
BSc Thesis Applied Mathematics

Saddle-to-saddle behaviour in
shallow diagonal linear neural
networks

Ylona van de Kerk

Supervisor: H. Meijer, L. Spek

July, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

This thesis has been written as part of my bachelor Applied Mathematics at the University
of Twente.
I want to thank my supervisors Hil Meijer and Len Spek for suggesting this interesting
topic and for their guidance, insightful feedback and our discussions about this problem.

Saddle-to-saddle behaviour in
neural networks

Ylona. van de Kerk∗

July, 2024

Abstract

Neural networks are usually trained with the gradient descent method, which leads
to minima of the loss function that generalize well to new data. However, it is still
unclear why this method works so well. It has been observed that for a neural network
with small weight initialization, the minimisation of the loss function makes very little
progress for some time, until a sharp transition to a lower value occurs, which corre-
sponds to a new feature that is learned. This incremental learning process corresponds
to the jumping from saddle to saddle point of the loss function. The authors of [2] de-
scribe this saddle-to-saddle behaviour of the gradient flow in a shallow diagonal linear
neural network in the limit of vanishing initialization without restrictive assumptions
on the data. Motivated by this, this study determines the saddle points of the loss
function and investigates the influence of these points on the minimum solution found
with gradient descent in a shallow diagonal linear neural network with small weight
initialization. We found that the equilibrium points of the gradient flow correspond
to sparse vectors that minimize the loss function over its non-zero coordinates. Fur-
thermore, we conclude that the direction of the jumps does not correspond linearly
with the expected direction indicated by the eigenvector corresponding to the largest
positive eigenvalue of the linearized gradient flow.

Keywords: saddle-to-saddle behaviour, shallow diagonal linear neural networks, weight
initialization

∗Email: y.vandekerk@student.utwente.nl

1

Contents

1 Introduction 3

2 Neural networks 3
2.1 Introduction to neural networks . 3
2.2 Gradient descent . 5
2.3 Gradient flow . 6

3 Methodology 7
3.1 Weight initialization . 8

4 Analytical analysis 2-layer linear neural network 9
4.1 Case d = 1 and n = 1 . 9
4.2 Case d=1 and n> 1 . 10
4.3 General case . 12

5 Numerical analysis 2-layer linear neural network 12
5.1 Implementation shallow diagonal linear neural network 12
5.2 Comparison analytical analysis . 14

5.2.1 Case d=1 and n=1 . 14
5.2.2 Case d=1 and n=4 . 15

5.3 Neural networks with higher width . 17
5.3.1 Case d=2 and n=2 . 17
5.3.2 Case d=7 and n=5 . 18

5.4 Non-zero weight initialization . 20

6 Discussion & Conclusion 22

7 Appendix 23
7.1 Backpropagation . 23
7.2 Analytical analysis case d = 2 . 24
7.3 Numerical analysis case d=2 . 27

2

1 Introduction

Neural networks are trained with training data, which consists of examples of input/output
pairs. The training is done by searching through the family of possible equations relating
input to output to find the one that describes the training data most accurately. That is,
we minimize the degree of mismatch between the outcome of the neural network and the
training data, called the loss of this neural network. The loss depends on the parameters,
also called weights, of the neural network. The gradient descent method is widely used to
find the parameters that minimize the loss function. It leads to minima that generalize
well to new data [4]. However, it is still unclear why this method works so well. One way
to understand why the gradient descent method leads to certain minima, is to describe the
full trajectory. It has been observed that learning curves of the gradient descent method
with small initialisations across the training of a neural network are piecewise constant [1].
This means that the minimisation of the loss function makes very little progress for some
time, until a sharp transition to a lower value occurs, which corresponds to a new feature
that is learned. This incremental learning process corresponds to the jumping from one
saddle point of the loss function to another saddle point [2].

Recent papers study this saddle-to-saddle behaviour of linear neural networks in the
limit of vanishing initialization. The authors of [2] describe the trajectory of the gradient
flow over a 2-layer diagonal linear network in the limit of vanishing initialization without
restrictive assumptions on the data. The change in the parameters over time is called the
gradient flow. The authors of [2] describe in full detail the jumping of the gradient flow
from one saddle of the linear loss function to another until reaching a minimum solution.

The goal of this research is to describe the jumping from saddle to saddle of the gradient
flow in detail, to be able to define the influence of these saddle points on the minimum of the
loss function, obtained with gradient descent. This influence is studied by characterizing
the direction of the jumps at each saddle point.

