blood composition
may all influence viscosity to some extent.

Now that the very basics of the vasculature system and its physiology are briefly discussed, an approach
to modelling the system’s geometry and flow conditions can be initiated, which is elaborated upon in
Section 5.1.1.

2.3 Current state of research
As discussed in the previous section, the hepatic artery is an intricate blood vessel with a range of blood

flow conditions, making the prediction of particles complex. As stated in Section 2.1, gaining insight into
the distribution of these microsphere particles is crucial for delivering the dose to the tumour location.
The challenges of a suitable procedure lie with the injection strategy, position of the catheter, particle
concentration, timing of the dose, composition of blood and layout of the patient’s arterial structure,
among other factors. However, despite the influence of these parameters, it is important to focus on the
research objective of this thesis and stick to the timing of the particle release and the subsequent mixing
behaviour. Therefore, this section aims to map the existing research regarding particle transport and
mixing, stenosed pipe flow, (onset of) turbulence and the application to LBM.

Regarding stenosed pipe flow and the onset of turbulence, Samuelsson et al. [18] investigated flow
through a sinuous stenosis at varying Re and non-axisymmetric shapes using direct numerical simulation
(DNS) and global linear stability analysis. It finds that at low Re, the flow remains steady and symmetric,
but as the Re increases, it bifurcates into a symmetric steady state and an eccentric, non-axisymmetric
steady state, with the latter becoming dominant at higher Re, while introducing an offset of the stenosis
throat affects the bifurcation Re significantly. Additionally, Jain [19] investigated the impact of stenosis
severity and configuration on the transition from laminar to turbulent flow under oscillatory conditions
in arterial flows. It found that higher stenosis severity and eccentricity lead to earlier turbulence onset,
while higher oscillation frequencies amplify hydrodynamic instability, particularly in milder stenosis cases.
Moreover, using Doppler sonography, Lafortune et al. [20] found that the flow in the right hepatic artery
can become partially turbulent, albeit not specifying a Reynolds regime. Finally, a prevalence of 3.5 % for
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Hepatic Artery Stenosis (HAS) after liver transplantations in patients (n = 253) was found by Da Silva
et al. [21].

Concerning the flow regime in the right hepatic artery, a number of sources exist which calculate, predict
or measure the Reynolds number of the flow inside the vessel. Amili et al. [22] chose to investigate two
flows for a similar study to predict how particles travel through successively bifurcating vessels. These
include Re = 470 and Re = 930. In order to establish boundary conditions for physiological outflows
Aramburu et al. [23] used Re = 722.

In relation to particle transport in turbulent flows, Reeks [24] discussed methods for simulating the
transport, mixing, and agglomeration of small particles in turbulent gas flows. It introduces a PDF
approach to represent particle behaviour, focusing on large-scale dispersion in homogeneous turbulence
and turbulent boundary layers, as well as small-scale transport, highlighting the role of particle inertia
and collision processes in enhancing agglomeration.

For studies on particle behaviour in flows, Liu et al. [25] analysed inertial particle migration effects
using LBM and found two cases where the migration effects could be observed: Low particle concentration
(< 5%) at low Re (< 20) and high particle concentration (> 20%) and at moderate Re (> 20). Secondly,
Matas et al. [26] studied the inertial particle migration effect in Poiseuille flow at increasing Re and found
discrepancies regarding established theory on the distribution of particles. When Re increases, particle
migration effects cause the particles to group together at the inner annulus of the circular cross-section at
a longitudinal distance of L = 310D.

Finally, regarding studies on particle implementation in LBM, Khalili et al. [27] demonstrated the
efficiency and accuracy of a GPU-based implementation of the Lattice Boltzmann Method coupled with
the Smoothed Profile Method (SPM) for simulating three-dimensional particulate flow. Results show
good agreement with previous studies, indicating the potential of this approach for efficient and accurate
particulate flow simulations.

At the University of Twente (UT), several different groups are collaborating to further investigate
the procedure of Transarterial Radioembolization. The latest review [28] examined factors influencing
microsphere distribution during TARE for liver cancer treatment. It encompasses in-vivo, ex-vivo, in-
vitro, and in-silico studies to identify intra-procedural parameters affecting microsphere distribution. The
analysis of 42 studies reveals that flow distribution is not a perfect predictor of microsphere distribution,
while increasing injection velocity may enhance the similarity between them. Notably, microsphere
distribution is highly sensitive to catheter position, particularly radially and axially. Promising parameters
for future research and clinical application include microsphere injection velocity and axial catheter
position, with emphasis on translating findings to patient-specific scenarios for enhanced treatment efficacy.

The foundation of a computational model of the liver vasculature, regarding research at the UT, has
been laid by van de Hoek [29] with his Master’s thesis, who acquired insights into the velocity field inside
the hepatic artery and found LBM a suitable CFD technique to analyse a physical simplified model.

Meanwhile, ongoing PhD work by Vlogman [30] [31], aims to add a particle solver module to the existing
LBM solver Musubi. This enables for intricate analysis of particle kinematics, facilitating the investigation
of particle mixing behaviour through the module he has constructed. A more elaborate explanation is
found in Subsection 4.2.1.
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Research Gap For certain types of radioembolization treatments, the process works efficiently if the
microsphere particles have mixed with the bloodstream, the exact mechanisms of this mixing are unclear.

Prior research has shown that flow in the right hepatic artery is likely to depart from the laminar regime,
because of the presence of irregularities of the lumen, dynamics of the artery and pulsatile inflow conditions.

A stenosis is a naturally occurring phenomenon in the right hepatic artery and can act as a small onset
for turbulent flow.

It is hypothesized that the particles ejected from the catheter will mix with the non-laminar flow in the
hepatic artery due to the stenosis onset.

To summarize this section, a brief overview of the procedure of radioembolization is presented, combined
with the anatomy and physiology of the right hepatic artery. Additionally, the basis in terms of literature
review is established. This underscores the research gap that this research aims to fill. The next section
addresses the theory behind the lattice Boltzmann method.



Chapter 3

Theory: Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a powerful numerical technique for simulating fluid dynamics,
which has emerged over the past decades as a viable alternative to conventional Computational Fluid
Dynamics (CFD) methods such as the more traditional Finite Element Method (FEM) and Finite Volume
Method (FVM). The main advantages of LBM compared to FEM or FVM lie in its inherent simplistic
foundation and its subsequent level of parallelization, making it suitable for high-performance computing.
Even though the amount of computations is generally higher in LBM, due to the simplistic essence of the
algorithm, computations are less time-intensive and hence faster. In addition, LBM allows for the division
of the domain into multiple sections which can be solved separately and simultaneously by combining a
collective of CPUs. To understand the difference in working principle between LBM and conventional
CFD methods, the starting point of both approaches are briefly elaborated upon.

In FEM or FVM, a continuous approach is taken for the analysis of fluids, which implies that a to-
be-investigated ’blob’ of fluid is seen as one homogeneous section, disregarding individual particles and
their interactions. Given this assumption, the conservation equations of mass, momentum and energy are
solved on a control volume, leading to a set of differential equations. The resulting continuity equation
in combination with the momentum equation, also known as the Navier-Stokes equations (NSE) can
describe any velocity field of any fluid, albeit an extensive equation. Analytical solutions exist for simple
applications but for more complex cases, numerical solutions are required and FEM or FVM have to solve
the NSE for numerous control volumes. This approach is suitable given that the continuous assumption
is still valid, which generally holds for macroscopic applications. However, in the microscopic range, this
assumption no longer applies when intra-molecular forces obtain a more dominant role.

Now consider an alternative approach of a collection of separate particles randomly moving through
space. The position and velocity of every particle in the system are known at each time-instant and
thus, the mass and momentum conservation balances can be solved for collisions between the particles.
Macroscopic quantities can be derived from the kinetic energy of the system. The Molecular Dynamics
Methods (MDM) as simulations which utilize these principles, allow for a more detailed analysis, given
that particle interactions are considered. The main drawback here is the amount of data required to
describe a system using MDM, reducing its applicability to very tiny length scales, beyond engineering
applications. For macroscopic applications, MDM is simply not feasible due to the computation-intensity
of solving for the position and velocity of all particles for every time step in the system.

The introduction of statistical mechanics to the transport equations is one of the possible solutions
for the length-scale problem. Significant reduction of computations while conserving accuracy allows for
solving macroscopic problems with microscopic dynamics. The first person to come up with this train
of thought was Ludwig Boltzmann in 1872 when he devised the so-called Boltzmann transport equation,
which would later on form the basis of LBM.

21
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In the following chapter, the foundation of theory regarding LBM is provided. Note that the terms
atoms, molecules and particles are used interchangeably in the following chapter. The structure of this
section is written after A.A.Mohammad’s Lattice Boltzmann Method - Fundamentals and Engineering
Applications with Computer Codes [32].

3.1 Kinetic Theory of gases
All matter in the observable universe, including all fluids, consist of atoms, which can be modelled as

solid spheres or ’particles’. Consider a system of particles randomly moving through space while obeying
Newton’s second law, linear momentum conservation, see Equation 3.1.

F = m
dξ

dt
= m

d2r

dt2
(3.1)

Assuming constant mass and neglecting rotational contributions; Here, F is the force vector, m the
particle’s mass, ξ the velocity vector and r the position vector. In Figure 3.1, it can be seen that an
externally applied force F, due to a collision, alters a particle’s velocity and position.

Figure 3.1: Simple particle collision model in 3D.

In Molecular Dynamics MD, this is the basis for molecular interactions and knowledge of the positions
and velocities of particles can describe macroscopic quantities of a system. This is called the phase-space,
in which the trajectory of a particles is its evolution in time.

P =
2

3
ñEk =

1

3
ñmξ2 (3.2)

The macroscopic property pressure is equivalent to force of the particles ramming the walls of the
container per unit area. In Equation 3.2, the pressure is related to the kinetic energy of a system. Here,
ñ is the number of particles per unit volume.

T =
2

3kb
Ek =

1

3kb
mξ2 (3.3)

Similarly, the temperature of a system can also be rewritten as a function of the kinetic energy, see
Equation 3.3. Here, kB is Boltzmann’s constant. The resemblance of these two properties is striking, and
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unsurprisingly the ideal gas law (P = ñkBT ) connects them. It is important to note that the presented
model is a simplification and only holds in certain conditions and for systems with particle dominant
collisions. However, given its simplicity, it is fairly accurate for e.g. room temperature gas.

For truly microscopic configurations, where the amount of particles is sufficiently small, the above
mentioned approach is suitable. It goes without saying that for reasonable real-world systems it is
impossible to track each and every particles positions and velocity at every infinitesimal time-step. Luckily,
a statistical approach offers a feasible method to capture the essence of the particle model whilst reducing
computations. The next section elaborates on this translation, via a distribution function.

3.2 Maxwell-Boltzmann distribution
In 1859, Scottish physicist James Clerk Maxwell tackled the above mentioned problem by means of

a distribution function. He recognized that the velocity can solely describe the state of a uniform gas
in a container, which is the velocity distribution function. In this container, similar molecules are non-
interacting and colliding, during which momentum is conserved. The initial positions and velocities of
these particles are initially random and the average distance between particles is much larger than the
particle diameter. This function characterizes the travelling molecules by ’bins’ of velocity values, each
with width dx. For a gas consisting of N molecules, the amount of molecules in x-direction with velocities
between ξx and ξx + dξx is equal to f(ξx)dξxN . Noting the similarity for y- and z-directions, integrating
over all possible velocities leads to Equation 3.4.

∫ ∫ ∫
f(ξx)f(ξy)f(ξz)dξxdξydξz = N (3.4)

Observing that directions are arbitrary and that only the speed of the molecules suffices, e.g. ξ = |ξ| =√
ξ2x + ξ2y + ξ2z , Equation 3.4 can be rewritten as follows

f(ξx)f(ξy)f(ξy) = Φ(ξ2x + ξ2y + ξ2z ) (3.5)

Here, Φ is a function to be determined. It can be shown that, considering the position of particles in a
shell on a spherical surface, now only the speed ξ suffices to describe the number of particles in an interval.
The full derivation of this function is left out. For a thermodynamic equilibrium system with a large
number of identical, classical particles, the fraction of particles within an infinitesimal range of velocities
in 3D phase space is given as

f(c) = 4πξ2
(

m

2πkbT

)
exp

(
− mξ2

2kbT

)
(3.6)

Where ξ the particle’s speed [ms ], m is the particle’s mass [kg], kB the Boltzmann constant [m
2kg

s2K
] and

T the temperature [K]. It is important to note that the probability of finding a particle with an exact
speed ξ is zero, but the probability is non-zero for finding particles in velocity ranges. In Figure 3.2, the
distributions for x and x are given at different temperature.
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Figure 3.2: Maxwell-Boltzmann distribution for oxygen and hydrogen at different temperatures.

Note that the function is normalized and that the total area under each curve is equal to 1, conserving
the total amount of particles N .

Ludwig Boltzmann was the first to establish a connection between the possible number of micro-states a
systems can adopt (Ω) and the thermodynamic property of entropy (S), via the equation S = kB log(Ω).
“An increase in entropy is a change in macroscopic variables to those values corresponding to the largest
possible number of microscopic arrangements [32].” Boltzmann was able to find the probability of a system
in thermal equilibrium being in a particular state with energy E as:

f(E) ∝ exp

(
−E

kBT

)
(3.7)

After several computations, this proportionality can be shown to be equal to

f(ξx)f(ξy)f(ξz) = f(ξ) =

(
m

2πkBT

) 3
2

exp

(
− mξ2

2kBT

)
(3.8)

Which, multiplied by a factor of 4πξ2 (the surface area of a sphere in phase space), results in the Maxwell
speed distribution as given in Equation 3.6. Recall that this distribution function holds for ideal gases in
equilibrium, which is a crucial condition. Maxwell did not specify how this equilibrium is met. Boltzmann
on the other hand, introduced a method to capture this movement toward equilibrium in his transport
equation, which is the topic of the next section.

3.3 Boltzmann Transport Equation
Continuing on the distribution function, consider a system of particles again as depicted in Figure 3.1. If

zero collisions would take place, the total number of particles f(r, ξ, t) will remain the same as the number
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of particles after a hypothetical disturbance f(r+ ξdt, ξ+Fdt, t+ dt), leading to a conservation equation,
which, integrated over phase space leads to:

f(x+ ξdt, ξ + Fdt, t+ dt)dxdξ − f(x, ξ, t)dxdξ = 0 (3.9)

Here, it is clear that the number of particles f in an arbitrary velocity interval always remains constant,
there are after all no external or internal forces which might accelerate or decelerate particles. In reality,
particles do collide and numerous collisions occur every fraction of a second. Hence, this alters the
conservation relation as in Equation 3.9, since it no longer conserves the number of particles in the
interval drdξ. The net rate of change between the distribution function, before and after a collision is the
collision operator Ω, see Equation 3.10.

f(r+ ξdt, ξ + Fdt, t+ dt)drdξ − f(r, ξ, t)drdξ = Ω(f)drdξdt (3.10)

Dividing Equation 3.10 by the interval drdξdt, taking the limit as dt approaches 0, and expanding the
total time derivative by the parameters in the phase space t, r, ξ yields

df

dt
=

∂f

∂t
+

∂f

∂r

dr

dt
+

∂f

∂ξ

dξ

dt
= Ω(f) (3.11)

Observing that dr
dt is simply the velocity ξ and similarly that dξ

dt is simply the acceleration, which, by
Newton’s second law (F = ma), is equal to F

m , the collision operator can be rewritten as

∂f

∂t
+ ξ · ∂f

∂r
+

F

m
· ∂f
∂ξ

= Ω(f) (3.12)

Considering the case without any externally applied force F, the equation reduces to (vector notation)
the Boltzmann Transport Equation, which is the central equation and building block of LBM.

∂f

∂t
+ ξ ·∇f = Ω(f) (3.13)

This is basically an advection equation with source term (Ω), which relates a known collision operator
Ω to the distribution function f . However, Ω is an intricate function, depending on f itself, which makes
it difficult to solve. The next section provides a solution to this problem.

The relation of the distribution function f to macroscopic quantities like density ρ(r, t), velocity ξ(r, t)
and energy e(r, t) are given in Equations 3.14, 3.15 and 3.16, which are the conservation laws of mass,
momentum and energy.

ρ(r, t) =

∫
V
mf(r, ξ, t)dr (3.14)

ρ(r, t)u(r, t) =

∫
V
mf(r, ξ, t)ξdr (3.15)

ρ(r, t)e(r, t) =
1

2

∫
V
mf(r, ξ, t)(ξ − u)2dr (3.16)
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Note that these quantities can solely be obtained if an analytical solution of Equation 3.13 exits, which
depends on the solving capabilities of the integro-differential function Ω. For the current application,
there is no need to dive into the world of mathematics and provide analytical solutions [33] [34]. From a
practical point of view, it is much more interesting to look at the discretized version of Equation 3.13, in
which the collision operator Ω is approximated.