First, we discuss some theory related to this thesis, such as general information about
neural networks, the gradient descent algorithm and the gradient flow. Next, the saddle-
to-saddle behaviour of a shallow, diagonal, linear neural network is discussed. First, this
is done analytically for simple neural networks and afterwards we look at the numerical
analysis for wider neural networks.

2 Neural networks

This section uses [4] to give an introduction to the concept of neural networks and to
explain the gradient descent method. Chapter 2-4 are used for section 2.1 and chapter
6 for 2.2. Furthermore, in this section, the gradient flow is introduced which we will use
extensively in the next sections.

2.1 Introduction to neural networks

Neural networks are functions ynet = f [x,ϕ] with parameters ϕ that map multivariate
inputs x to multivariate outputs ynet. We assume that the input and output are vectors
of a predetermined and fixed size and that the elements of each vector are always ordered
the same way (structured data).

A neural network is trained with training data, which consists of examples of in-
put/output pairs. Training a neural network is done by searching through the family
of possible equations relating input to output to find the one that describes the training
data most accurately. In other words, fitting mathematical models to the training data.

3

A regression model outputs a single real number. Supervised learning models map input
data to an output prediction. When the inputs are passed through the network, and the
output is computed, this is called inference.

An important aspect of a neural network is its parameters. Different parameter val-
ues change the outcome of the model. The model equation describes a family of possible
relationships between inputs and outputs, and the parameters specify the particular rela-
tionship. Training/learning a model means finding the parameters that describe the true
relationship between input and outputs the best.

The loss of a neural network is defined as the degree of mismatch between the outcome
of the model that uses parameters ϕ, and the training data. It is denoted as L[ϕ].

When we train the model, we are seeking,

ϕ̂ = argminϕ[L[ϕ]]. (1)

This ϕ̂ is called a minimizer of L[ϕ].
A common loss function is the quadratic loss:

L[ϕ] =
n∑

i=1

(f [xi,ϕ]− yi)
2, (2)

where I denotes the number of training data samples. This loss function is usually chosen
because the calculation of its partial derivatives is straightforward.

A neural network can consist of many different layers, which each consist of a number
of nodes. Figure 1 shows an example of a neural network.

Figure 1: An example of a deep neural network with one input layer x of width
3, three hidden layers hi for i = 1, 2, 3 of width 4, 2 and 3 respectively, and one
output layer y of width 2. For each layer j, layer j +1 is computed by multiplying
layer j with weights Ωj and adding bias βj . ([4] section 4.4.1 figure 4.6)

Neural networks map input to output by these three steps in each layer:

1. compute linear functions of the previous layer,

2. pass the result through an activation function a[·],

4

3. weigh the resulting activations with parameters and add an offset.

This offset that is added to each layer is called the bias of that layer (denoted by βi in
figure 1 for each layer i), and the weights of a layer are parameters with which the values
of the previous layer are multiplied (denoted by Ωi in 1 for each layer i).

A common choice for activation function is the ReLU function, defined as follows:

a[z] = ReLU [z] =

{
0, if z < 0,

z, if z ≥ 0.
(3)

The layers apart from the input and the output layer are called hidden layers. The
network depicted in 1[4] for example has three hidden layers. A neural network that has
one hidden layer is called a shallow network. A network with more than one hidden layer
is called a deep neural network. Each layer has a number of nodes. For example, the first
layer in figure 1 has three nodes and the first hidden layer has four nodes. The number of
nodes of the input layer is denoted by Di, the number of nodes of the hidden layers are
denoted by Dj for each hidden layer j, and the number of nodes of the output layer is
denoted by Do.

The width of a neural network is the number of hidden units in each layer, the depth
is the number of hidden layers, and the capacity is the total number of hidden units.

The number of layers of a neural network, denoted by K, and the number of hidden
units in each layer are hyperparameters, since they are chosen before we learn the model
parameters.

A neural network with K layers and input data x can be represented as:

h1 = a[β0 +Ω0x]

h2 = a[β1 +Ω1h1]

h3 = a[β2 +Ω2h2]

...
hK = a[βK−1 +ΩK−1hK−1]

ynet = βK +ΩKhK ,

(4)

where hj denotes the values of the nodes of hidden layer j and ynet denotes the network
output.

The parameters ϕ = {βk,Ωk}Kk=0 determine the particular outcome of the model. We
can also write (4) as a single function:

y = βK +ΩKa[βK−1 +ΩK−1a[...β2 +Ω2a[β1 +Ω1a[β0 +Ω0x]]...]]. (5)

A neural network is trained by repeating the following two steps:

1. compute the derivatives (gradient) of the loss with respect to the parameters,

2. adjust the parameters based on the gradient to decrease the loss.

After many iterations, we aim to converge to a minimum of the loss function.

2.2 Gradient descent

To train a neural network, an optimization algorithm is used to find parameters ϕ̂ as
described in equation (1). We initialize the parameters experimentally and adjust them

5

repeatedly in such a way that the loss decreases.

One way to adjust the parameters is to use the gradient descent algorithm, which
is defined as follows: Start with initial parameters ϕ = [ϕ0, ϕ1, ..., ϕN]T and iterate the
following two steps:

1. compute the gradient of the loss with respect to the parameters:

∇L[ϕ] =
[
∂L

∂ϕ0
,
∂L

∂ϕ1
, . . . ,

∂L

∂ϕN

]T
, (6)

2. update the parameters according to the rule:

ϕ← ϕ− α∇L[ϕ], (7)

where the positive scalar α, called the learning rate, determines the magnitude of the
change.

The gradient of the loss function is computed at the current position and indicates the
direction of steepest ascent. So with gradient descent, we move a small distance in the
direction of steepest descent. At the minimum of the loss function, the gradient will be
zero, and the parameters will stop changing.

For n training samples, the gradient of the loss function with respect to its parameters
can be computed by summing up the gradient for each data sample:

∇L[ϕ] =
n∑

i=1

∇li[ϕ], (8)

where li denotes the loss with respect to one data sample:

li = (f [xi,ϕ]− yi)
2. (9)

Loss functions for linear regression problems always have a single well-defined global
minimum. Since they are convex, this minimum is reached with gradient descent. Loss
functions for most nonlinear models, including both shallow and deep networks, are non-
convex. Which means that we may end up at local minima, or at a saddle point. With
gradient descent, the final destination is entirely determined by the starting point.

In the appendix, section 7.1, we explain the backpropagation algorithm, which is used
to calculate the gradient of the loss function for more complex neural network. This study
focusses on shallow diagonal linear neural networks, for which the computation of the
gradient is straightforward, so the backpropagation algorithm is not needed. However, it
is explained in the appendix if the reader wants to extend this research to more complex
neural networks.

2.3 Gradient flow

When we perform gradient descent, we apply the parameter update rule:

ϕt+1 = ϕt − α∇L[ϕ], (10)

where ϕt represents the parameters at time t and α is the learning rate. For the case of
the linear regression model, the loss function is convex, and so we are guaranteed to reach
the global minimum eventually if the learning rate is sufficiently small.

6

If we use an infinitesimally small learning rate, α→ 0, we get:

ϕt+1 − ϕt

α
= −∇L[ϕ], (11)

which can be approximated by:

dϕ

dt
= −∇L[ϕ]. (gradient flow)

This ODE is an example of gradient flow and tells us how the parameters change over time
in the limit of α→ 0.

Looking at this equation, we see that for zeros of the gradient of the loss function,
the parameters do not change in time. This means that for a non-convex loss function,
equilibrium points, ϕ, that do not correspond to the global minimum of the loss function,
delay the parameter optimization, since dϕ

dt = 0. This results in a constant loss function for
the time spend in the neighbourhood of these saddle points. Only after many iterations,
we may escape the neighbourhood of these saddle points. It has been observed that if the
parameters of the network are initialized small, the loss function is piecewise constant with
respect to the time [2], which means that eventually we will escape the neighbourhood of a
saddle point. Our goal in this report is to locate these points and analyse the behaviour of
the parameter optimization in the region around these points. This behaviour of a neural
network that has a piecewise constant loss function is called the saddle-to-saddle behaviour
of a neural network.

3 Methodology

In this section, we introduce the problem setup, which we use to look into the saddle-
to-saddle behaviour of a particular type of neural network, namely diagonal linear neural
networks. These networks are relatively simple, but they are ideal surrogate models to gain
a deeper understanding of complex phenomenons such as the saddle-to-saddle dynamics
[2]. The problem set-up discussed in this section is the same as the experimental setup
described in section 2.1 and appendix A of [2].

We study a linear regression problem, with n data samples, such that xi ∈ Rd and
yi ∈ R for every sample i ∈ [0, n]. We denote x ∈ Rd×n as the input and y ∈ Rn as
the output data. The neural network maps the input x to the linear function px, that is,
x 7→ ⟨p, x⟩. We use the quadratic loss for the parameter optimization:

L(p) =
1

2n

n∑
i=1

(⟨p, xi⟩ − yi)
2, (12)

where xi, yi are the input and output of training sample i. This loss function is convex,
so a well-defined global minimum can be found with the gradient descent algorithm, as
mentioned in section 2.2.