3.4 BGK approximation
As mentioned in Section 3.3, the collision operator is difficult to solve and makes the BTE impractical

to use. However, in 1954, Bhatnagar, Gross and Krook (BGK) devised a simplified model to replace
the collision operator without an additional significant error term [35]. This was later proven to be an
acceptable substitution given that “the outcome of two body collisions is not likely to influence significantly
the values of many measured quantities” [36]. The approximation is abbreviated after its three authors,
and known in LBM theory as the BGK approximation and replaces Ω by

Ω(f) =
1

τ
(feq − f) = ω (feq − f) (3.17)

Where τ is the relaxation factor, feq is the local equilibrium distribution function and ω the relaxation
frequency (ω = 1

τ ). If the difference between the two distributions is large, the number of collisions is high
and vice versa. This difference is then multiplied by the relaxation frequency ω, which is analogous to the
viscosity. It dictates how fast this equilibrium between the two distributions is reached; a high value for ω
leads to a more rapid relaxation towards equilibrium and vice versa. The choice for ω and its implications
are further elaborated upon in Chapter 4. Substitution for Ω in Equation 3.13 yields

∂f

∂t
+ ξ ·∇f =

1

τ
(feq − f) (3.18)

The local equilibrium distribution function feq corresponds to the previously derived Maxwell-Boltzmann
distribution function, see Equation 3.6. For a 3D system of particles travelling in a flow with macroscopic
velocity u, the Maxwell-Boltzmann distribution can be rewritten in terms of ξ, u, ρ and R = kB

m and
expanded as

feq =
ρ

(2πRT )
3
2

exp

(
−(ξ − u)2

2RT

)
=

ρ

(2πRT )
3
2

exp

(
− ξ · ξ
2RT

)
exp

(
−−2ξ · u+ u · u

2RT

)
(3.19)

Which results in a lengthy exponential function. The second exponential term can be linearized and
expanded by means of a Taylor series expansion: exp(x) = 1 + x+ x2

2! +
x3

3! + ...

feq =
ρ

(2πRT )
3
2

exp

(
− ξ · ξ
2RT

)[
1− −2ξ · u+ u · u

2RT
+

(−2ξ · u+ u · u)2

4R2T 2
+O(u3)

]
(3.20)

Up till the second-order, since higher order terms (O(u3)) don’t contribute significantly in this case and
can be disregarded. Finally, two substitutions are performed to rewrite feq in terms of lattice parameters
cs and W (ξ), namely

RT = c2s (3.21)
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W (ξ) = exp

(
− ξ · ξ
2RT

)
(2πRT )−

3
2 (3.22)

These definitions allow for the expression for the second-order accurate equilibrium distribution, see
Equation 3.23

feq = ρW (ξ)

[
1 +

2ξ · u− u · u
2c2s

+
(ξ · u)2

2c4s

]
(3.23)

The expression for the equilibrium distribution function in known parameters allows for discretization of
the entire BTE. This is necessary to convert a continuous partial differential equation into a computationally
feasible form, allowing the simulation of fluid dynamics on a discrete lattice grid. This lattice grid is the
topic of next section, where discretization of the equations is performed, together with the structure of a
lattice and choices regarding lattice type.

3.5 Discretization
The Boltzmann Transport Equation as given in Equation 3.18 is in continuous form, and must be

converted to a discrete version in order to be applicable for numerical calculations. This process is called
discretization and is required for all translations to the finite domain for computing analysis. Several
options exist for numerical approaches including nodes, elements, control volumes or lattices. The discrete
version of the BTE is given as

∂fi
∂t

+ ξi ·∇fi =
1

τ
(feq

i − fi) (3.24)

Where i denotes a finite integer step. In LBM, the selection is made for lattice elements, which are the
’building blocks’ on a discrete grid. It divides a line, area or volume in an evenly spaced grid containing
nodes.

Their origin dates back to cellular automaton and specifically lattice gas automata (LGA), the predecessor
of LBM. LGA can be seen as a more simple (boolean) variant on a hexagonal lattice grid, with a simpler
collision model compared to LBM. Its fundamentals have been extensively described by Schuster et al.
[37] and are not discussed in more detail due to their exclusive historical relevance here.

Back to lattice elements. In LBM, it represents a specific velocity vector and accompanying distribution
functions of finding a particle with different velocities at the node location. So it employs a probabilistic
approach in order to determine the evolution of the velocity vector.

There exists a range of different lattice types based on the number of dimensions. Conventional notation
is in the form DnQm, with n denoting the number of dimensions and m the number of flow directions.
The most common 1D, 2D and 3D stencils are given in Figure 3.3. Other conventional 3D lattices include
D3Q13, D3Q15 and D3Q27.
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(a) D1Q3 stencil (b) D2Q9 stencil (c) D3Q19 stencil

Figure 3.3: Three common lattice types for 1D, 2D and 3D.

The D3Q19 stencil, as displayed in Figure 3.3c is selected for all simulations in this thesis. It is found
to possess the best accuracy to computational time ratio out of the 3D lattice options for this research.
However, for the sake of simplicity, the D2Q9 lattice as displayed in Figure 3.3b is used in the remainder
of the analysis of this section. In Figure 3.4, the distribution functions of an arbitrary time instant are
given for visualization purposes.

Figure 3.4: D2Q9 stencil with distribution functions.

As can be seen, a total of 8 streaming directions can be distinguished plus an additional slot for a
particle at rest (f0). A single direction fi can be seen as a direction-specific density. Each of these
directions coincides with a certain velocity vector ciα, with subscript i identifying the particle and α
the velocity components. Furthermore, isotropy of the lattice must be conserved. This is guaranteed by
weighting factors wi. For a particle residing at its location, a large weight is assigned. For a particle
travelling a long distance, a small weight is assigned. For particles travelling the same distance, the same
weight is applied, regardless of direction. The weighting factors for the D2Q9 stencil are given in Equation
3.25.

wi =


4
9 i = 0
1
9 i = 1, 2, 3, 4
1
36 i = 5, 6, 7, 8

(3.25)

The weighting factors obey certain conditions like conservation of the total density, conservation of
symmetry and isotropy. This is mathematically expressed in Equation 3.26, which is the standard equation
for moments of probability distributions.
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Mn =
m∑
i=0

(
wi · cni,1 · ... · cni,d

)
(3.26)

Here, n is the order of the moment, m is the number of streaming directions, i is the discrete velocity
vector index and d is the dimension of the lattice. For the D2Q9 lattice under consideration, the equation
reduces to

Mn =
8∑

i=0

(wi · (ci,1)n · (ci,2)n) (3.27)

Consider the first three moments for sake of understanding. The first moment is simply the summation
of all weighting factors, which should equal 1 to conserve the total density

M0 =
∑

wi = 1 (3.28)

The first moment represents the conservation of symmetry, which should be independent of the rotation
of the lattice

M1 =
∑

wici,1 = 0 (3.29)

The second moments and onwards are the result of isotropy conditions. A lattice element should give
the same outcome when rotated 90° in any arbitrary direction around its axis.

M2 =
∑

wi · (ci,1)2 + (ci,2)
2 (3.30)

Isotropy can not always be conserved, depending on the lattice structure. It is, however, favourable to
possess isotropy up to a certain order. The D3Q19 lattice exhibits isotropy up to the 4th order, which
suffices [38].

Now that the grid on which the BTE is discretized is discussed, recall the discretized BTE, as given in
Equation 3.24. This equation also contains the equilibrium distribution feq, but now discretized. Therefore,
Equation 3.23 is discretized over a standard lattice speed, which yields

feq
i = ρωi

[
1 +

2ξi · u− u · u
2c2s

+
(ξi · u)2

2c4s

]
+O(u2) (3.31)

This equation is second-order accurate and the lattice speed of sound c2s for both D2Q9 and D3Q19
configurations is 1

3 . Substitution into feq
i yields

feq
i = ρωi

[
1 + 3(ξi · u)−

3

2
(u · u) + 9

2
(ξi · u)2

]
+O(u2) (3.32)

Note that for the flow being analysed in this research, namely incompressible flow, the density ρ is
always constant and the flow field is divergence-free. However, due to the inherent nature of LBM, it can
be challenging to constrain the density at all times. In 1997, He and Luo found a substitution for the
density, which significantly improves the applicability of incompressible flow [39]. The density is split up
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between a constant contribution ρo and a fluctuation term δρ, which is second-order accurate. Applying
the substitution ρ = ρo + δρ gives

feq
i = ωi

[
ρ+ ρo

(
3(ξi · u)−

3

2
(u · u) + 9

2
(ξi · u)2

)]
+O(u2) (3.33)

This notation of feq
i can be substituted back into the discretized BTE. Note that for a flow velocity of

zero (u), the equilibrium distribution function reduces to feq
i = ρwi, a constant value with the weights

proportional to each velocity direction, multiplied by the density. This reflects the absence of any fluid
motion. Therefore, all distribution functions of the lattice nodes are uniform.

This section introduced the fundamentals of the lattice model. What remains is to elaborate on the
evolution of the procedure (LBM Procedure, Section 3.6) and the demarcation of the lattice (Boundary
conditions, Section 3.7).

3.6 LBM Procedure
Let’s recall the BTE as derived in Equation 3.24

∂fi
∂t

+ ξi ·∇fi =
1

τ
(feq

i − fi) (3.34)

From a technical stance, Equation 3.24 is a linear (no non-linear terms of f in r.h.s.) partial (f
differentiated w.r.t spatial coordinates and velocity) differential equation. It also resembles an advection
(transport by bulk motion) equation with the r.h.s. as source term. Discretization of Equation 3.24 yields

fi(r+ ξi∆t, t+∆t)− fi(r, t)︸ ︷︷ ︸
Streaming

=
∆t

τ
(feq

i (r, t)− fi(r, t))︸ ︷︷ ︸
Collision

(3.35)

In which the l.h.s represents the ’streaming’ step and the r.h.s the ’collision’ step. In the first step,
particles travel to neighbouring nodes and in the second step, upon arrival of these particles at the nodes,
an exchange of momentum takes place which is appropriately named ’collision’. Note that these two
processes are captured in a single equation but have to be separated when solid boundaries are present
[40]. These two steps are the groundwork of LBM procedure and are explained in more detail.

The streaming process for a D2Q9 lattice is displayed in Figure 3.5
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Figure 3.5: Streaming step for D2Q9 configuration.

As can be seen, the particle distributions have propagated through the lattice to the adjacent nodes
during the time-step ∆t. In this specific case, no collisions occur and the distributions simply translate to
neighbouring nodes.

More commonly, however, collisions have to be included. The essence of this model lies within the
locality of collisions; The particle-particle collisions take place within the distribution function and can
solely be evaluated and processed with information at the node in question.

’During’ the time-frame in-between the streaming- and collision-step, the particles are considered to be
in an interstitial state, notated by the ∗-superscript. The relation between the two steps is as follows

fi = f∗
i − ω(f∗

i − feq
i ) (3.36)

Note that numerical problems occur when ω = 1, an issue which is addressed in Section 4.2. The general
step-wise procedure is simplified in six steps:

1. Initialization of ρ, u, fi and feq
i . These follow from the initial prescribed conditions.

2. Streaming : Movement of the distribution functions in lattice directions (fi → f∗
i )

3. Compute new ρ and u from the interstitial state using

ρ =
N∑
i=0

fi (3.37)

u =
1

ρ

N∑
i=0

ξfi (3.38)

4. Compute new feq
i using derived ρ and u

5. Collision: Calculate new distribution function fi according to 3.36
6. Repeat steps 2-5 until clock is terminated.

Two different types of collision can be distinguished, due to walls or distribution functions from neighbouring
lattice elements. The former is elaborated upon in Section 3.7, while the latter can be easily visualized;
Imagine a lattice of D2Q9 configuration, as in Figure 3.5. Distribution function f2, travelling north,
will encounter a southwards travelling f4 from the neighbouring element, and collide at the node, where
momentum is exchanged among other distribution functions.
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3.7 Boundary conditions
If no external conditions are prescribed to a lattice, their nodes span infinitely, because every node

has a neighbour in all directions. Thus, the lattice must be contained. The ingredients to spatially
shape the LBM simulation are Boundary Conditions (BCs). They provide the required stability for
numerical solutions. The imposed macroscopic boundaries on the fluid have to be analysed on their
distribution function level. Several types of boundary conditions might be employed depending on the
prescribed conditions. The two most important and relevant for this research are addressed here, namely
the Bounceback- (wall) and the Dirichlet (pressure) BCs.

3.7.1 Bounceback
The Bounceback condition, also known as the no-slip boundary condition is the most common and

straightforward BC and is present at any interface between a fluid and a surface wall. A choice can
be made to either use nodes directly in the wall for returning the incoming distribution functions or
alternatively, generate an extra row of nodes as ’placeholders’. The difference between ’on-node’ or ’mid-
node’ bounceback planes determines the order of error type. The mid-node bounceback plane exhibits
second-order error terms, instead of first but is not always applicable where the on-node bounceback is.

The general procedure is displayed in Figure 3.6. The three coloured distribution functions travel to the
solid nodes, invert and are reversed and mirrored at their original location pre-streaming. This happens
all in the timespan of a single time-step.

Figure 3.6: Four steps of the Bounceback Boundary Condition for D2Q9 configuration.

Even though the bounceback BC is tailored for fluid-wall interfaces, it can occasionally be used as a
fluid inlet or outlet boundary. A periodic BC can also be used in cyclic systems, where the outlet of the
domain serves as the input for the next repeating section.

3.7.2 Dirichlet
The most common way to constrain the pressure at the inlet/outlet is by using a Dirichlet BC. This

BC uses a key relation in LBM which relates the pressure to the density, which is given as

P = ρc2s (3.39)

This allows for the evaluation of the pressure given a density at a node location. Equation 3.37 provides
this local density value, which eliminates the need to evaluate the much more complex pressure Poisson
equation in other CFD methods.
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Again, consider a D2Q9 lattice grid as displayed in Figure 3.7. On the line between points A and B is
a prescribed velocity u = (u, v) flowing from west to east into the domain.

Figure 3.7: Dirichlet Boundary Condition for D2Q9 configuration.

Distributions f0, f2, f6, f3, f7 and f4 are known because of their origin from inside the domain, however
f8, f1 and f5 are unknown. In order to solve for these values, Equations 3.37 and 3.38 are expanded for
this lattice arrangement, which yields

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (3.40)

for the density and

ρu = f1 + f5 + f8 − f6 − f3 − f7 (3.41)

ρv = f5 + f2 + f6 − f8 − f7 − f4 (3.42)

for the conservation of momentum in both spatial directions. Now, ρ is an additional unknown, but
equilibrium of distribution functions over the velocity boundary presents the fourth equation. (The
Bounceback rule still holds for the non-equilibrium part of the particle distribution function normal to the
boundary. [40])

f1 − feq
1 = f3 − feq

3 (3.43)

One might wonder why ρ is an unknown given the analysis of an incompressible fluid (ρ = constant).
This is due to the fact that the density is allowed to adjust in order to satisfy the prescribed velocity
boundary condition.

The unknowns can be solved by rearranging the terms, which is excluded here. What remains are the
relations for ρ, f1, f5 and f8.

ρ =
1

1− u
(f0 + f2 + f4 + 2(f3 + f6 + f7)) (3.44)
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f1 = f3 +
2

3
ρu (3.45)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρu+

1

2
ρv (3.46)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρu+

1

2
ρv (3.47)

All unknowns are accounted for. In the case of an outlet, an identical procedure can be performed for
the westward-facing distribution functions, which yields the same result. Note that in the case of zero
velocity inflow (u = v = 0), the Dirichlet BC reduces to the velocity bounceback BC.

In the case of a prescribed pressure for an inlet or outlet, which is desired for this research, simply solve
for the velocity instead by rearranging

u = 1− 1

ρ
(f0 + f2 + f4 + 2(f3 + f6 + f7)) (3.48)

which is applicable for a D2Q9 lattice (c2s = 3). The density is simply obtained from Equation 3.39.

Additionally, for known derivatives at boundaries (heat flux e.g.), a Von Neumann BC can be used in
LBM. Further improvements and increases in accuracy can be achieved by Guo-Zheng-Shi [41] and Zou-He
[42] BCs, however, are beyond the scope and/or not relevant to this research.