To study ODE (gradient flow) a 2-layer linear neural network of width d is considered
as shown in figure 2, where diag(v) ∈ Rd×d, for v ∈ Rd, are the inner weights and u ∈ Rd

are the outer weights. The activation function is the identity function. The input vector
x ∈ Rd is mapped to an output ynet ∈ R, such that ynet = ⟨u, diag(v)x⟩. This corresponds
to p = u⊙ v, where ⊙ denotes elementwise multiplication.

The quadratic loss function is described as follows:

F (u, v) =
1

2n

n∑
i=1

(⟨u, diag(v)xi⟩ − yi)
2, (13)

7

Figure 2: An example of a 2-layer diagonal neural network with width d = 4,
inner weights v ∈ R4 and outer weights u ∈ R4. ([3] slide 9)

where xi, yi are the input and output data of a training sample i. This function is minimized
by applying the gradient descent algorithm with a fixed learning rate denoted by α.

Note that the loss function F (u, v) is non-convex, unlike the loss function L(p), so we
may not end up at a global minimum, when we apply the gradient descent method to
F (u, v).

Proposition 1 in [2] section 2.1 states that the saddles points of F correspond to sparse
vectors that minimize L over its non-zero coordinates. The goal is to determine these
saddles points of F and study the influence of these points on the parameter optimization.
Note that these saddle points of F correspond to equilibrium points of (gradient flow).

The initialization of u and v, and therefore also, p is discussed in section 3.1. The data
samples are generated as described in appendix A of [2]: yi = ⟨xi, p∗⟩ for every sample i,
where xi = N (0, H) for the identity covariance matrix H, and p∗ ∈ Rd is a global minimum
of the loss function.

3.1 Weight initialization

As we are interested in the saddle-to-saddle behaviour of linear neural networks in the
limit of vanishing initialization, we initialize the weights of our neural network as follows
with small initialization scale γ:

v0 = 0 ∈ Rd, u0 =
√
2γ1 ∈ Rd

>0,

which results in p0 = 0 ∈ Rd independently of u0. The limit γ → 0 is taken to approach a
zero weight initialization.

This initialization leads to a zero gradient of the loss function at time t = 0, which
means that the parameters do not change in time. That is why many iterations of the
gradient descent algorithm are needed for the parameters to change significantly. The
authors of [2] ’speed up’ time in the neighbourhood of the saddle points of the loss function
by the bijection t → ln(1γ)t. This function that accelerates time is denoted as t̃γ(t). The
accelerated time defines the learning rate of the gradient descent method as ln(1γ)α in
the neighbourhood of the saddle points. Outside this neighbourhood, the time is not
accelerated, so the learning rate is defined by α. Using this accelerated time, we escape

8

these saddle points of the loss function, such that we can find a global minimum solution,
p∗γ (γ is written in subscript to emphasize the dependency of p on γ).

The authors of [2] show in section 2.2 that in the limit of γ → 0, p∗γ converges to the
minimum l1-norm solution

p∗l1 = argminyi=⟨xi,p⟩∥p∥1. (14)

The l1-norm of a vector is the sum of the absolute value of the vector’s elements, i.e.,
∥p∥1 =

∑d
j=1 |pi|.

In the next sections, we will locate this minimum solution and look at the equilibrium
points visited before we arrived at this solution, for several shallow diagonal linear networks.

4 Analytical analysis 2-layer linear neural network

In this section, we look at simple shallow diagonal linear neural networks and analyse
the behaviour of (gradient flow) around its equilibria by computing these points and the
linearization of (gradient flow) analytically.

4.1 Case d = 1 and n = 1

For simplicity, we first look at the case n = d = 1, and compute the equilibrium points
of (gradient flow) analytically to understand how they are computed and how many such
points exists. We have that u, v, x, p, y ∈ R and the weights are ϕ = [v, u]T , such that
p = uv. We assume that x, y are non-zero. The loss function is defined as

F (u, v) =
1

2
(uvx− y)2, (15)

and (gradient flow) can be written as[
dv
dt
du
dt

]
= −∇F (u, v) =

[
−(uvx− y)ux
−(uvx− y)vx

]
=

[
−u2vx2 + yux
−uv2x2 + yvx

]
. (16)

This is a nonlinear system of differential equations, which is autonomous.
An autonomous, non-linear system of differential equations can be analysed using its

linearization at the equilibria. For this, we compute the Jacobian of −∇F (u, v) and sub-
stitute the equilibrium points to define their stability.