3.8 Chapman-Enskog expansion
Now that the theoretical groundwork for the LBM has been laid out, one might proceed directly to

simulations. But one important question has not been addressed yet: How do the discrete particle
dynamics, explained in the aforementioned sections lead to macroscopic fluid equations and fluid behaviour?
I.e. are we really solving for a fluid? This section explores the proof that links the BTE to the NSE, known
as the Chapman-Enskog expansion. These two physicists independently found the link between particle-
based descriptions of a continuous hydro-dynamical model in 1916 [43] and 1917 [44]. This derivation is
elaborated upon, in combination with the additional required tuning of the parameters in the results to
obtain the NSE. The analysis closely follows the work of Li, Appendix: Chapman-Enskog Expansion in the
Lattice Boltzmann Method [45]

The starting point of the derivation is Equation 3.35, which yields the discretized BTE, rewritten as

fi(r+ ξi∆t, t+∆t)− fi(r, t) =
1

τ
(feq

i (r, t)− fi(r, t)) (3.49)

The explicit updating algorithm is clearly a function of position (r) and time (t). Introducing a Taylor
expansion for the l.h.s. of Equation 3.49 yields

∞∑
n=1

∆tn

n!
Dn

t fi(r, t) =
1

τ
(feq

i (r, t)− fi(r, t)) (3.50)

where Dt =
∂ϕ
∂t + ξ · ∇ϕ, also known as the material derivative, with ϕ the property to be evaluated, in

this case fi(r, t). The material derivative can be seen as analysis of a property in a space-time-dependent
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macroscopic velocity field. Introduction of the Chapman-Enskog expansion is now possible, in which fi
and ∂t are expanded into different ’orders’, namely

fi = f
(0)
i +

∞∑
n=1

f
(n)
i = feq

i +

∞∑
n=1

fn
i (3.51)

∂t =
∞∑
n=0

∂tn (3.52)

With these mathematical definitions, it is possible to obtain the zeroth, first and second-order of
magnitude of Equation 3.49, which is respectively given as

f
(0)
i = feq

i (3.53)

∆t
D

Dt
f
(0)
i = −1

τ
f
(1)
i (3.54)

∆t
D

Dt
f
(1)
i +∆t

∂

∂t1
f
(0)
i +

(∆t)2

2

(
D

Dt

)2

f
(0)
i = −1

τ
f
(2)
i (3.55)

Two assumptions are made in order to satisfy the conservation equations and to make each f
(n)
i -term

solvable

∑
i

f
(n)
i = 0 ∀n ̸= 0 (3.56)

∑
i

ξi,jf
(n)
i = 0 ∀n ̸= 0 (3.57)

With the assumptions and the definition of Equation 3.53, Equation 3.54 can be rewritten in a suitable
form (full derivation skipped), which yields the zeroth order moment

∂ρ

∂t0
+

∂(ρuj)

∂xj
= 0 (3.58)

And similar rewriting for Equation 3.55 yields

∂ρ

∂t1
= 0 (3.59)

Now using the fact that ∂t ≈ ∂t0 + ∂t1, the zeroth order moments in Equations 3.58 and 3.59 can be
combined

∂ρ

∂t
+

∂(ρuj)

∂xj
(3.60)
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which resembles the conservation of mass equation in fluid mechanics. Similarly, expanding the first
order moments of Equations 3.54 and 3.55 yields

∂(ρuj1)

∂t0
+

∂

∂xj

(
c2

3
ρδij + ρuiuj

)
= 0 (3.61)

∂(ρui)

∂t1
+ (1− 1

2τ
)
∂

∂xj

∑
i

ξi,j1ξi,j2f
(1)
i = 0 (3.62)

Again, full derivation left out, rewriting the second term in both equations, replacing the Kronecker
delta and the sum over f

(1)
i yields

∂ (ρui)

∂t
+

∂ (ρuiuj)

∂xj
= − ∂

∂xi

(
c2ρ

3

)
+

∂

∂xj

[
(τ − 0.5)∆t

(
c2

3
ρ

(
∂uj
∂xi

+
∂ui
∂xj

)
− ∂

∂xk
(ρuiujuk)

)]
(3.63)

And for comparison, the incompressible NSE, without external forces

ρ(
∂

∂t
+ uj

∂

∂xj
)ui = − ∂

∂xj
p+ µ∇2uj (3.64)

Equation 3.63 shows similarities in structure with the NSE, albeit not completely similar yet. Tuning
of parameters ∆x, ∆t and ω = 1

τ to ensure that the magnitude of u << c2s
3 essentially negates the relative

variation of the density terms. Consequently, this leads to the reduction of − ∂
∂xi

(
c2ρ
3

)
to simply − ∂p

∂xi
,

which equals the pressure term in the NSE. Collecting all constants and variables in front of the Laplace
operator (∇2) leads to

µ =
1

3
(τ − 1

2
)∆tρc2s (3.65)

Dividing this equation by ρ yields the kinematic viscosity, which is an essential parameter for LBM,
more about this relation in Section 4.2.

3.9 Applications
As mentioned previously, the field of biophysical fluid mechanics is suitable for the application of LBM.

This area is characterized by (moderately) complex flow geometries in combination with low Reynolds
numbers. The lattice approach of LBM is more suitable for the viscous-dominated low Reynolds regimes.
Additionally, modelling of high turbulence is often not reliable in LBM, which excludes high Reynolds
number flows. An important dimensionless number which addresses the applicable flow regime is the
Knudsen number Kn = λ

L , in which λ is the molecular mean free path and L is the characteristic length
scale of the flow. LBM is mostly suitable for low Kn-values, also known as the continuum flow regime. In
Figure 3.8, for a number of Knudsen numbers, their applicable models are presented.
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Figure 3.8: Overview continuum models as function of Knudsen number.

Other areas of application include the aforementioned biomedical flows, especially in complex microvasculature.
It has also been used to model cerebrospinal fluid, a body fluid surrounding brain tissue. Secondly,
porosity and permeability studies, such as membranes, filters and catalysts, with applications in the field
of substrate flows and filtration processes. LBM also captures heat transfer quite comprehensively, again,
most profoundly on the micro-scale. Examples of applications are microelectric-cooling and microscale
thermo-fluidic systems. Finally, a number of multicomponent models have been developed to analyse
multi-phase flows, which, in addition to conventional CFD techniques, require little to no treatment.

This section concludes the chapter about the Lattice Boltzmann Method. The next chapter delves more
deeply into the LBM solver itself.



Chapter 4

Software: APES Simulation Framework

In the previous chapter, the ideas and formulas behind the Lattice Boltzmann method were discussed.
This chapter focuses on the software package which takes care of these calculations and is used throughout
this thesis, namely APES. This is a collection of tools in order to solve flow problems starting from the
geometry to visualization of the results. The simulation suite is based on an octree mesh infrastructure and
is capable of parallel computing. The APES simulation bundle is depicted in Figure 4.1 and is available
for download at: https://github.com/apes-suite.

Figure 4.1: APES Simulation Framework [5].

The workflow starts with the first package called Seeder, which generates a structured mesh from a
given geometry. Aotus sets up the simulation using lua scripts. Musubi then uses the mesh to calculate
the flow field using the lattice Boltzmann method. Harvester prepares the results for post-processing
tools, of which Matlab, Python and Paraview are used for visualization purposes. Inherently to LBM, the
computational process can be split up and divided over several processing cores which drastically reduces
computational time. This procedure of parallelization is used on the Dutch supercomputer Snellius. This
section elaborates on all the important tools of the APES simulation framework used in this thesis.

38
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4.1 Mesh generator: Seeder
Seeder is the mesh generator component of the APES packages. Its basic operating principles are

discussed in this section.

In CFD, a mesh is the discretization of the geometric domain into interconnected elements. It is required
to divide the geometry into smaller parts, shapes or sections in order to proceed with numerical methods,
allowing for approximation of the governing equation over smaller, manageable regions. Additionally, a
mesh also defines the boundaries and establishes the resolution, which in turn determines the accuracy
of the simulation, in combination with the chosen numerical method. Using conventional FEM or FVM
methods, the mesh size can be anisotropic, meaning an unstructured mesh of different-sized elements.
This comes at the expense of describing each relation between neighbouring elements, adding to the
computational complexity. In a LBM solver like Musubi, the mesh is uniformly structured, meaning the
entire geometric domain is divided into similar-sized elements. This allows for parallelization, as described
in Section 4.3.

Seeder is based on an octree principle, which implies partitioning the domain in all three Cartesian
directions, resulting in eight smaller regions, or octants, see Figure 4.2. This hierarchical process is
repeated until the desired level of refinement is achieved and the domain consists of n elements, see
Equation 4.1.

n = 2(3·level) (4.1)

Figure 4.2: Octree procedure [6].

A bounding cube is an encompassing ’cube’ containing, in any case, at least the geometry, which encloses
the domain. The bisection algorithm uses this bounding cube to initialize the splitting of the geometry
up to the stated level. This results in a ’box’ of n elements, either being in- or excluded in the geometry.
Every element coinciding with or located in the geometry is then labelled as a part of the definitive mesh.
At this moment, the flooding procedure starts, which will flood all elements in the mesh. The flooding
propagates from the location of a specified ’seed’ within the geometry and stops when every element is
’filled’. Elements that overlap with the boundary of the geometry are not flooded, which emphasizes the
necessity of grid refinement when geometries become more complex.

The level determines the number of bisections of the domain, thereby setting the resolution. From
Equation 4.2, it can be seen that the level depends on the element length dx, which is specified beforehand
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by the user and the length of the model L, which is by convenience the largest spatial dimension of the
geometry. The level is an integer value, and any non-integer outcome is rounded up, which slightly adjusts
dx. This can be fine-tuned by altering the dimensions of the bounding cube."

level = log2

(
L

dx

)
(4.2)

Main advantages of using the above-mentioned octree structure for mesh generation are its suitability
for complex geometries, possibility for adaptive mesh refinement and efficient memory usage. Notable
disadvantages include their implementation complexity and potential for numerical dispersion.

Seeder uses a combination of inputs to determine the mesh. The user can specify shapes for the geometry
using a .stl file, containing a model including dimensions. Additionally, boundaries can be prescribed by
defining planes in the seeder.lua input file, or Solver Input File (SIF). The bounding cube dimensions and
seed location are also specified here. Before each simulation, the mesh can be ’harvested’ and visualized for
inspection to determine its applicability. The user can then visually identify and correct the mesh if needed.

In Table 4.1, a number of different resolutions of meshes are listed, for implication purposes. Note that is
for a given geometry and numerous other parameters have an influence on the actual mesh properties. The
distance step dx is halved for each grid refinement, leading to decreasing time step dt and consequently,
higher computational costs. Note that the time is an approximation and depends on the amount of cores
dedicated to the computation. See Section 5.1.2 for the actual determination of the mesh sizes used in
this research.

dx dt Total Level
128× 10−4 4.4× 10−5 ≈ 0.5× 106 9
64× 10−4 1.1× 10−5 ≈ 4× 106 10
32× 10−4 2.7× 10−6 ≈ 34× 106 11
16× 10−4 6.9× 10−7 ≈ 280× 106 12

Table 4.1: Mesh sizes and implications for simulation parameters.

All resources related to Seeder used in the research have been briefly discussed and no other options of
the mesh generator have been employed.

4.2 LBM Solver: Musubi
The LBM solver of the APES packages is Musubi, whose fundamental principles have been discussed

in Chapter 3. This section focuses on the Musubi workflow, the relevant Musubi-specific parameters and
their implications and significance on the simulations.

Similar to Seeder, Musubi also requires a SIF in which parameters are specified in accordance with a
specific table structure. In here, the basics of the simulation are stated such as time-control, property
assignation, initial- and boundary conditions, restarts and tracking specifications for post-processing.

Inherent to the nature of LBM solver is the representation of physical parameters through lattice
variables or parameters, commonly referred to as lattice parameters. These lattice parameters establish
a link to physical parameters via moments computed from microscopic distribution functions. While the
discretized nature of lattice parameters ensures numerical stability and accuracy in LBM simulations, it
is important to note that they are derived from physical counterparts and carry physical meaning, albeit
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in discretized form. The distinction lies primarily in the system of units used. Conversion from physical-
to lattice form of significant parameters is discussed shortly.

As with any fluid-mechanical related problem, non-dimensional numbers are essential in understanding
the fluid behaviour and characterizing physical phenomena. They play a connecting role in scaling and
identifying dominant processes in flows. In general, the associated non-dimensional numbers related to
blood flow in arteries are the Reynolds number (Re), Mach number (Ma), Knudsen number (Kn) and
Womersley number (Wo). The significant numbers for LBM however are the Reynolds number and the
Mach number. Manual comparison of the physical- and lattice Reynolds number allows for verification of
the correct inputs.

As mentioned in Chapter 3, the relaxation time τ and more precisely, its accompanying relaxation
frequency ω = 1

τ , appearing in the BGK approximation in Equation 3.17, is a vital parameter for tuning
the dynamics of a system. It determines the rate at which the distribution function approaches equilibrium
during each time-step. The essence of this behaviour in the fluid mechanical realm is found in the viscosity
of a system and hence these two are linked. Kinematic viscosity, see Equation 4.3, is related to dynamic
viscosity µ (resistance to shear stress) and fluid density ρ. Both of these parameters are often known or
approximated for a given system, resulting in a known ν.

ν =
µ

ρ
(4.3)

The relation between the viscosity and relaxation frequency is determined by the Chapman-Enskog
expansion, which connects the discrete LB equation to the NSE. The relation, both in relaxation time
and -frequency, is given in Equation 4.4, where ∆x is the distance-step or lattice spacing and ∆t is the
time-step.

ν =
(∆x)2

∆t
c2s

(
τ − 1

2

)
=

(∆x)2

∆t

(
1
ω − 1

2

)
3

(4.4)

The distance-step ∆x is governed by the mesh size, while the tuning parameter ω is set by the user, which
leaves the time-step ∆t as a result of these choices. The relation between ω and ∆t can also be elaborated:
a higher value for ω leads to a lower value for ∆t, theoretically allowing for a more accurate simulation
due to more frequent updates of the distribution function. However, this can comprise stability, leading
to numerical instabilities if ω is too high. Conversely, a lower ω increases ∆t, reducing computational cost
and potentially enhancing stability, although at the expense of simulation accuracy. This relation is the
result of several factors including relaxation speed to equilibrium (smoothness of adjusting), damping of
high frequency modes (suppression of oscillations) and lattice viscosity (introduction of diffusivity). Apart
from ω tuning, other factors such as grid resolution (∆x) and overall algorithmic stability also play crucial
roles in the accuracy.

The approach taken here is called ’diffusive’ scaling, in which ν and ω are fixed. Alternatively, ’acoustic’
scaling is an option in which Ma is fixed. The difference in approaches lies with the definition of the lattice
speed of sound cs (cs = dx

dt for diffusive scaling). However, acoustic scaling is applicable to compressible
flow, hence diffusive scaling is used throughout this research.

The obtained expression for kinematic viscosity is converted to lattice form by non-dimensionalization,
leaving it only as a function of ω, see Equation 4.5. This limits the possible options for the value of ω
given the fact that νL is positive. Plotting Equation 4.5 leads to the graph in Figure 4.3, displaying the
domain of values.
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Figure 4.3: Range of values for ω.

In practice, a minimal value of 1.5 for ω is advised for numerical stability. For lower values, convergence
to a steady solution requires an inappropriate amount of time compared to the benefits of the damping
properties of high viscosity values.

νL = ν
∆t

(∆x)2
=

(
1
ω − 1

2

)
3

(4.5)

Additionally, derivation of νL also highlights the quadratic relation of the time-step ∆t and the distance-
step ∆x, see Equation 4.6. A finer mesh, with ∆x halved, results in a ∆t which is a quarter of its original
value, amplifying the additional computational resources for more detailed grids. This ratio between ∆t
and ∆x is a consequence of the choice for diffusive scaling.

∆t =
νL
ν

(∆x)2 (4.6)

An important parameter is the lattice velocity uL, which is obtained by scaling the macroscopic velocity
u to the discrete lattice grid. As mentioned previously, diffusive scaling sets the lattice speed of sound
cs =

dx
dt , which leads to the relation as in Equation 4.7

uL =
u

cs
= u

dt

dx
(4.7)

As mentioned previously in this Section, the Mach number has an effect on the simulation outcome. A
too large Ma can undermine the assumption of incompressibility and can introduce effects that lead to
inaccuracies in the simulation. For incompressible flow like in this research, an upper limit of Ma = 0.3
is usually agreed upon. For Ma values lower than this, the density of the fluid remains (nearly) constant
and the speed of sound is much larger than the flow velocity. For the translation to lattice parameters
such as the lattice velocity, a limit can be set to prevent problems regarding compressibility and density
fluctuations. A threshold value of uL = 0.15 is set and exceeding this value at any location at any
time-instant causes the simulation to abort.
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Musubi gives the option to select a specific relaxation mode for reaching equilibrium distributions for each
time-step, with the main ones being ’BGK’ and ’MRT’. The BGK mode is named after the group of people
who contributed to the BGK approximation, see Section 3.4. It is the simpler of the two modes because
a single relaxation time is assumed during each collision. Therefore, it is less computationally expensive
at the drawback capturing certain scenarios less accurately. These include non-stationary behaviour of
bounceback BC and stability at higher Re, [46] [47]. The MRT mode introduces multiple relaxation
times for different moments of the distribution function, making it more flexible at the expense of higher
computational cost. It does however provide more stability for complex flow features. MRT does this by
locally tuning the relaxation frequency. For this research, the MRT mode is selected for all simulations.