Equilibrium points of system (16) are points, ϕ, such that the right-hand side is the
zero vector, so we need to find the zeros of −∇F (u, v).

It can be seen that [v, u] = [0, 0] is an equilibrium point, which corresponds to p = 0.
If we require v ̸= 0, u = 0, [v, u] is an equilibrium point if,

yvx = 0

The only solution of this equation is v = 0, i.e., the trivial solution [0, 0]. For a non-trivial
solution, we require u ̸= 0, v ̸= 0. In this case [v, u] is an equilibrium point if it satisfies

uvx− y = 0

That is u = y
vx , ϕ = [v, y

vx]
T is an equilibrium point of (16).

9

For the linearization of (16), we compute the Jacobian of −∇F (u, v) as follows,

J(u, v) =

[
−u2x2 −2uvx2 + yx

−2uvx2 + yx −v2x2
]
. (17)

Substituting ϕ = [0, 0]T yields,

J(0, 0) =

[
0 yx
yx 0

]
. (18)

Its eigenvalues are −xy and xy with multiplicity 1, and eigenvectors [−1, 1]T and [1, 1]T

respectively. Therefore, we can conclude that ϕ = [0, 0]T is a saddle point of −∇F (u, v).
In the neighbourhood of ϕ = [0, 0]T the general solution to (gradient flow) can be written
as,

ϕ(t) = C1e
−xyt

[
−1
1

]
+ C2e

xyt

[
1
1

]
, (19)

where C1 and C2 are arbitrary constants. Now that we determined this general solution,
we can predict the direction of the jump from the saddle point ϕ = [0, 0]T . If xy > 0 we
expect the jump to be linearly in the direction of [1, 1]T . That is, as t increases, we expect
to jump to a point, ϕ, for which v = u. If xy < 0 we expect the jump to be linearly in the
direction of [−1, 1]T . That is, as t increases, we expect to jump to a point, ϕ, for which
−v = u.

Substituting ϕ = [v, y
vx]

T in the Jacobian yields,

J
(y

vx
, v
)
=

[
−y2

v2
yx

yx −v2x2

]
. (20)

Its eigenvalues are 0 and −v4x2+y2

v2
with multiplicity 1, and eigenvectors [−v2x

y , 1]T and

[v
2x
y , 1]T respectively. To define the stability of ϕ = [v, y

vx]
T , we use Lyapunov’s Theorem.

The loss function F (u(t), v(t)) is continuously differentiable and positive definite on R2d,
with its minimum at ϕ = [v, y

vx]
T . It follows that,

d

dt
F (u(t), v(t)) =

∂F

∂u

du

dt
+

∂F

∂v

dv

dt
= (uvx− y)vx · −(uvx− y)vx+ (uvx− y)ux · −(uvx− y)ux

= −((uvx− y)vx)2 − ((uvx− y)ux)2

< 0,

(21)

for ϕ ̸= [v, y
vx]

T . So d
dtF (u(t), v(t)) is negative definite, which means that ϕ = [v, y

vx]
T is

an asymptotically stable minimizer of F (u, v).

4.2 Case d=1 and n> 1

Now that we have looked at the simple case with one data sample, we extend it to multiple,
n, samples. The loss function then becomes

F (u, v) =
1

2n

n∑
i=1

(uvxi − yi)
2, (22)

10

and (gradient flow) can be written as,[
dv
dt
du
dt

]
= −∇F (u, v) =

1

2n

n∑
i=1

[
−(uvxi − yi)uxi
−(uvxi − yi)vxi

]
. (23)

Next, we define equilibrium points of (23). It can be seen that ϕ = [0, 0]T is an
equilibrium point and that for a non-trivial point v ̸= 0 and u ̸= 0. In this case, [v, u] is
an equilibrium point if it satisfies

1

2n

n∑
i=1

(uvxi − yi) = 0

That is u = yi
vxi

for every sample i. So ϕ =
∑n

i=1[v,
yi
vxi

]T , for every sample i, is an equi-
librium solution of (23).

For the linearization of (23), we use the Jacobian computed for the case n = 1. We
compute this Jacobian for every data sample and sum them up to linearize the ODE for
multiple data points. That is,

J(u, v) =
1

2n

n∑
i=1

Ji(u, v) =
1

2n

n∑
i=1

[
−u2x2i −2uvx2i + yixi

−2uvx2i + yixi −v2x2i

]
. (24)

Substituting the equilibrium point ϕ = [0, 0]T yields,

J(0, 0) =
1

2n

n∑
i=1

Ji(0, 0) =
1

2n

n∑
i=1

[
0 yixi

yixi 0

]
=

[
0 1

2n

∑n
i=1 yixi

1
2n

∑n
i=1 yixi 0

]
.