Two different boundary conditions are prescribed in the simulations, an input and output boundary.
The input boundary is velocity-driven (Bounceback) and uses a sine-wave as input signal for the velocity at
the entrance of the model. Contrarily, at the exit of the model, a prescribed pressure boundary condition
(Dirichlet) is employed to dictate a given pressure gradient. The walls of the model utilize a simple first-
order accurate bounce-back condition. These are similar for all physical boundaries excluding the entrance
and exit. The basics of these boundary conditions have been described in Section 3.7.

This section provides a basic overview of the input parameters, options and model choices relevant to
Musubi. The next subsection elaborates on the implementation of particles in the flow simulations.

4.2.1 Particles
During the past years, an addition to Musubi has been constructed in order to add a model for particles

to simulations. This extension is currently in progress and will be used to study particle behaviour. This
section briefly elaborates upon the working principles.

Particle models generally adopt either resolved or unresolved particle representations. In Musubi,
individual particle trajectories are tracked for both resolved and unresolved particles. The key distinction
lies in how these particles interact with the flow. In simulations involving a relatively small number of
particles, the resolved option is typically preferred. This method resolves the detailed flow behaviour
between individual particles, which can be computationally intensive. Contrarily, simulations with a large
number of particles commonly employ the unresolved approach. This method uses statistical averages to
estimate the collective impact of particles without resolving the flow field between them. As a result, this
approach is computationally more efficient.

In the implementation of particles in Musubi, particles are two-way coupled, meaning there is a mutual
interaction between dispersed particles and the fluid during simulation. This implies that the fluid affects
particles, and conversely, particles affect the fluid, forming a coupled feedback loop. Two-way coupling is
more computationally expensive compared to one-way or uncoupled systems. However, it offers significant
advantages by providing detailed insights into the exact dynamics of individual particles interacting with
the fluid. This level of detail is particularly beneficial when a precise understanding of particle-fluid
interactions is required, as is the case for large particles. Conversely, one-way coupling can be a good
approximation in scenarios where the influence of particles on the fluid can be considered negligible or if
computational efficiency is a primary concern. This approach simplifies the simulation by treating particles
as passive tracers or sources/sinks without significantly impacting the fluid dynamics. It is often used when
the focus is more on the bulk behaviour of the fluid rather than detailed particle-fluid interactions.

Particle collisions are present in the current model, in which momentum transfer is captured. The
particles are insusceptible to deformations, mass transfer and the total amount of particles is always
conserved. Integration of the equations of motion for the particle dynamics is performed numerous times
per single time-step for fluid simulation for accuracy. This separate treatment for particles allows the flow
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to be computed at the prescribed temporal resolution, without the need for further refinement of the fluid
itself.

The current workflow requires prescribing the initial position, velocity and forces acting upon the particle
for each individual particle in the simulation. To ease the manual labour involved here, a script for pseudo-
random input values are used for the required number of particles. Due to the nature of parallelization
and its preference for specific data structuring, one output file with the dynamical specifications of a single
particle throughout the entire simulation is generated for each particle. This requires minimal information
transfer between processes and is thus favourable for parallelization. Alternatively, a different approach
would be to log every particle’s state per time-step, but this requires significantly more data transfer to
establish and is much more computationally expensive.

One might wonder if the particles are passive tracers in the flow. This can be determined by examining
the Stokes number St, which is given in Equation 4.8.

St =
τp
τf

=
2ρpUpRp

9µf
(4.8)

Where τp is the relaxation time of the particle and τf is the characteristic fluid time scale. It is the ratio
of a particle’s inertia over the fluid’s viscous effects. Subsequently, this can also be expressed in physical
parameters with ρp as the particle density, Up as the particle velocity, Rp as the particle radius and µf

as the fluid’s dynamic viscosity. Equation 4.8 is an empirical relation and is adopted from Gondret et
al. [48]. A high Stokes number indicates a dominance of inertia, while a low Stokes number signifies a
tendency to follow fluid streamlines, and thus can be labeled as a passive tracer. Stokes numbers between
10−1 and 101 are expected for particles in this research. The Stokes numbers at play determine the choice
of the degree of coupling of the particles, as mentioned previously.

Considering the application of radioembolization, certain universal parameters of the particles can
be quantified from hereon. In Table 4.2, an overview is given for general particle parameters used for
modelling, unless stated otherwise.

Parameter Symbol Value Unit
Particle diameter Dp 30 µm
Particle density ρp 1.4 gr/cm3

Table 4.2: Particle parameters.

4.3 High performance computing: Snellius
A LB solver like Musubi is inherently suitable for parallelization due to its structured lattice grid. As

summarized in Chapter 3, for each lattice point, computations during the collision step are independent
of other points, as each point updates based solely on its local neighbourhood and distribution functions.
Regardless, during the streaming step, there is interdependence between the lattice points. It involves
moving the distribution functions to neighbouring lattice points. However, these dependencies are typically
localized and manageable. The structured communication pattern can be leveraged in order to facilitate
efficient parallel computation. In other words, it allows a simulation to be split up into different tasks and
divided over several computational processes simultaneously. Afterwards, all tasks can easily be ’stitched’
together to produce a single outcome. In the realm of super-computing, having a multitude of cores
is preferred over high core clock speed, which is a measure of the speed of a computer’s arithmetic
operations. This is because it provides optimal computational throughput by facilitating scalability,
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memory optimization and efficiency across diverse workloads. Additionally, the approach of multiple
processes is economically more efficient.

For this research, the National Dutch Supercomputer Snellius has been used for computations. This
relatively new supercomputer replaced its predecessor Cartesius in 2021 and is part of the cooperative
association of the Dutch educational and research institution SURF. It is named after Dutch scientist
Willebrord Snel van Royen, who is most famously known for his law for light refraction, which he derived
in 1621. The Snellius cluster operates with a job manager which schedules tasks, delivered via .sh files,
for reliable operation. These batches are then divided over the requested amount of nodes.

The cluster consists of a collection of four main different node types; ’Thin’ nodes, ’fat’ nodes, ’GPU’
nodes and ’storage’ nodes. The thin nodes are numerous but have relatively little memory. There are a
total of 504 thin nodes, each node has a total of 128 CPU cores, comprising a total of 64,512 CPU cores.
The fat nodes are suitable for memory-intensive processes due to their high RAM capacity. There are a
total of 72 nodes with RAM ranging from 1 TiB to 8 TiB. The GPU nodes speed up certain forms of
computations and have a total of performance of 3.0 Pflops/s. Finally, the storage nodes provide the
required capacity for data storage with a combination of SSDs, HDDs and NVMe memory, resulting in a
total available space of around 15 PB.

In this research, a maximum of 12 GENOA nodes have been used for computations at once, each
containing 192 cores. This brings the total number of cores to 2304, which is acceptably fast and not
too demanding on the system load, leading to smaller queue times, if any. The exact number of cores is
case-specific in order to find the balance between computational time on one hand and energy consumption
and occupying available space on the other hand.



Chapter 5

Analysis of turbulence induced particle
mixing

5.1 Simulation Set-up
This subsection specifies the parameters of the simulation framework for the given geometry, including

its spatial and temporal resolutions. The goal of this subsection is to provide a concise overview of the
parameters, for transparency and ability to reproduce simulations. This allows further research to verify
and build upon findings in this report.

5.1.1 Geometry set-up
In Figure 5.1 a schematic overview of the simulation model is given in 3D. The model consists of four

.stl files which, together with one prescribed boundary in Seeder, form an enclosed, airtight model.

File Function Label
stenosis.stl Act as main vessel I
catheter.stl Hold particles II
stenosis_inlet.stl Inlet for pulsating flow III
catheter_inlet.stl Inlet for plug flow + particles IV
stenosis_oulet Outlet for flow V

Table 5.1: Geometry file-composition.

An overview of the entire geometry of the simulation has now been presented. Individual components
of the geometry and the model are elaborated upon in more detail in the coming subsections.
Stenosis (I)

A simplified stenosis geometry, as in Figure 5.2, serves as a the basis for the simulation. It is adapted
from Jain [49], which in turn has studied this geometry from Varghese et al. [50]. The simplicity of the
stenosis as given, contributed to its adaptability and has since been studied extensively.

Two different set-ups are distinguishable, each preserving the curvature of the stenosis, namely an
axisymmetric case and an eccentric case. Both cases are identical, apart from the offset of the axis of
stenosis from the main vessel axis by a factor of 0.05D. The eccentric case is given priority in the analysis,
given its expected earlier onset of turbulence due to this slight disturbance.

The eccentric case is captured in geometric formulation, as given in Equation 5.1.

46
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Figure 5.1: 3D images of the model; A) Full model; B) Radial view; C) Catheter closeup.

Figure 5.2: Schematic overview of the stenosis in a lengthwise cross-section and an area cross-section.
The bold line represents the axisymmetric boundaries of the vessel, the dashed straight line the vessel
centerline and the dashed curved lines the eccentric case.

S(x) = 1
2D [1− s0 (1 + cos (2π (x− x0) /L))]

E(x) = 1
10s0 (1 + cos (2π (x− x0) /L)) ,

y = S(x) cos θ, z = E(x) + S(x) sin θ

 (5.1)

Here, x is the axial coordinate along the vessel diameter. Cross-stream coordinates y and z are computed
via the function(s) S(x) and E(x). D is the diameter of the non-stenosed pipe. L is the length of the
stenosis (L = 2D). x0 is the location of the center of the stenosis and s0 is a constant for the stenosis size
(s0 = 0.25). The stenosis throat has a maximum diameter of 0.5D, leading to a total area reduction of
1− 0.52 = 75% in the throat. The conservation equation of mass indicates that for incompressible flows,
the velocity in the stenosis throat will increase by a factor of 4.

Catheter (II)

The catheter from which particles are released in the stenosis is included in the geometry. It is modelled
after a Progreat 2.7Fr microcatheter, manufactured by Terumo Interventional Systems. The catheter
consists of a PTFE inner layer, on which a tungsten spiral coil resides. The catheter is coated with
hydrophilic coating M Coat, creating a flexible wire suitable for navigating tortuous and narrow blood
vessels. The 2.7Fr variant is frequently used in radioembolization procedures, see Figure 5.3.

The modelled catheter is effectively a rigid, hollow cylindrical shape, with an inner diameter of 0.6 mm
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(a) Types of Progreat microcatheters (b) Material composition

Figure 5.3: ProgreatTM [7].

and an outer diameter of 0.9 mm, with a constant wall thickness of 0.15 mm. The catheter is placed
axisymmetrically along the stream-wise axis, with a distance from tip to throat of the stenosis of 16 mm.
This distance is found to be acceptable for the development of the flow pre-stenosis. The catheter is
reduced to only its front 2 mm, where the particles will reside and be released from. This choice is made
in order to reduce the total geometry and thus computational time, in combination with the ability to
prescribe the flow an particles inside the catheter separately. The discrepancy between the flexible nature
of the Progreat 2.7Fr microcatheter and the rigid modelled catheter is explained by the short axial distance
modelled, combined with the physical model used in UT experiments, which is a rigid stainless steel tube.
Note that the optimal catheter position, orientation, geometry and material is a study on its own, with
the University of Twente actively performing research on in-vitro experiments and simulations regarding
catheter influence [28].

Boundary conditions (III, IV & V)

To finalize the geometry, the different boundary conditions (BCs) are discussed. A total of four BCs are
present in the model. The vessel containing the stenosis has a simple velocity bounceback BC, with the
no-slip conditions, acting as a wall for the fluid. The inlet for the flow is split into two sections: stenosis
and catheter. The stenosis inlet is a velocity bounceback BC, with a prescribed velocity for the pulsating
flow, which is further discussed in Subsection 5.1.3. The catheter inlet possesses the same BC type but
has a plug flow profile as input. The outlet of the vessel is determined by a pressure BC, for which the
pressure of the outflowing fluid can easily be described. This pressure is set via the following Equation

P =
ρphy
3

dx2

dt2
(5.2)

5.1.2 Mesh
Once the geometry is determined and the total model is found to be applicable (airtight, no geometric

unwanted shapes, etc.), a mesh can be generated via Seeder. See Section 4.1 for solver specifics and details.

As stated previously, the lattice velocity uL can not exceed 0.15 due to compressibility limits and is
directly coupled to the physical flow velocity and the distance step dx and time step dt. Given that the
physical flow velocity is set in stone for a certain Reynolds number, the only feasible way to decrease the
lattice velocity is to decrease dx and fine tune this parameter to an acceptable value for uL, which is close
to the threshold-value of 0.15, but leaves a small margin for any instabilities in the simulation that might
occur. Furthermore, increasing the number of lattice elements will reduce the numerical error term at the
cost of computational expenses. These considerations lead to a distinction of mesh resolutions for different
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flowcases, which are classified as I, II and III, see Table 5.2.

Class dx (mm) dt (s) Total (NoE) Level time to mesh
I 320× 10−4 4.5× 10−6 ≈ 3.4× 106 11 ≈ 10 sec.
II 160× 10−4 1.1× 10−6 ≈ 28× 106 12 ≈ 1 min.
III 100× 10−4 4.4× 10−7 ≈ 115× 106 13 ≈ 5 min.

Table 5.2: Mesh resolutions.
.

These resolutions provide the framework for flow simulations based on the Reynolds number. However,
caution is advised to simply proceed with these meshes. A mesh convergence study has to be performed to
determine the applicability of the mesh. The convergence of the simulation has to be demonstrated for the
chosen distance-step. Ideally, the convergence of a signal in a model is tested for increasingly smaller dx,
up to the resolution which exhibits acceptable differences to its predecessor. Given previous research by
Jain [49], which verified the current resolution for similar simulations, an alternative approach is proposed.
For this research, the high resolution mesh (dx = 0.01mm), gathered from Jain, is compared to an even
finer mesh (dx = 0.008mm). For sake of computational resources, a shortened version of the model is used
in the mesh convergence study. Moreover, the study is solely flow-based and no particles are introduced
in the simulation.

(a) Comparison velocity signal at x/D = −3.0 (b) Comparison velocity signal at x/D = −2.0

(c) Comparison velocity signal at x/D = −1.0 (d) Comparison velocity signal at x/D = 0.0

Figure 5.4: Centerline probes pre-stenosis at various locations.

For the mesh convergence study, a constant velocity is imposed at the entrance of the model. It takes
a few milliseconds for the initial conditions to wash away and all fluid-related parameters are expected to
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oscillate and subsequently converge to the imposed velocity value or an equivalent value based on local
geometry. Figure 5.4 shows the centerline velocity at 4 distinct locations for both meshes. The first
two centiseconds are required for the major oscillations to die out. Ideally, a constant signal should be
measured, which reassures that the simulation has converged to the steady input. The slight fluctuations
present in the plots are attributed to the mixing of flows of the catheter and main entrance. The strength
and frequency of the small fluctuations do not differ between the two meshes. The additional detail and
high resolution the finer mesh offers do not improve the simulations results. Hence, it is determined that
the solution has sufficiently converged for the coarse mesh.

(a) Cross-section at x/D = 3.0; 2 snapshots at t = 0.05 and t = 0.10 for dx = 0.008mm (left) and dx = 0.01mm
(right).

(b) Cross-section at x/D = 1.5; 2 snapshots at t = 0.05 and t = 0.10 for dx = 0.008mm (left) and dx = 0.01mm
(right).

(c) Cross-section at x/D = 0.0; 2 snapshots at t = 0.05 and t = 0.10 for dx = 0.008mm (left) and dx = 0.01mm
(right).

Figure 5.5: Comparison of cross-sections of the model regarding the mesh convergence study.

To further visualize the convergence, several snapshots of the cross-sectional area of the model are
compared for both meshes at similar time instances. This can be observed in Figure 5.5. Even though the
images are merely visually inspected, no distinct differences can be observed and numerical comparison
for the cross-sectional area is not found to be required. This concludes the mesh convergence study. Now
that the resolution of the mesh is determined, the next focus is on the flow inside the model.
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5.1.3 Flow conditions
Table 5.3 contains the properties of the fluid which are uniformly used throughout the simulations in this

research. These properties for density and viscosity are frequently used to model blood as a Newtonian fluid
and follow from Jain [49]. Hence, the non-Newtonian behaviour of blood is not accounted for. It should be
noted that in LBM, modifications to the collision operator can compensate for this non-linearity. However,
this requires extensive study about the rheology of blood and comparison with experimental results, which
are simply not implemented in this study. The selected relaxation frequency of 1.84 provides the desired
trade-off between numerical stability and computational speed.

Property Symbol Value Unit
Density ρ 1.056× 10−6 kg/mm3

Dynamic viscosity µ 3.450× 10−6 kg/mm/s
Relaxation frequency ω 1.84 -

Table 5.3: Inherent flow properties of fluid in simulation.

As mentioned in Section 2.2, blood is not a homogeneous fluid and therefore consists of several components.
Out of the physical cellular constituents, red blood cells are the most profound and numerous, with average
volume fractions of 35% to 52%. White blood cells and platelets are found in much smaller concentrations.
Typical diameters for red blood cells range from 6− 8µm, which is comparable to the order of magnitude
for particles. Similarly for the density, red blood cells posses slightly lower, but comparable density. This
introduces an important unmodelled factor in the system. It is inevitable that there is interaction between
the microsphere particles and the red blood cells, which is not accounted for in the model.