(25)

Its eigenvalues are λ1 = − 1
2n

∑n
i=1 xiyi and λ2 = 1

2n

∑n
i=1 xiyi with multiplicity 1, and

eigenvectors [−1, 1]T and [1, 1]T respectively. Therefore, ϕ = [0, 0]T is a saddle point of
network with d = 1 and multiple data samples. In the neighbourhood of ϕ = [0, 0]T the
general solution to (gradient flow) can be written as,

ϕ(t) = C1e
λ1t

[
−1
1

]
+ C2e

λ2t

[
1
1

]
, (26)

where C1 and C2 are arbitrary constants. Now that we determined this general solution, we
can predict the direction of the jump from the saddle point ϕ = [0, 0]T . If 1

2n

∑n
i=1 xiyi > 0

we expect the jump to be linearly in the direction of [1, 1]T . That is, as t increases, we
expect to jump to a point, ϕ, for which v = u ̸= 0. If 1

2n

∑n
i=1 xiyi < 0 we expect the

jump to be linearly in the direction of [−1, 1]T . That is, as t increases, we expect to jump
to a point, ϕ, for which −v = u ̸= 0.

Substituting the equilibrium point ϕ =
∑n

i=1[v,
yi
vxi

]T into the Jacobian yields,

J(u, v) =
1

2n

n∑
i=1

Ji(
yi
vxi

, v) =
1

2n

n∑
i=1

[
−y2i

v2
yixi

yixi −v2x2i

]
(27)

=

[
− 1

2n

∑n
i=1

y2i
v2

1
2n

∑n
i=1 yixi

1
2n

∑n
i=1 yixi −

1
2n

∑n
i=1 v

2x2i

]
. (28)

11

The computation of the eigenvalues of this matrix gets very complicated once we increase
n. Therefore, we look into the numerical computation of the values of this matrix in the
next section to be able to classify this equilibrium point.

In the appendix, section 7.2, we look at a shallow diagonal linear neural network with
d = 2 and compute its equilibrium points.

4.3 General case

For a shallow diagonal linear network with n data samples and width d, the network is
represented by y ∈ Rn, x ∈ Rd×n and u, v, p ∈ Rd, such that ϕ = [v, u]T , p = u ⊙ v and
the loss function is written as:

F (u, v) =
1

2n
(⟨u, v ⊙ x⟩ − y)2. (29)

ODE (gradient flow) can be written as:

dv1
dt
...

dvd
dt
du1
dt
...

dud
dt


= − 1

2n

n∑
i=1



(u1v1x1,i + u2v2x2,i + · · ·+ unvnxn,i − y)u1x1,i
...

(u1v1x1,i + u2v2x2,i + · · ·+ unvnxn,i − y)udx2
(u1v1x1,i + u2v2x2,i + · · ·+ unvnxn,i − y)v1x1,i

...
(u1v1x1,i + u2v2x2,i + · · ·+ unvnxn,i − y)vdx2,i


, (30)

where xj,i denotes element j of the ith sample vector x.
It can be seen that ϕ = 0 is a trivial equilibrium point of (30), which corresponds to

p = 0. It can also be seen that, similar to the previous cases we analysed, a non-trivial
equilibrium point requires uj ̸= 0 and vj ̸= 0, which correspond to pj ̸= 0, for at least one
value j ∈ [0, d].

5 Numerical analysis 2-layer linear neural network

Now that we have analysed the ODE (gradient flow) analytically for simple neural net-
works, we look into the numerical analysis of these networks to compare our results. Fur-
thermore, we look at neural networks with a higher width that use more data points and
analyse the behaviour of (gradient flow) around the equilibria by looking at its lineariza-
tion.

This section uses numerical results which are made by implementation of a shallow
diagonal linear neural network in the programming language Python.

5.1 Implementation shallow diagonal linear neural network

A shallow diagonal linear neural network is implemented, for which the width, the number
of data points as well as the step size of the gradient descent method and the weight
initialization can be varied with.

First, all hyperparameters are set. These are:

• d, the width of the input and hidden layer,

• T , number of iterations,

• α, step size of gradient descent algorithm,

12

• n, number of data points,

• γ, weight initialization scale,

• margin, threshold for the size of ∇F (u, v).