The main flow through the vessel originates from the inlet of the stenosis (III), This flow possesses a
periodic pulsating nature, which is modelled after a simple heartbeat, the driving force of blood circulation
in the human body and consequently in the hepatic artery. In Figure 5.6, the input of the flow is displayed.

Figure 5.6: Input pulse for the flow.

The pulse is described by a simple sinewave (sin (2πx) + 1). This pulse is chosen for its simplicity
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and is scaled to a period of 1 second, leading to a heartrate of 60 BPM. This is found to be a proper
approximation for a person at rest in the supine position. Note that the y-value is simply a constant,
which is multiplied by the required flow velocity for the simulation. This implies that at t = 1

4s, the flow
velocity is maximum and at t = 3

4s, the flow velocity is minimum and equal to zero.

In Table 5.4, the most frequently used time instances to characterize injection points during the pulse,
are labelled.

Instant (time ) Name Label Symbol

t = 0.000 s Start A

t = 0.125 s Acceleration B

t = 0.250 s Peak systole C

t = 0.375 s Deceleration D

t = 0.500 s Halfway point E

t = 1.000 s End F

Table 5.4: Labelled time instances in pulse.

These include the starting point (A) and the endpoint (F) which are connected via the periodicity of the
pulse. During the peak systole value (C), the flow velocity is maximum, which will introduce the highest
lattice velocities in the model. The maximum positive gradient of the flow corresponds with the highest
acceleration of the fluid (B), while the maximum deceleration of the flow (D) is expected to exhibit the
most influential changes to the flow. Even without simulation results, this can be explained by the fact
that during deceleration, the flow velocity decreases and consequently the pressure increases. This creates
an adverse pressure gradient in the flow, triggers the onset of instabilities and introduces flow separation.
To conclude, the halfway point (E) is also labelled.

In Table 5.5, the flowclasses are assigned flow velocities and corresponding Reynolds numbers. Since
assigning Re to flow can be somewhat arbitrary, a clear definition of the flow is given here: The Reynolds
number of the flow is based on the maximum flow velocity of the velocity profile at x = −2.5 (0.5mm
pre-stenosis), during the maximum inflow velocity at time-instant C (t = 0.25s).

Class Re [-] ≈ umax[mm/s] Physical representation in hepatic artery
I 160 259 Lowerbound of flow regime
II 450 735 Common value for flow regime
III 700 1147 Upperbound of flow regime

Table 5.5: Flowclasses.

Due to the location of the catheter on the centerline, cutting through the inlet of the vessel, the cross-
sectional area of the inlet represents an annulus with inner radius ri and outer radius ro. An analytical
solution exists for such a flow profile [51]. However, prescribing a specific velocity profile in Musubi is
difficult and can be omitted by another solution. Given enough entrance length, the flow can simply
develop from a plug flow into the required profile. This option is also chosen in the simulation, and will
be discussed per flow case separately.

The flow in the catheter, excluding particles, is much simpler compared to the flow outside the catheter.
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It is simply a constant value that corresponds to the average velocity of the flow in the simulation, such as
a constant y-value of 1 in Figure 5.6. Given that the catheter-inlet is not connected to the hepatic artery
and that the catheter is ejected at a constant rate during procedure, this assumption came to be.

Regarding the initial conditions, the pressure inside the entire domain of the vessel at the start of the
simulation (t = 0s) is set equal to the previously mentioned outlet pressure at the BC. This way, no
explicit pressure gradient is created and the flow is purely velocity-driven. Additionally, the flow velocity
inside the vessel is set to zero in all spatial directions to ensure uniform starting conditions.

Due to the above-mentioned initial conditions, the flow at the very beginning of the simulation still
has to develop and might not represent a continuous flow of blood throughout the model. It possesses
numerical artifacts which persist and affect fluid dynamics. Additionally, intervals of interest for this study
are located early on in the pulse and might still exhibit this transient behaviour.
Combining these two considerations, a decision is made to first simulate a full second of flow only and using
the state of the simulation at t = 1s, as the starting point. In Musubi, this is known as a restart, which
captures a snapshot of the flow in the entire domain and saves it as an input or further simulations. The
main advantage here is to (partially) eliminate disturbances in the flow due to initial conditions, which
approximates the flow more accurately. It basically ’washes’ away any physically unwanted behaviour.
Drawbacks are the increased simulation time; A restart has to be generated for each and every geometry
and flow condition, which increases total computational time. Therefore, t = 1s has been chosen as a
minimal value, one full cycle of pulsating flow.
In the ideal world, where money and time are no issues, the restart is captured as t → ∞. However, it
should be noted that the drawback of an extended restart simply outweighs the increased computational
cost and no significant added accuracy will be obtained compared to shorter approximations.

5.1.4 Particles
As stated in Section 4.2.1, Table 4.2 contains the inherent properties of the particles in the simulation,

which is repeated here for sake of overview.

Parameter Symbol Value Unit
Particle diameter Dp 30 µm
Particle density ρp 1.4 g/cm3

Table 5.6: Particle parameters.

For every simulation, the particles are released in exactly similar fashion. First of all, the particles
are confined to a predefined area, which coincides exactly with the inside of the catheter. This ensures
that the particles are always contained in the exact location corresponding to the bounds of the model.
A choice has to be made regarding particle distribution; A Gaussian distribution model or a uniform
particle model. The former might be closer to reality but the latter gives more control over the particles
and allows for more standardized comparison. The Gaussian distribution samples a number of points
N randomly inside the distribution, generating a pseudo-random grid of particles. The procedure for
a Gaussian distribution is as follows: Particles are centered around y = z = 0, leading to a value for
the location of the distribution µ = {0, 0}, and ensuring axisymmetric distribution. The other tuning
parameter, σ, dictates the standard deviation in spatial directions. This value is set to σ = {0.1, 0.1}.
Anuniform distribution is more straightforward. An axisymmetrical grid of particles is generated inside
the catheter, ensuring that the Center of Gravity (C.o.G.) of the distribution lies at y = z = 0. This
ensures a uniform starting distribution in the two spatial directions y and z.

The Probability Density Functions (PDFs) are displayed in Figure 5.7. A single ’slice’ of the catheter
is highlighted in Figure 5.8. Note that the distribution in use is 3D and consists of a number of slices,
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Figure 5.7: Gaussian vs Uniform particle distribution in 3D.

Figure 5.8: Gaussian vs Uniform particle distribution in 2D.

making up the inside of the model catheter. The number of particles is set to 979, to ensure axisymmetry.
A target of 1000 particles was established beforehand, compromising computational speed and accuracy.
In radioembolization procedures, a typical volume-fraction of the holmium microspheres is in the order of
magnitude of 1% [52]. The initial distribution which is used in all simulations is displayed in Figure 5.9.

Now that the distribution is initialized, the simulation can proceed. Simultaneously, the particles are
released at one specific time instant, releasing them all at the same time step dt. Instantaneously, all
particles adopt their local flow velocity and start to move with the surrounding fluid. There are no
externally specified forces acting upon the particles such as gravity. Prescribing a gradual acceleration,
or random initial velocities, mimicking particles in a suspension is out of the scope of this research. The
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Figure 5.9: Initial particle distribution.

implementation of a ’release-interval’ instead of an instantaneous time-step has been considered, but has
been ignored given its limited added value.

With this subsection, the basis of the simulation framework has been completed and discussed. From
hereon, each individual simulation is addressed in detail and its results are elaborated upon.
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5.2 Analysis of flow
Prior to particle analysis, the flow itself, without any introduction of particles is addressed. This allows

for a basis and future comparisons between flow-only and flow-containing particles. As stated in Section
5.1.2, three flow classes are derived to distinguish different types of flow. These are not chosen arbitrarily
but rather coincide with distinct flowcases inside the hepatic artery. This Section elaborates on the flow
profile of each of these classes. For every flowcase, the Reynolds number is the main characteristic of the
flow.

Again, the Reynolds number of a flow is conventionally based on the maximum flow velocity, which
occurs at the centerline in an axisymmetric pipe, inducing a parabolic velocity profile dome. A sufficient
entrance length, see Equation 5.3 allows the flow enough distance to develop a steady velocity profile
before entering the stenosed part of the model. This is important since it provides similarity between the
different flowcases.

Lh,lam = 0.0575ReD (5.3)

Additionally, it is important to capture all the turbulent activity post-stenosis. Ignoring turbulent
effects might exclude parts of area for mixing. Contrarily, a margin which is too spacious only adds to the
computational time. Research by Jain [49] has shown that for an additional length of Lpost,sten = 10D is
sufficient and applicable for the Reynolds numbers in play.

The following sections discusses the three different flow classes. A range of visualization plots are used to
analyse the flow. Pressure and density maps are not included, since the incompressibility of the simulations
is not in jeopardy. The main area of focus is the post-stenosis part, which is the second half of the stenosed
pipe. This part represents the hepatic artery in which turbulent flow might occur. The part before the
stenosis is used to develop the flow from the catheter and main vessel. The stenosis throat contains the
highest flow velocities and generates a jet of flow exiting the throat. The jet is not a naturally occurring
flow phenomenon in the hepatic artery. It is the result of the eccentric throat geometry, which induces
turbulence. Therefore, the last section of the post-stenosis part represents the flow in the hepatic artery.

Flow class I: Re = 160

Figure 5.10 shows velocity magnitude across a bisecting plane in the stenosis at various time instances.
Note that this is the absolute velocity magnitude, containing all three spatial directions. Observing the
plot yields the conclusion that the flow shows laminar behaviour. The deflection in positive y-direction of
the main jet post-stenosis is clearly visible. The flow does not exhibit any indications of turbulence at the
current flow velocity. The imposed flow velocity at the left boundary travels quickly through the model
and the maximum flow velocity is observed in the throat of the stenosis, at the centerline. The streamlines
are evenly spaced, see Figure 5.11. This plot shows a uniform spaced grid showing the flow direction, near
the throat section. Note that the arrows are not scaled to the velocity magnitude. Little to no rotation is
observed in the flow, see 5.12, which shows the vorticity in the flow. Vorticity is defined as the curl of the
velocity field (ω = ∇×ξ) and represents the tendency of a continuum to rotate. There is flow re-circulation
post-stenosis, in which the flow travels backwards parallel to the bulk flow of the jet. This can be observed
in the direction of the arrows in Figure 5.11. The maximum re-circulation velocity occurs close to the
stenosis throat and its magnitude is around 10% of the maximum velocity in the simulation. The pressure
and accompanying density plots of the simulation show behaviour corresponding to incompressible flow,
with little variation in magnitude across the flow profile, leading to a stable simulation. Figure 5.13
displays the developing profile of the flow front at an instantaneous time-instant. The values are absolute
and only contain the x−component of the velocity, parallel to the centerline. Point C, peak systole has
been selected for this visualization, given the occurrence of extremes around this point. The front develops
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Figure 5.10: 2D Longitudinal cross-section plots of velocity field for class I.

Figure 5.11: 2D Longitudinal cross-section plots of flow direction for class I at t = 1.250 s .

Figure 5.12: 2D Longitudinal cross-section plots of vorticity for class I at t = 1.250 s .

quickly to a Poiseuille profile pre-stenosis and adjusts to that same profile post-stenosis inside the vessel’s
spatial bounds.
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Figure 5.13: Flow-profile for class I at t = 1.250 s .

Flow class II: Re = 450

Figure 5.14: 2D Longitudinal cross-section plots of velocity field for class II.

Figure 5.15: 2D Longitudinal cross-section plots of flow direction for class II at t = 1.250 s .

Similarly for flow case II, the velocity profile is shown for the first half of a second after the restart
in Figure 5.14. The layout of the plots show similar structure to Figure 5.10 in terms of flow velocity
magnitude. The deflection of the jet exiting the stenosis throat is even more visible and the angle of
deflection is larger as well. The maximum velocity magnitude is increased threefold, which corresponds to
the expected results regarding the Reynolds number increase. In the current configuration, the jet does
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Figure 5.16: 2D Longitudinal cross-section plots of vorticity for class II at t = 1.20 5s .

Figure 5.17: Flow-profile for class II at t = 1.250 s .

not collapse and the streamlines remain parallel to each other. The re-circulation of the flow underneath
the jet increases compared to flow case I, with velocities up to 20% of the maximum velocity. In Figure
5.15 it can be observed that the flow reversal occurs further downstream compared to flow case I, e.g.
the flow direction in-frame is all uni-directional for the bottom half of the vessel post-stenosis. The
interface between the jet and reversed flow is can become a shear layer, which can contribute to turbulent
characteristics. However, the transition of the flow direction is rather smooth across the interface. Vorticity
plot in Figure 5.16 correlates with the velocity profile, in which the contour of the jet is clearly visible
again. The magnitude increases five-fold compared to flowcase I, but the flow can still be classified as
laminar flow. The developing flow profile however, see Figure 5.17, is clearly different than for flowcase I.
The flow requires a larger distance to transform into Poiseuille flow pre-stenosis and the velocity increase
in the throat propagates throughout the entire post-stenosis length of the model. The velocity profile
remains skewed up to the end of the model. It is decided not to elongate the model to encompass this
transition to a symmetric flow profile in the context of this thesis.

Similarly to flow case I, streamlines are parallel, no significant indicators of turbulent behaviour can be
observed in the flow.
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Flow class III: Re = 700

Figure 5.18: 2D Longitudinal cross-section plots of velocity field for class III.

Figure 5.19: 2D Longitudinal cross-section plots of flow direction for class III at t = 1.250 s .

Figure 5.20: 2D Longitudinal cross-section plots of vorticity for class III at t = 1.250 s .

Flowclass III finalizes the flow analysis. In Figure 5.18, the familiar 5 plots of the first half a second
are displayed again. The flow velocity is significantly higher compared to classes I and II. The jet exiting
the stenosis throat breaks down in between t = 1.125s and t = 1.250s. This period of deceleration of the
cardiac cycle induces the first turbulent activity in the flow, thus far. The flow velocity becomes too large
to sustain and the jet breaks down in random swirling rotational motion. The shear interface between the
jet and the surrounding fluid induces great perpendicular velocity gradients. In Figure 5.20, the vorticity
manifests along the centerline of the stenosis and different size vortices can be be distinguished. Note that
this plot is merely a snapshot in time and that the vortices are characterized by randomness, meaning that
the local flow-field rapidly changes. It is also important to note that between t = 1.375s and t = 1.500s,
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Figure 5.21: Flow-profile for class III at t = 1.250 s .

the flow stabilizes again and the turbulent effects decay and die out. This clearly indicates the transient
behaviour of turbulence for this flow class, opposed to sustained turbulence. Figure 5.19 highlights the
re-circulation of the flow, mainly under the jet. The velocity field possesses more random flow directions,
especially halfway through the post-stenosis part. Directional arrows are not the most optimal way to
visualize the rotation in the flow, however, their purpose here is to emphasize the re-circulation of flow.
Finally, plot 5.21 show the flow profile, under the same temporal and spatial conditions as previous plots.
The flow requires a longer length to develop to a somewhat parabolic flow-profile. The post-stenosis part
shows the upwards deflection of the jet, which gradually angles towards the centerline again. The re-
circulation of flow is most prominent below the jet, but a small section of re-circulation can be observed
above the jet. Note that for turbulent flow, the flow profile is not a proper metric, given its random and
sporadic nature to change direction and magnitude.

As the indications of (transition to) turbulent flow are clearly visible in the flow plots, a certain degree
of particle mixing can be expected for this flow-case.

Now that the basic premise of each flowclass has been briefly discussed, the addition of particles to the
simulation is now justified. Again, the same flowclasses are investigated.
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5.3 Analysis of particle mixing
The flow as displayed in Subsection 5.2 serves as the basis for particle transport through the model.

The particle initialization procedure is described in Subsection 5.1.4. . The simulations return data files
containing the spatial information per particle in the simulation for every 10th sampling time-step, of
which the position and velocities are the variables of interest. This results in a sampling frequency of
23, 91 and 227 kHz respectively for the three flowclasses. Tracking of the particles initiates when the
particles are released in the simulation and ends when the particles cross any physical bound of the model.
In practice this implies that the particle tracking terminates when the particles cross the outlet boundary.
In practice, this results in a different number of sample points per particle, due to initial positioning
and trajectory. It is important to distinguish three different section of the model. The pre-stenosis part
consists of the particle release in the catheter tip and includes the necessary distance for the flow front to
develop. Particle mixing behaviour is not of interest here, since this section is purely to develop the flow
and initialize the particles. The next section contains the stenosis onset, throat and stenosis expansion.
It ensures that the flow accelerates and serves as the onset for turbulence in the model. Particles will be
driven towards the centerline due to the narrowing of the vessel. The final section includes the section in
which particle mixing is of interest. It represents the hepatic artery in which turbulent flow might induce
particle mixing. In Table 5.7, an overview is given of the 9 main simulation cases, which are labelled
according to their flow class and particle release-instant.

Flow class Re Particle release-instance

B C D
I 160 I-B I-C I-D
II 450 II-B II-C II-D
III 700 III-B III-C III-D

Table 5.7: Simulation overview, labelled.

In the following, mixing behaviour of particles has been analysed with visualizations and statistical
measures. The main focus of the particle distribution is in the y − z-plane, normal to the vessel’s
main axis. Therefore, 2D particle distribution plots give proper insight and are used frequently to assess
mixing behaviour. Regions are referred to in terms of cardinal directions, with the north being positive
y−direction. Additionally, 3D plots of particle trajectories help paint an immediate overview of the
evolution of the particles, albeit more computationally expensive to construct. Finally, in an attempt to
quantify the data, several established statistical methods are employed to determine the mixing in each
simulation for comparison. All of the plots are discussed in more detail in the coming sections. The goal
of this subsection is to obtain a general overview of the nine simulation cases.



5.3. ANALYSIS OF PARTICLE MIXING 63

5.3.1 Preliminary simulation analysis

Cases: I-B, I-C & I-D

The results of flow class I are grouped together given their similarities. Nonetheless, subtle differences
manifest in the simulations which are worthy of elaboration.

(a) I-B: 3D particle trajectories.
(b) I-B: Initial (Red) and Final (Blue) particle
distribution.

For simulation I-B, the particle trajectories in Figure 5.22a show streamlined behaviour all the way
throughout the model for the entire simulation time. The particles are being pushed towards the centerline
due to the narrowing of the stenosis throat. There is a slight deflection upwards (in positive y-direction),
which is visualized in Figure 5.22b. This behaviour is expected given the offset in y-direction of the
throat. The plot displays the Center of Gravity (C.o.G.) of the distribution and the average distance to
the centerline. The C.o.G. is defined as the average location of all the particles combined. These two are
simple yet efficient metrics to assess the final particle distribution. Note that the term ’final’ refers to
the position of the particles at the time they exit the model, which in this case is at the outlet boundary.
Additionally, little variation in z-direction can be distinguished. The redirection of flow through the
stenosis throat leads to a general increase in particle clustering.

Plot 5.23 shows the average distance to the centerline across the entire model (dark blue line). It plots
the average distance on the y-axis versus the scaled x distance in terms of the amount of diameters.
Walking through this graph, starting from the x = 0 position, first shows the particles in the catheter
tip. These particles do not move radially in the catheter so the average distance remains the same. Then
the distance abruptly increases, due to flow effects. The flow in the annulus around the catheter has a
higher velocity than the flow exiting the catheter. For the low Re-numbers in play, this allows for the slight
expansion of flow exiting the catheter, which is then quickly suppressed again. This can be attributed to the
developing Poiseuille flow profile, which stabilizes at around 5 lengthwise diameters inwards. The particles
are then slightly more clustered compared to the catheter configuration, however, they enter the stenosis
throat symmetrically. Inside the throat, the average distance decreases to a minimum value, due to the
acceleration of the bulk of the flow. The upwards deflection in turn increases the average distance again.
Due to the excessive length of the model for the lower flow class, the particles return to the Poiseuille flow
distribution, albeit, slightly offset. The shaded band around the main blue line represents the standard
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Figure 5.23: I-B: Mean and Standard deviation.

deviation, which is fairly constant throughout the simulation. Note that the standard deviation is always
a single value for any given time or distance instant. The values on the y-axis do not serve as absolute
values for the standard deviation. Also, note that interpolation of particle positions is used in order to
construct a continuous graph.

(a) I-C: 3D particle trajectories.
(b) I-C: Initial (Red) and Final (Blue) particle
distribution.

Simulation case I-C is nearly identical to I-B in terms of visual inspection of the trajectories, see Figure
5.24a. It seems like the pulsating nature of the flow has little effect on the particle transport for these
sections of the pulse. Slight differences can be observed in the C.o.G of the final distribution, which
is slightly shifted upwards, see Figure 5.24b. This can be explained by the higher flow velocities and
hence the larger deflection due to the eccentricity. However, the essence of clustered particles remains
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for simulation I-C. Figure 5.25 highlights almost the exact same evolution of the distribution’s average
distance compared to simulation I-B.

Figure 5.25: I-C: Mean and Standard deviation.

(a) I-D: 3D particle trajectories.
(b) I-D: Initial (Red) and Final (Blue) particle
distribution.

Finally, the particle trajectories of simulation I-D are displayed in Figure 5.26a. Major similarities can
be observed for the last particle-release instant compared to the first two instances (Figure 5.26b). The
C.o.G of the final distribution shifts ever so slightly downwards again, matching the result of I-B. Once
again, this amplifies that the phase of the pulse has little effect on the final particle distribution at low
Re.
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Figure 5.27: I-D: Mean and Standard deviation.

To conclude, as expected, flow case I does not exhibit any particle mixing. However, it provides values
to compare future simulations in terms of particle dispersity and mixing behaviour quantification.
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Cases: II-B, II-C & II-D

For flow class II, the same visualization graphs are used as for flow class I. Given their similarity to
each other, a more concise analysis is performed. As can be seen in Figures 5.28 and 5.29 the particle
distributions differ little again. The same II-B to II-C and the consequent downwards shifting behaviour
from II-C to II-D is present. Since the jet, which carries the particles is stronger in flow class II, the
deflection is larger and the effects on particle transport are still active when the particles exit via the
outlet. There are no particles which deviate from the trajectory of the jet which yields the same conclusion
when looking at the flow field. The particles clearly stay within the bounds of the jet, and not a single
particle crosses the interface between the forward and backward-flowing regions.

(a) II-B: Initial (Red) and Final
(Blue) particle distribution.

(b) II-C: Initial (Red) and Final
(Blue) particle distribution.

(c) II-D: Initial (Red) and Final
(Blue) particle distribution.

Figure 5.28: Flowclass II, 2D cross-sectional particle distribution.

(a) II-B: 3D particle trajectories. (b) II-C: 3D particle trajectories. (c) II-D: 3D particle trajectories.

Figure 5.29: Flowclass II, 3D particle trajectories.
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Given their similarity, Figure 5.30 suffices to highlight the distribution’s average distance to the centerline.
The pre-stenosis region again experiences rapid expansion and compression of the distribution when exiting
the catheter. The following region up to the stenosis exit is quite similar to flow class I. The main difference
between I and II is highlighted by the larger average distance and the longer convergence to a steady state
in the post-stenosis part. One can argue that the effects of the jet have not worn off, which in turn leads to
an incomplete overview. This argument can be countered by the fact that no turbulence is expected further
downstream so a similar convergence to a stable Poiseuille flow profile is expected (e.g. see Figure 5.25).
The main takeaway for this flowclass is the absence of any turbulence and consequent mixing behaviour.

Figure 5.30: II-C: Mean and Standard deviation.
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Case: III-B

Flow class III is the first in which turbulence is observed, so it is expected to monitor an inherently
different particle distribution. Given the higher Re at play, particles traverse the model more quickly.
The average particle residence time in the model is around 0.05 seconds for this flow class. At particle
release instant B, the input flow velocity is but the flow is starting to decelerate towards peak systole. In
Figure 5.31a the familiar 3D model of the particle trajectories is displayed. This confirms the hypothesis
of particle mixing for flowclass III. Particles travel smoothly through the throat but halfway in the post-
stenosis region, the particles disperse in both the y- and z-direction. In Figure 5.31b, the initial distribution
and the final distribution are displayed. Observing the distribution, symmetry is almost conserved in z-
direction. The upward shift of the distribution’s C.o.G. is noticeable. A large cluster can be distinguished
in the upper half of the cross-section, which overlaps with a semi-circle. The origins of the jet can still
easily be traced in the final distribution. The average distance to the center has increased to a value of
0.43. The standard deviation is 0.16 resulting in a Coefficient of Variation (CoV) of 0.37.

These values can be compared to a theoretical case of perfect particle mixing: A system which demonstrates
spatial homogeneity, wherein particles are perfectly mixed, and the distance between particles remains
uniform throughout the entirety of the system. In this hypothetical system, the average distance of the
particle distribution is 0.667 and the standard deviation is 0.236, resulting in a CoV of 0.354.

It is important to note that the final distribution is rather a screenshot at the end of the simulation. It
does not consider particles which have not yet reached the outlet of the model. A total of 2 particles have
not crossed the outlet boundary at the time of termination of the simulation. These particles are either
still travelling towards the outlet, or have left the model via the vessel walls, in which case their absolute
distance to the centerline has exceeded a value of 1.

(a) III-B: 3D particle trajectories.
(b) III-B: Initial (Red) and Final (Blue) particle
distribution.

Figure 5.31: III-B: Simulation results.

Figure 5.32 shows the cross-section divided into numerous slices, which subdivide the surface into
sections. The particle density per section is then calculated. This provides insight into the regional
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dispersity of particles. The standard deviation between the densities of the sectors is also provided as
a statistical metric. It highlights the clustering of particles around the jet location. The outer ring
close to the vessel walls contains noticeably fewer particles compared to the center. Especially near the
northern and southern areas, the degree of mixing is lower compared to the eastern and western regions.
Nevertheless, the sectional density of this simulation is not uniform.

Figure 5.32: III-B: Sectional density.

Figure 5.33 shows the cross-sectional area of the flow at different time instances. Note that particles
in red represent particles still in simulation while the final location of the particles which have exited the
simulation at the given time-step is blue. See Figure caption for an explanation. It highlights the delay
between the front and the rear of the initial particle distribution in terms of travel time. The majority of
the particles remaining close to the centerline exit the simulation first. These particles are captured by the
jet, which retains its shape up to the time-instant where the turbulence is introduced. This observation
agrees with the expected results based on the flow field. There are two outlier particles which stay within
the simulation for its entire duration.

(a) Initial particle
configuration; t = 1.125 s.

(b) Particles in throat
vicinity; t = 1.157 s.

(c) Majority of particles
exited; t = 1.167 s.

(d) (Almost) All particles
exited; t = 1.170 s.

Figure 5.33: III-B: Snapshots in time.

Finally, Figure 5.34 shows quite a different plot compared to the previous. The same average distance
can be observed for the particle distribution in the pre-stenosis and throat region. However, the average
distance approaches a value of 0.43 in the post-stenosis region. The standard deviation is a clear indicator
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of mixing behaviour, which significantly increases after around 8.5 lengthwise diameters. Given the slope of
the standard deviation bounds, it is reasonable to assume that the mixing behaviour might not have settled
during the entire length of the simulation. Any error regarding the average distance can be attributed to
the spline interpolation method.

Figure 5.34: III-B: Mean and Standard deviation.
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Case: III-C

Simulation III-C shows the first real signs of proper mixing behaviour thus far. In Figure 5.35a, the
spaghetti-like trajectories are similar but more profound to those of Figure 5.31a. The addition of Figure
5.35b further distinguishes the two simulations. The average distance has increased by 33% compared to
III-B. The C.o.G. has significantly shifted eastwards, and slightly upwards. Little remains of the effect
of the positively upwards reflected jet. The location of the onset of turbulence is closer to the stenosis
throat compared to that of III-B, which translates into more profound mixing behaviour. Subsequently,
the clustering of particles can be extracted from the final particle distribution plot. In general, the region
near the vessel wall is still sparsely populated compared to smaller radii region, but this effect has worn
off compared to III-B.

(a) III-C: 3D particle trajectories.
(b) III-C: Initial (Red) and Final (Blue) particle
distribution.

Figure 5.35: III-C: Simulation results.

Figure 5.36 confirms the improved mixing behaviour, the slices are more uniform and the standard
deviation of the population density has decreased almost five-fold compared to III-B. The section of the
outer annulus is the least populated region. The middle annulus contains the majority of the particles.
These slices boast population densities twice or thrice as low as the outer regions. Symmetry is clearly
not conserved for the final particle distribution in z-direction. However, the overall spread of the particles
is more extensive.

Particle traverse time of the model is comparable to III-B, with a throughput of around 0.05 seconds,
which can be extracted from Figure 5.37. Figure 5.37b highlights the differences in particle location at the
given time instant. Certain particles have been displaced to the outer edges whilst some are still travelling
through the stenosis throat. This is an important factor to keep in mind while assessing the mixing criteria
later on. Figure 5.37d indicates the presence of an outlier particle still in simulation while the rest has
exited the simulation.



5.3. ANALYSIS OF PARTICLE MIXING 73

Figure 5.36: III-C: Sectional density.

(a) Initial particle
configuration; t = 1.250 s.

(b) Particles in throat
vicinity; t = 1.281 s.

(c) Majority of particles
exited; t = 1.290 s.

(d) (Almost) All particles
exited; t = 1.298 s.

Figure 5.37: III-C: Snapshots in time.

Figure 5.38: III-C: Mean and Standard deviation.
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Regarding Figure 5.38, the onset of turbulence now occurs after a drop in average distance, which is then
followed by a large increase, complemented by an even larger standard deviation. The average distance
seems to stabilize around its maximum value, an extrapolation that a larger model and a longer simulation
can answer. The standard deviation seems to have reached a constant value. One statement that can be
established from this observation is that the jet containing the particles travels further compared to III-B
but breaks down with more turbulent activity, causing a larger spread in particles.
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Case: III-D

The final simulation III-D allows for examination of the later stages of turbulence in the pulse. The
onset of the turbulence in the simulation appears at a distance which is in between III-B and III-C.
Visible in Figure 5.39a, the mixing volume is smaller compared to III-C, and additionally, mixing takes
place in the final stages of the model. The average distance exhibits the highest value yet. Figure 5.39b
shows a spread of particles which is comparable to III-C. The jet’s effects, which has left its mark in all
previous simulations, now seems to be of lesser influence. Average distance has increased compared to
III-C by around 5%, with the standard deviation changing remaining similar. The C.o.G. is shifted slightly
off-center, albeit still reasonable close to the centerline.

(a) III-D: 3D particle trajectories.
(b) III-D: Initial (Red) and Final (Blue) particle
distribution.

Figure 5.39: III-D: Simulation results.

The sectional plot, see Figure 5.40 confirms the previously stated. The middle sector contains almost
the entirety of the particles. The standard deviation of the population density is 25, which is 512% lower
than III-B, and also slightly lower than III-C. Also note that there are a handful of particles which are still
in the model at the termination of the simulation instead of exiting via the outlet. Figure 5.41 indicates
a similar throughput time compared to III-B and III-C.
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Figure 5.40: III-D: Sectional density.

(a) Initial particle
configuration; t = 1.375 s.

(b) Particles in throat
vicinity; t = 1.407 s.

(c) Majority of particles
exited; t = 1.412 s.

(d) (Almost) All particles
exited; t = 1.423 s.

Figure 5.41: III-D: Snapshots in time.

The statistical graph in Figure 5.42 is comparable in shape to III-C, in which the average distance falls
prior to the smooth jump to a higher ensemble average. The drop does not necessarily mean that the
particles follow the jet, which in turn approaches the centerline again, but rather that particles might
travel more quickly to the other regions of the model. A key difference is the fact that the line has not
yet reached a stable value, indicating that the mixing behaviour might not has settled yet.
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Figure 5.42: III-D: Mean and Standard deviation.

This concludes the preliminary analysis of the nine simulations. This analysis of particle distribution has
indicated basic insights, which highlights with which simulation cases to proceed in more detail. Flowclass
I shows purely laminar flow behaviour and the subsequent particle trajectories coincide with the parallel
streamlines. Flowclass II indicates slight disturbances in the flow, which translate to a rougher final
distribution of particles. Early characteristics of mixing behaviour could be attributed to the observed
randomness, however, their influence and effects are very minimal to the particle transport. These two
flowclasses have provided insight into the low Re flowregime, but are from hereon excluded for further
study. This leaves the highest flow class III for further elaborate analysis, which commences in the Chapter
7. In the next chapter, a comparison between different density particles is performed.



Chapter 6

Comparison mixing behaviour with higher
density particles

This chapter delves into the comparison of simulations with the aforementioned density of microsphere
particles and higher density particles. The first part consists of an overall effect analysis of the density and
subsequent comparison with the previous simulation results, in Chapter 5. More generally, the chapter aims
to link the flow characteristics to the resulting particle distributions for both simulation cases. This allows
for establishment of an important connection between the particles and the flow. Once this connection
has been established, the detailed analysis of the initial simulations is commenced.

6.1 High-density particle simulations
The nature of this section needs some explanation given its specifics. During the process of submitting

simulations to Snellius, a discrepancy has been found between the proposed simulation basis and the
actual simulation input. This difference has been identified as the value for the particle density. All
other parameters for both the flow, the model, and the particles remain unaffected. Conventionally, it is
practice to disregard the simulation results, given the mistake in initial conditions. However, given the
fact that these simulations are (computationally) expensive, an alternative assessment can be established.
This is mainly due to the fact the incorrect density has a practical value, see Table 6.1. The mistake can
simultaneously provide more information regarding the influence of density on the simulations.