Next, the data points are generated as described in section 3. We set a seed, such that
we always get the same generated data points. The weights of the network are initialized
according to section 3.1. Algorithm 1 describes the whole implementation, where next to
the loss of every iteration also the gradient is computed, and which is used in the gradient
descent step. If the gradient in one iteration is sufficiently small (maximum element smaller
than the threshold), the weights corresponding to that iteration become our estimate of
the equilibrium point. The exact value of this point is computed by solving for zeros of the
gradient with our estimation. This is done by the scipy.optimize.root function in Python
from the library Scipy. This function takes as input a system of equations that we need to
find the roots of and an initial guess of the solution. It outputs the values of the variables
that satisfy the system of equations and are close to the initial guess. Once we have
computed this equilibrium point, we compute the Jacobian of ∇F (u, v) and substitute
the equilibrium point to define its stability. Once the gradient surpasses the threshold,
the weights change and we ’move’ towards another zero of ∇F (u, v). The moment the
gradient gets smaller again, we have arrived at this point, and we repeat the process of
computing this equilibrium point. In algorithm 1 the size of the gradient is kept track
of by the boolean plateau. If the gradient is small and plateau is true, we solve for the
equilibrium point. Plateau is set to false in this case, such that we know not to solve for
the equilibrium point again if the weights did not change. Once the gradient surpasses
the threshold, boolean plateau is set to true, so that we know to solve for the equilibrium
point once the gradient gets small again. Note that the accelerated time as described in
section 3.1 is not implemented.

The loss function is plotted against the number of iterations as well as the values of the
elements of p. The equilibrium points as well as the eigenvalues and eigenvectors of the
linearization around these equilibrium points are printed. Furthermore, we keep track of
the iteration at which the maximum element of the gradient is less than the margin, that
is, the iteration at which we arrive at a plateau.

13

Algorithm 1 Computation equilibrium points
Set hyperparameters
Generate data points
Initialize weights
Compute network output
Compute initial loss value
plateau ← True
for t ← 1, T do

Compute current values of neural network
Compute gradient, ∇F (u, v)
if max (∇F (u, v)) > margin then

plateau ← True
else if max (∇F (u, v)) ≤ margin and plateau == True then

plateau ← False
Compute zero of ∇F (u, v) using ϕt as estimation
Compute the Jacobian of∇F (u, v) and substitute the computed equilibrium point
Compute eigenvalues and eigenvectors of the Jacobian

end if
Update weights according to gradient descent step
Compute the loss value
Compute pt = ut ⊙ vt

end for

5.2 Comparison analytical analysis

5.2.1 Case d=1 and n=1

First, we analyse the case n = 1 and d = 1 and check our results with the analytical
analysis explained in section 4.1. Table 1 shows the values of the hyperparameters and
the generated data. As explained in section 3.1 the weights are initialized as v0 = 0 and
u0 =

√
2γ1 = 1.4142 · 10−1001.

T α n γ margin p∗ x y

1000000 0.001 1 10−100 10−4 0.7153 1.3316 0.9525

Table 1: Values hyperparameters and generated data for a 2-layer diagonal linear
neural network n=d=1.

Figure 3 shows the loss function over time as well as the values of p over time. Indeed, we
observe that for small weight initialization, the loss function is piecewise constant. The
weights contributing to the plateaus in the loss function are computed, and the results are
as follows.

The first equilibrium point is ϕ = [v, u]T = [0, 0]T . The Jacobian at this point is,

J(0, 0) ≈
[

0 1.2683
1.26836 0

]
,

which has eigenvalues and corresponding eigenvectors,{
eigenvalue − 1.2683, with eigenvector [−0.7071, 0.7071]T ,
eigenvalue 1.2683, with eigenvector [−0.7071,−0.7071]T .

14

Figure 3: 2-layer diagonal neural network n=d=1, Left: the loss function over
time, Right: the coordinates of p over time.

The second point is ϕ = [v, u]T = [0.8457, 0.8457]T , with Jacobian,

J(0.8457, 0.8457) ≈
[
−1.2683 −1.2683
−1.2683 −1.2683

]
,

which has eigenvalues and corresponding eigenvectors,{
eigenvalue 0, with eigenvector [0.7071,−0.7071]T ,
eigenvalue − 2.5366, with eigenvector [0.7071, 0.7071]T .