Particle density Symbol Unit
Normal (Holmium) 1.4 gr/cm3

High 10.56 gr/cm3

Table 6.1: Simulation differences.

From hereon, till the remainder of this chapter, the simulations in Chapter 5 are referred to as normal
density and the other as high-density. The high-density particles are exactly 10 times as dense as the fluid
itself, resulting in a factor of ≈ 7.5 more dense particles. This alteration makes the particles comparable
to a material in between silver and lead. As the particles are heavier, their inertia is larger, hence their
Stokes number is higher. This could allow for the hypothesis of particles which are less likely to follow the
streamlines, but given the order of events, this hypothesis was never proposed.

Given the nature of the flowclasses, only the third flowclass is eligible for analysis. Flowclasses I and II
exhibit little to no differences compared to the normal density simulations and provide no new insights.
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6.1.1 Flow
A comparison can be made between the initial- and final state of both simulations. Using the restart

system, for both densities, the initial state (pre-), is identical. The injection of particles, due to the
two-way coupling affects the flow itself. Its effects should be engraved in the flow profile, even after the
simulation has terminated. Inspection of the cross-section flow profiles, like in Section 5.2 provides this
visual comparison.

Figure 6.1: III-B, normal density: Pre (t=1.125 s ) and Post (t=1.250 s ).

Figure 6.2: III-B, high-density: Pre (t=1.125 s ) and Post (t=1.250 s ).

For simulation III-B, the difference between the normal and high-density is clearly visual. Both
simulations boast turbulent activity, with the jet collapsing and the subsequent vortices in the flow.
The jet of the normal density retains its shape slightly longer and the flow itself possesses a slightly higher
velocity in the latter stages of the model. However, the most important metric is the visual cue that the
simulations differ, which indicates the effect of the particle density on the simulations.

Figure 6.3: III-C, normal density: Pre (t=1.250 s ) and Post (t=1.375 s ).

Again, both post-snapshots differ between the two simulations. The vorticity of the broken-down jet
in the normal density simulation seems to propagate more significantly into the final stages of the model
compared to the high-density simulation.

For the final comparison, the post-snapshots are harder to distinguish apart. However, conducted
numerical analysis has shown that both states are different and hence, the particle effects still propagate
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Figure 6.4: III-C, high-density: Pre (t=1.250 s ) and Post (t=1.375 s ).

Figure 6.5: III-D, normal density: Pre (t=1.375 s ) and Post (t=1.500 s ).

Figure 6.6: III-D, high-density: Pre (t=1.375 s ) and Post (t=1.500 s ).

up till this time-point. Note that for all the turbulent initial and final states, the snapshot in time is not
conclusive about the flow, given the chaotic nature of the flow dynamics.

6.1.2 Particles
Now this next section provides further visual comparison of the particles itself. For every simulation,

the post-stenosis particle trajectories are given. From hereon, the normal density particles are displayed
in blue while the high-density particles are displayed in green. The purpose of these visuals is to clearly
differentiate between the location of the onset of turbulence. This approach ignores the distribution
in z−direction, a justified choice given the limited significance of the third spatial direction for this
application. Note that these plotted trajectories are the result of each individual particle’s route through
the model up till the point that the simulation itself terminates. For all simulations, this time window
amounts to exactly 1/8 of a second. Additionally, the statistical plot containing the particle distribution’s
average distance to the centerline has been given for both simulations.

Even by visual inspection, see Figure 6.7, one notices clear differences for III-B. The onset of mixing
is located further downstream, at around 9 or 10 lengthwise diameters, for the normal density particles,
while a fraction of the high-density particles initiates their deviation from the jet trajectory at 6 lengthwise
diameters post-stenosis. Concerning the mixing behaviour, the high-density mixing is much more profound,
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Figure 6.7: III-B 2D post-stenosis particle trajectory comparison.

most likely due to the particle-induced flow characteristics.

Figure 6.8: III-B snapshots of trajectories at similar time-steps.

Temporal analysis yields the observation that the onset of turbulence and the jet breakdown occur
earlier in the high-density simulation. This indicates the importance of the particle density as a variable.
In the third and fourth time-step, the normal density trajectories are almost all exclusively laminar, while
that is not the case for the high-density particles. There, turbulence induced mixing has already been
initiated. Given that the particles are practically at the same location at a given time-step prior to this
mixing, implies that the high-density particles have induced favourable mixing conditions while traversing
that section of the flow.
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Figure 6.9: III-B Statistical comparison.

The overlay of statistical graphs corresponds with Figure 6.7. The gradual jump in average distance for
the high-density simulation coincides with the location of the spread of trajectories. Noticeable is the fact
that the net effect of mixing remains stable, but even decreases in the final stages of the model.
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Figure 6.10: III-C 2D post-stenosis particle trajectory comparison.

Figure 6.10 highlights two distributions which resemble each other more closely. The onset of mixing
still remains a bit further upstream for the high-density particles, but the locations have shifted towards
each other, near lengthwise diameter 7. These two simulations share more similarities compared to III-B
but the high-density simulations performs better in terms of final particle distribution. Two outlier high-
density particles are caught in a major re-circulation zone and consequently don’t exit the simulation via
the outlet.

Figure 6.11: III-C snapshots of trajectories at similar time-steps.

Evolution of the trajectories in Figure 6.11 yields the conclusion that there is no significant temporal
variation between the two simulations. One can observe that the particles near the peripheral sections
of the lumen arrive later than the centrally distributed particles. An observation which has been made
previously.



84 CHAPTER 6. COMPARISON MIXING BEHAVIOUR WITH HIGHER DENSITY PARTICLES

Figure 6.12: III-C Statistical comparison.

Inspection of the statistical plot, Figure 6.13, yields some extra insights. The increase in average
distance for the normal density particles is more abrupt and less gradual than the high-density particles.
This observation contradicts the very gradual line in the previous simulation.
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The final simulation comparison, see Figure 6.13, continues the trend in which the normal density
particles exhibit better mixing characteristics compared to the high-density simulations. The initiation
point of the has shifted to the latter stages of the model, namely at around 9 lengthwise diameters. Given
that this simulation coincides with the final turbulent period of the pulsating input, this checks out.

Figure 6.13: III-D 2D post-stenosis particle trajectory comparison.

The evolution graphs in Figure 6.14 display fairly similar behaviour up till the fourth time-step. During
the fifth, for the normal density particles, several trajectories branch off from the main jet at around
6 lengthwise diameters. Behaviour which is absent in the high-density simulations. This is most likely
induced by the differences in flow between the two simulations and improves the mixing behaviour of the
normal density particles.

Figure 6.14: III-D snapshots of trajectories at similar time-steps.
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Figure 6.15: III-D Statistical comparison.

Figure 6.15 confirms the differences in mixing behaviour, mainly due to the fact that the particles in
the high-density simulations adhere to the jet’s trajectory. For both simulations, the limited length of the
model itself prevents the capture of the full activity, which can be extracted from the slopes of both lines.

Synopsis The effect of particle density on particle distribution and flow dynamics is significant.

An increased particle’s density affects its inertia, translating in a slower throughput time and a decreased
likelihood of acting as a passive tracer.

Even though a trend is observed which finds a higher density particle corresponding to better mixing
performance at high turbulence intensity, no definitive relation can be established.



Chapter 7

Implications of turbulence induced particle
mixing

This chapter is dedicated to a more detailed elaboration of the simulations III-B, III-C and III-D. The
goal of this chapter is to provide an in-depth analysis of the flow itself, coupling the suspected turbulent
activity to the onset of particle mixing. This allows for a conclusive correlation between turbulent flow
characteristics and particle mixing behaviour. The chapter consists of three main sections. An attempt at
establishing a connection between the centerline flow velocity and the onset of particle mixing is made by
analysing the temporal aspects of the flow in more detail. Secondly, Power Spectral Density (PSD) plots
are employed, visualizing the Turbulent Kinetic Energy (TKE) along regular axial positions. Finally, a
concise overview is which addresses the main research question and contains the essence of this research.

7.1 Fluid mechanical analysis
Along the centerline of the post-stenosis region of the model, probes have been placed at a regular interval

to track all three spatial components of the fluid elements that happen to coincide with the given location.
This allows for tracking of the total velocity magnitude during the entire duration of the simulation. The
goal of this section is to connect the statistical graphs, given in Chapter 5 with this observed centerline
flow velocity (CFV). This has been done for all three simulations in question (III-B, III-C, III-D), including
a suspected laminar simulation (II-B) for comparison. Before the analysis commences, it should be noted
that the CFV is not entirely representative of the flow in which particles are located. The centerline does
not fully coincide with the jet containing the particles.

The plots which are utilized to visualize the centerline flow employ three axes. The left vertical axis
measures the average distance to the centerline, identical to those in the statistical plots. The horizontal
axis represents the x-distance in the model, post-stenosis. The right vertical axis is the basis for the CFV
graphs and contains the time, from the beginning of the simulation up till the end. The absence of an axis
for the magnitude of the CFV is justified, given that the purpose of this plot is to connect the changes
in average distance to macroscopic characteristics of the CFV. The probes are placed at x = 8, x = 12,
x = 16 and x = 20.

Additionally, an attempt is made by using an alternative plot to quantify the onset of mixing, or at
the very least, distinguish the simulations. A method is proposed where the trajectories of the particles
are analysed. During the simulation, the velocity of the particles can be calculated by using the positions
of particles in between time-steps. This allows for the decomposition of the velocity in individual spatial
directions. The y− and z−direction are then used as metrics. If, a deviation in a particle’s combined
y− and z−direction is observed, which exceeds a certain threshold value, then a red dot is placed at that
exact location. This is only done for the first time a particle exceeds this threshold. The x−location of
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this instance is then registered and an average distance at which these initial deviations in trajectories
take place is computed. This could be an indication of the onset of particle mixing, by employing the
flow velocity as an indicator. The threshold value is set to 1/3 of the maximum radial deviation, which
corresponds with the maximum deviation present in the simulation. The trajectories are colour codes
based on their velocity magnitude.

Figure 7.1: III-B Centerline velocity probes at interval locations.

For simulation III-B, the initiation of fluctuations in the flow is clearly visible. The transition to smooth,
relatively smooth and suddenly chaotic behaviour is present in the first few centiseconds of the simulation.
A general trend which sees the CFV drop while travelling further downstream the model can be observed.

Figure 7.2: III-B Combined y− and z−velocity deviations, initial positions of deflection marked by red
dots.

From Figure 7.2, an average x-position where the velocity threshold is exceeded is 8.03 lengthwise
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diameters post stenosis is computed. This agrees with the visual analysis, as the region in which particle
trajectories start to deviate from the jet’s.
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Figure 7.3: III-C Centerline velocity probes at interval locations.

Simulation III-C starts and end in the turbulent regime, something which could also be concluded from
the cross-sectional plots in Subsection 5.2. Fluctuations decrease in magnitude in the final regions of the
model.

Figure 7.4: III-C Combined y− and z−velocity deviations, initial positions of deflection marked by red
dots.

From Figure 7.4, an average x-position where the velocity threshold is exceeded is 7.47 lengthwise
diameters post stenosis is computed. This is more than half a diameter upstream compared to III-B. This
indicates a shift in turbulence onset towards the stenosis throat.
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Figure 7.5: III-D Centerline velocity probes at interval locations.

Simulation III-C contains the last phases of turbulence in the flow. The chaotic fluctuations slowly die
out and fade. Transition to laminar flow is observed for the final centiseconds of the simulation. Even
though the intensity of the fluctuations remains generally lower compared to III-C, it still suffices for
mixing behaviour.

Figure 7.6: III-D Combined y− and z−velocity deviations, initial positions of deflection marked by red
dots.

From Figure 7.6, an average x-position where the velocity threshold is exceeded is 7.68 lengthwise
diameters post stenosis is computed. This value lies between simulations III-B and III-D. Its onset of
mixing shifts further downstream and will eventually die out.
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Figure 7.7: II-B Centerline velocity probes at interval locations.

Finally, for comparison, a similar plot is given for simulation II-B. As can clearly be extracted from the
plot, no chaotic nature or flow fluctuations are present. This confirms the connection between laminar flow
and the absence of particle mixing in the simulation. However, it is not possible to link the flow fluctuations
to the onset of particle mixing. The breakdown of the flow of the jet remains uncaptured, given that it
occurs above the centerline. The velocity decomposition method with the locations of trajectory deviations
provides a rough indication, but as an average, it does not cover the dynamics of the jet breakdown.
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7.2 Power Spectral Density
For the three simulations III-B, III-C and III-D, the plots in Chapter 5 imply the following hypothesis:

the turbulent characteristics, induced by the flow, lead to the mixing of the microsphere particles. However,
since the definition of turbulent flow is loosely defined, and no distinct quantified measure fully suffices
to translate flow properties into the labels ’laminar’ or ’turbulent’, a different approach must be taken
in order to classify this flow, and especially its (onset to) turbulence. Note that the statement of words
here is selected carefully; There exits a transition (region) or onset rather than a sudden change in flow
behaviour, which can be quite gradual [53].

In Figure 7.8, free flow along a flat plate is depicted. Note that this is a very different flow configuration
than the one in question, but it clearly highlights the transitional region.

Figure 7.8: Boundary layer flow on a flat plate, developing from laminar- via transitional- to turbulent
flow. Parameter γ is the intermittent factor; γ = 0 indicates the onset of spike generation, γ = 1 indicates
the completion of turbulent transition [8].

In order to assess the turbulence in the flow, a PSD plot, in combination with overlaying axial flow
profiles is used. A PSD plot captures any form of frequency of the to-be-analysed signal and plots its
intensity. In this case, the TKE characterizes the power or intensity of the frequency.

The basis of this approach requires some theory. In essence, it is assumed that the observed flow (u(x, t)),
consists of a mean part (ū(x)) and a fluctuation part (u′(x, t)), see Equation 7.1. Triple decomposition
according to Hussain & Reynolds, in which an additional term is included for the phase of the period is
out of scope here [54].

u(x, t) = ū(x) + u′(x, t) (7.1)

Two distinct parameters defining turbulence are now possible to compute: The Intensity of Turbulence
(I) and the parameter of interest, TKE (k), which is defined in Equation 7.2, where the ′ superscript
denotes the fluctuating parts of the decomposed velocity signal.

k =
1

2
(u′2x + u′2y + u′2z ) (7.2)
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Turbulence is conceptualized from hereon as a collection of eddies of varying sizes. The largest eddies
in the flow undergo instability and subsequently disintegrate, imparting their energy to smaller eddies.
The energy transfer process, known as an ’energy cascade’ continues iteratively as smaller eddies further
dissipate energy to the smallest scales. Termination of the energy cascade occurs when the local Reynolds
number reaches a sufficiently low value, at which point eddy motion starts to stabilize and molecular
viscosity becomes predominant in dissipating kinetic energy. Hence, the characterization of turbulent flow
hinges upon the distribution of turbulent kinetic energy across multiple length-scales. One can wonder how
small this ’smallest’ scale might be. To answer this, Soviet mathematician Andrey Kolmogorov proposed
a mean-field theory in 1941 characterizing three parameters for this scale. The subsequent Kolmogorov-
length, -time and -velocity scales are given below respectively:

η = (
ν3

ϵ
)
1
4

τη =

√
ν

ϵ

uη = (νϵ)
1
4

With these parameters, it is possible to determine the scale at which turbulent kinetic energy is dissipated
into heat using the variables kinematic viscosity (ν) and dissipation rate (ϵ).

Given the core insight of a transitional or turbulent flow consisting of a wide range of eddies and their
consequent energies, one can start to decompose the flow into its distinct contributions. In the realm of
signal analysis, the tool to transform a signal in time to a signal in temporal frequency is the (discrete)
Fourier transform. A variation of the formula, Welch’s periodogram is used for this analysis [55]. Figure
7.9, shows a typical evolution of energies over a range of frequencies.

Figure 7.9: Energy spectrum E(k) as a function of the Wave number k = 2πf
c . Note the log-log plot

layout.

Three distinct regions can be identified; 1) The energy-containing range, the largest eddies supply energy
to smaller eddies, absence of viscous dissipation. 2) The inertial (sub-)range, where a constant energy flux
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across scales retains an equilibrium, with a constant power law of −5
3 , which gives rise to the constant

slope. 3) The dissipation range, in which viscous effects dominate over inertial and kinetic energy is
converted into heat on the Kolmogorov scales. Comparison of the PSD of the to-be-analysed flows with
the inertial range (−5

3 slope), yields insights into the nature of turbulence in that flow.

The PSD plots, from here onwards plot the power of the signal [m
2

s2
] on the y-axis versus the Strouhal

number Sr in [-] on the x-axis. The latter is defined as:

Sr =
fL

U
(7.3)

Where f is the frequency in [Hz], L is the characteristic length, i.e. hydraulic diameter, in [m] and U
is the flow velocity in [ms ]. This allows for non-dimensionalization.

Four post-stenosis locations are selected for the PSD analysis. These include the stenosis throat (x = 0),
the location just before the general turbulence onset (x = 12), the location coinciding with the general
onset of turbulence (x = 16) and finally at a distance far downstream, in which turbulence might start to
dissipate and die out (x = 20).

Visual inspection of the flow itself implies that the stenosis throat experiences laminar flow with slight
fluctuations. Some of these are caused by the particles traversing the throat. Figure 7.10a confirms this
observation of predominantly laminar flow. For all four simulations, an immediate drop is observed at
around Sr = 0.05, corresponding to laminar flow. A general trend can be extracted based on Figures
7.10b, 7.10c and 7.10d. This trend shows III-C possessing the most significant turbulent activity, followed
by III-B and III-D respectively. The flow of II-B sticks out due to its consistent drop-off for the lower
Sr-regime compared to flowclass III. The sporadic peaks in the higher Sr-regions can be attributed to
noise.
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(a) PSD for location x = 0.
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(b) PSD for location x = 12.
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(c) PSD for location x = 16.
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(d) PSD for location x = 20.

Figure 7.10: PSD plots for different locations post-stenosis.



7.3. FINAL OVERVIEW 97

7.3 Final overview
This final section is dedicated to combining all the aforementioned analysis into a single simulation

overview. Linking these individual overviews allows for answering the research question, as stated in
Chapter 1. Brief elaboration of the structure of each figure, see Figure 7.11. The first row depicts the 2D
cross-sectional view of the post-stenosis region, containing the particle’s trajectories. The dashed black
line represents the centerline, at which, on a regular interval, probes are located. These are the black
dots, spaced out uniformly, measuring the three spatial components of the flow velocity at those locations.
As a result of this, the centerline flow velocity in row two is computed. The dashed line there represents
the y-axis corresponding to zero magnitude. Similarly to Subsection 7.2, the power spectral density plots,
see row three, provide the visual analysis of the turbulent kinetic energy. Finally, at the location of the
probes, a snapshot is taken of all the particles’ y− and z−locations when they reach a given x-coordinate.
This results in the particle distribution as given in row four.

Figure 7.11: Guide for reading the final simulation overviews.

For readability, the overview is in landscape format, so rotate the pages 90 degrees counterclockwise. In
addition to the three overviews, a statistical plot, containing four simulations (laminar II-B and flowclass
III) is given in Figure 7.12.
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Figure 7.12: Combined overview average centerline distance for II-B, III-B, III-C and III-D.

Synopsis This study demonstrates that turbulence can manifest in the hepatic artery under naturally
occurring flow regimes due to a small onset of turbulence, as exemplified by the model’s eccentric stenosis.

During the turbulent phase of the pulsating flow, particle mixing occurs, whereas in the laminar regime,
no particle mixing is observed.

An increased intensity of the turbulent activity of the flow does not necessarily imply enhanced particle
mixing behaviour.

The hypothesis that the most favourable time-interval regarding particle mixing is during the deceleration
phase of the cardiac cycle seems to hold true.

Note that it is highly advised to read the accompanying remarks in the discussion, see Section 8.1,
before simply proceeding with the above-mentioned statements.



Chapter 8

Discussion, Conclusions and
Recommendations

This final chapter aims to interpret the results found in the previous Chapter 7. The first section addresses
degrees of uncertainty and limitations in the model and the research, as well as definite findings. With
these obtained nuances and perspectives of the results, the proposed research questions stated in Chapter
1 are once again covered and answered in full detail in the second section. Finally, directions of further
research are established, ones which could use this research among others as a groundwork to extensively
examine the dynamics of particle mixing and distribution in the hepatic artery.

8.1 Discussion
Following the structure of the thesis, firstly, the validity of the model and its connection to the application

are discussed. Secondly, the simulation set-up and its parameters are evaluated. Finally, the achieved
results are discussed and interpreted.

Model The research aims to examine the particle mixing dynamics in the right hepatic artery under
a number of time injection instances. As with every comparison to real-life applications, and especially
considering the human body as a variable component, this comes inevitably at the expense of simplifications
and concessions. Granted this observation, an effort is made to balance these losses in accuracy, precision,
and realism to the available resources in time and effort. The model itself is one of the more significant
simplifications of this research.

The use of a circular pipe for the right hepatic artery is justified given the similarities in shape and
size of the vessel. It is the most basic geometry to which the artery can be condensed to while retaining
a certain degree of realism. A patient’s hepatic artery deviates in a number of aspects of the model.
Its intricate shape, fitting it in the composition of the liver vasculature. Lumen walls are not smooth
but rather intricate and rough surfaces, which also depend on the patient. Regarding the dynamics of
the artery itself, the model approaches the artery as a rigid and stiff vessel, while in reality, the artery
has a certain compliance and is able to position and shape itself in order to adapt to the varying inflow
conditions. This motion has an effect on the flow contained inside the hepatic artery.

The eccentric stenosis acts as an onset of turbulence, which mimics the intricate flow conditions as
blood enters the hepatic artery. However, this inflow of blood is non-steady and most likely possesses
different turbulent characteristics compared to the prescribed inlet boundary condition in the model.
Concerning the remaining BCs in the model, their applicability might deviate from reality. Now, given
these discrepancies between the model and reality, let’s analyse on their influence on the final results.

The use of a circular smooth pipe as a vessel is conventional when studying biophysical arterial flows in
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literature. An alternative approach of analysing one patient’s hepatic artery, obtained by medical imaging
techniques would limit the research to a single patient-specific case and amounts to the loss of generality
amongst other challenges. Analysis of multiple patient’s specific arteries was simply out of the scope
and not required for this research. The current approach using a circular pipe allows for a more general
conclusion, one that can be tested against patient specific models.

The surface roughness is to some degree accounted for by the onset of turbulence. Major geometric
deviations caused by an irregular lumen and surface coarseness are not captured by the model. Altogether,
it is unclear to what extent this influences particle mixing.

Regarding the stiffness of the model, there is basically one costly solution to the aforementioned absence
of elastic behaviour. The use of a Fluid Structure Interaction (FSI) model, allows for incorporating the
dynamic behaviour of the artery. Consequently, a new mesh has to be generated after the displacement of
the vessel’s walls, attributing to a significant increase in computational time and model complexity. The
most likely benefit from this approach is the more accurate data near walls, which is of lesser importance
in this study. It could however provide information about how this movement of the artery influences the
lumen flow itself, establishing a connection between arterial dynamics and introduction of non-laminar
flow behaviour herein.

The inflow of blood at the inlet BC is coupled to the cardiac cycle, so even with reduced accuracy, it
still adheres to the pulsatile nature of the turbulence, which is also the case in a patient. The constructed
flowclasses serve as a lower and upper bound of Reynolds numbers observed entering the hepatic artery.
However, uncertainty remains in the exact inflow conditions which are again, patient-specific.

One important aspect of the model which could have been accounted for is the length of the post-stenosis
region. Especially during the deceleration phase of the cardiac cycle, the statistical graph indicates that
the mixing behaviour has not yet terminated, but particles simply reach the outlet BC and exit the model
before any more mixing takes place. A longer model would have provided this information, in addition to
an answer to the question if the transition from turbulent to laminar flow influences the trajectories of the
particles further downstream. However, it should also be noted that the hepatic artery is not infinitely
long and hence has limited length to accommodate mixing before the first bifurcation.

Simulation For the simulations, a distinction is made between flow properties and temporal aspects.
Confidence in the physical parameters of the flow, e.g. viscosity and density itself is high. The fluid
is modelled as BMF, which imitates the non-Newtonian properties of blood. The shear thinning effects
depend on the vasculature’s dimensions, however, for the hepatic artery, the current parameters suffice to
simulate blood flow.

Apart from this viscosity-related parameter, the composition of blood itself plays a crucial role. The
current set-up of the simulation does not allow for intricate hemodynamics components.

Regarding the particles, similar confidence in physical parameters is present, given that the values
are directly extracted from literature. Variation in individual size and mass is negligible. The release
mechanisms of the particles in the catheter are quite niche. The uniform distribution and the simultaneous
release of all particles with identical velocity is an idealized scenario. The exact influence of the particle
release method is not investigated. As mentioned previously, the catheter itself is subject to elaborate
analysis regarding the type, angle, position, etc. which is not covered in this research.

Introduced by the eccentric stenosis, the jet of fluid exiting the throat has a large influence on the
particles’ trajectories. The upward deflection is inherent to the simulation and is not present in the
hepatic artery. Therefore, the phase between the particle release instant and the onset of turbulent mixing
is purely necessary in terms of modelling but not present in real life.

The simplified cardiac cycle allows for great comparison and provides distinction between the phases.
With increasing flowclass, a decreasing throughput time of particles has been observed, with the highest
flowclass only attributing to a twentieth of a second. Due to the current particle release set-up, the flow at
the release instants is not representable for the particle mixing itself. More particle release moments would
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have aided in establishing trends between the simulations. However, any particle release moment after
half a cardiac cycle would not have resulted in an outcome with any mixing behaviour due to the absence
of turbulent characteristics. The choice to use a single second as a restart, rather than a number of cycles
is found to be justified. During the second phase of the cardiac cycle, much, if not the majority of the
turbulent activity is washed away because of the laminar regime. The cycle is expected to be reasonably
sufficient to analyse as a standalone system. Nonetheless, for the analysis of the simulations, a full cycle
should be captured for the sake of completeness in future research.

Zooming in on the technical aspects of the simulations itself, several noteworthy comments can be made.
The sampling of the data regarding CFV is now done at every tenth time-step and for the visual cross-
sectional overview, every eighth of one second. In retrospect, the number of datapoints for the CFV is
acceptable, but more VTK files would have provided some visual cues regarding the onset and offset of
turbulent activity.

As mentioned previously, the CFV is conventionally sampled at the centerline. Given that due to the
set-up of the model, the centerline does not cover the onset of turbulent activity, an opportunity is missed
to fully capture the flow characteristics of the turbulence. An additional line of probes coinciding with
the trajectory of, or close to, the jet would have allowed for this alternative approach, which would have
been able to conclusively link the flow with the particles.

Subsequently, the use of three particle release instants has been valid for distinguishing the simulations.
Nevertheless, three data points are insufficient to construct a general trend and thus a definitive answer
to sub-question three. Partially attributing here, are the discrepancies between the high- and low-density
particle simulations.

Results In order to assess the results of the simulations in this thesis, a number of quantitative as well
as qualitative metrics have been employed. The use of simple statistical measures in order to quantify the
mixing behaviour is valid, and a more thorough analysis is not required given the goal of the research.

Assessment of the mixing behaviour of particles has mainly been done in 2 dimensions. The distribution
over a certain cross-section is utilized as a base, with no regard for the 3D configuration of the particles.
This is found to be irrelevant to this research but should be investigated in consultation with experts on
the clinical aspect of radioembolization.

It should be stressed that the high-density particle simulations are merely a pure fluid mechanical
problem. The difference in density is substantial, which translates into a dissimilar Stokes number and
thus altered trajectories. Interpretation of these results with respect to radioembolization is unjustified.

This thesis aims to connect flow in a model to the application of radioembolization, and the question
arises of how accurate this comparison is, given the aforementioned marginal notes. Caution should be
exercised by extrapolating the results from the fluid mechanical analysis to the treatment of radioembolization.
In a similar fashion, the simulation results can not simply be translated into recommendations for practices
in the clinic.

Finally, regarding the process itself, several remarks can be made, which have to be addressed. During
the earlier stages of developing the model, a significant amount of CPU hours have been burned in an
inefficient manner. The occasional trial-and-error approach on Snellius does not agree with the scientific
method and could have been prevented by utilizing the available CPU time more carefully. In the earlier
stages of the research, several issues with the model, software or the use of the supercomputer have been
encountered and eventually resolved. This strengthened the understanding of the research on one hand,
but attributed to unplanned downtime and increased computational costs on the other.
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8.2 Conclusions
In order to recapitulate the thesis and answer the main research question posed in the introduction of

the research, the sub-questions are addressed one by one.

Can flow leave laminar regime in the hepatic artery?
The constructed computational model, represented as an eccentric stenosed pipe has been utilized as the
foundation for the simulations. Flow conditions derived from the literature have been imposed on the
model to represent distinct potential flow regimes within the hepatic artery. These range from Re = 160
to 700, based on the maximum flow velocity across the primary vessel diameter. For the lower Re,
streamlines are parallel and flow remains laminar. Flow has been observed to depart from the laminar
regime in the flowcase with the highest induced flow velocity. Turbulence onset occurs just prior to the
peak of the simplified cardiac cycle and dissipates during the deceleration phase. The turbulence intensity
is considerable, leading to vorticial motion downstream of the stenosis.

Does this non-laminar regime result in better mixing?
The introduction of the particle release allows for the analysis of the subsequent flow-induced particle
trajectories. In both laminar flowcases, no particle mixing is observed and particles remain in trajectories
coinciding with streamlines. The introduction of turbulent flow characteristics in the highest flowcase
significantly affects the particles, which act partially as passive tracers, due to their Stokes number. The
onset of turbulent activity downstream of the stenosis seems to coincide with the initiation of particle
dispersion. Particles disperse throughout the entire cross-sectional area in all radial directions.

How does the injection timing influence the mixing, if at all?
Three distinct particle release instances during the cardiac cycle were selected to investigate the temporal
influence of injection. Significant differences have been observed, indicating that the release instance is an
influential parameter. For the first particle release moment (B), mixing behaviour is the least significant.
Particle dispersion initiates late in the simulation, with the onset occurring far downstream. The final
particle distribution is symmetric but eccentric. For the second particle release moment (C), the mixing
is extensive, with the earliest onset and an overall symmetric and evenly distributed pattern. For the final
particle release moment (D), the onset of mixing occurs moderately downstream, with the most profound
mixing during the deceleration phase of the simplified cardiac cycle. The mixing behaviour has not ceased
by the end of the model. This instance shows the best overall mixing according to the employed statistical
metrics, with a symmetrical and evenly spaced final distribution. The influence of particle release is
hereby demonstrated. However the number of simulations is insufficient to conclusively determine the
certain optimal injection phase of the cardiac cycle.

How can the possibility of turbulence in the lumen of the hepatic artery explain mixing
of microspheres with the blood and consequent efficacy of the procedure?

During this thesis, an attempt has been made in order to visualize the particle distributions and
henceforth find underlying mixing mechanics. It is clear that the flow departs from the laminar regime
within physiological Reynolds number. Consequently, the observed onset of turbulence facilitates particle
mixing. This is among other factors time-dependent, given a simplified cardiac cycle. The deceleration
phase of this cycle seems to favour optimal mixing conditions. In the future, lumen flow should be
scrutinized to confirm the possibility of turbulence and mixing.
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8.3 Recommendations
With the conclusion section completed, which highlighted definitive results as well as unknowns, the

latter is elaborated upon in this section. A distinction is made between four fields all contributing to this
research. These include: Fluid mechanics, Numerics, Computing and Physiology.

Fluid Mechanics Numerous qualitative research directions can be explored regarding the fluid mechanical
aspects of the research. The analysis can benefit from an increased amount of Reynolds numbers, further
detailing the flowclasses. This would enable to find the critical Re at which behaviour departing from
laminar flow is introduced in this particular system. Another inherent parameter is the particle injection
speed/manner, which should be investigated in more detail. Previous research has shown the importance of
the particle injection velocity, with discrepancies between 2D and 3D flow configurations. When stepping
out of the scope, this topic borders research directions like catheter- type/position/angle.

Numerics Summarizing, LBM is found to be very suitable for capturing the important flow dynamics in
this research. Especially regarding the capture of base turbulence in the model, which allows for a confident
analysis of the particles’ kinematics and their trajectories. The use of conventional CFD methods might
either choose to ignore the turbulent characteristics for given Re flows or has to introduce a turbulent
scheme. Altogether, the main takeaway here is that for future research, when analysing biophysical flows
with low to moderate Re-values, non-laminar behaviour can manifest and the presence of it cannot simply
be ignored.

Computing High-performance computing has been the backbone of the study, allowing for very high
temporal and spatial resolutions for the highest flowclasses. If given more computational resources, a longer
domain post-stenosis is a simple yet effective addition. This could conclusively address the evolution of
the particle trajectories after the turbulence has died out. If the need arises to study the deceleration
phase of the cycle more carefully, an increased amount of injection time-instances is advised in the first
half of the cardiac cycle.

Physiology As mentioned in Section 8.1, several factors related to the model and the simulation
itself should be investigated in more detail. These include the fluid-structure interaction, which can be
implemented with an FSI. Additionally, regarding the pulse signal itself, which acts as a simplified cardiac
cycle, more realistic pulses will mimic the rhythmic and pulsatile nature of the system more accurately.
Moreover, the working fluid is increasingly important with the introduction of particles. Physical factors
such as the non-Newtonian behaviour and the true composition of blood are aspects which should be
studied.

The use of the lattice Boltzmann solver Musubi has been a very suitable tool for this research. A direct
translation between the results of this thesis and the clinical implications for physicians can simply not
be made with the current simulations. However, a small step has been made to the understanding of the
complex fluid mechanical aspects of radioembolization.
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