These results agree with our analysis is section 4.1. The equilibrium points are [0, 0]T

and [v, y
vx]

T , where v = 0.8457 in this case. The equilibrium point ϕ = [0, 0]T is indeed
a saddle point, since the eigenvalues are of different sign. The point ϕ = [v, y

vx]
T is

indeed an asymptotically stable minimizer, since the eigenvalues are nonpositive and p∗ =
uv = 0.7153. So we can conclude that the loss function moves from a saddle point to a
minimizer. Furthermore, it is interesting to note that u = v for both equilibrium points
which causes the Jacobian to be symmetric, so its eigenvalues are real. In section 4.1
we characterized the direction of the jump from ϕ = [0, 0]T . The results agree with this
jump direction determined in the analytical analysis, since for this example xy > 0 and we
jumped linearly in the direction of [1, 1]T from [0, 0]T .

5.2.2 Case d=1 and n=4

We analyse the case for more than one data point, by running the algorithm for a value
of n > 1. The hyperparameters are the same as the previous case, table 1. Table 2 shows
the values of the generated data.

p∗ 0.6213
x [1.3316, 0.7153,−1.5454,−0.0084]T
y [0.8274, 0.4444,−0.9602, 0.0052]T

Table 2: Generated data for a 2-layer diagonal linear neural network n= 4 d=1.

15

Figure 4: 2-layer diagonal neural network n=4 d=1, Left: the loss function over
time, Right: the coordinates of p over time.

Figure 4 shows the loss function for the case of 4 data points.
The first point equilibrium point is ϕ = [0, 0]T , with Jacobian

J(0, 0) ≈
[

0 1.2683
1.2683 0

]
,

which has eigenvalues and corresponding eigenvectors{
eigenvalue − 2.0821, with eigenvector [−0.7071, 0.7071]T ,
eigenvalue 2.0821, with eigenvector [−0.7071,−0.7071]T .

The second equilibrium point is ϕ = [0.7882, 0.7882]T , with Jacobian,

J(0.7882, 0.7882) ≈
[
−2.0821 −2.0821
−2.0821 −2.0821

]
,

which has eigenvalues and corresponding eigenvectors,{
eigenvalue 0, with eigenvector [0.7071,−0.7071]T ,
eigenvalue − 4.1642, with eigenvector [−0.7071,−0.7071]T .

These results can also be compared to our analytical analysis. Indeed, the equilibrium
point ϕ = [0, 0]T is a saddle point and ϕ = [v,

∑n
i=1

yi
vxi

]T is an asymptotically stable
minimizer, since the eigenvalues are nonpostive and p∗ = uv = 0.6213. Furthermore, it is
also interesting to note that for different values of n, u = v. The results agree with our
characterization of the jump direction in the analytical analysis, section 4.2, since for this
example 1

2n

∑n
i=1 xiyi = 0.3629 > 0 and we jumped linearly in the direction of [1, 1]T from

[0, 0]T .
In the appendix, section 7.3, we compare the results of our implementation for a diag-

onal linear neural network with d = 2 and n = 1, with the analytical analysis explained in
7.2.

16

5.3 Neural networks with higher width

In this section, we look at wider 2-layer diagonal linear networks with more data points,
for which it was complicated to calculate and classify the equilibrium points analytically.

For several cases, we vary with the width of the layers, the number of data points, and
give the resulting loss function, equilibrium points and the type of these points.

5.3.1 Case d=2 and n=2

Figure 5 shows the loss function as well as the coordinates of p, for hyperparameters shown
in table 3 and generated data shown in table 4.

T α d n γ margin
500000 0.01 2 2 10−50 10−4

Table 3: Values hyperparameters for a 2-layer diagonal linear neural network n=2
d=2.

p∗ [0.6213,−0.7201]T
x [[1.3316, 0.7153]T , [−1, 5454,−0.0084]T]
y [0.3123,−0.9542]T

Table 4: Generated data for a 2-layer diagonal linear neural network n= 2 d=2.

Figure 5: 2-layer diagonal neural network n=2 d=2, Left: the loss function over
time, Right: the coordinates of p over time.

We observe that the loss function is a piecewise constant function with 3 plateaus.
Table 5 shows the weights contributing to these plateaus, the type of these equilibrium
points and the iteration at which the maximum element of the gradient is less than the
margin for each plateau.

In the jump from the first saddle to the second, only the first coordinate of p gets
activated. In the jump from the second saddle to the minimum, also the second coordinate
gets activated. Also note that |u| = |v| for all equilibrium points, similar to our observation

17

Equilibrium Point ϕ Type Iteration
[0, 0, 0, 0]T Saddle 1

[0.6740, 0, 0.6740, 0]T Saddle 12693
[0.7882,−0.8486, 0.7882, 0.8486]T Minimizer 140737

Table 5: Classification of equilibrium points and the iteration at which we arrive
at the equilibrium points for a 2-layer diagonal linear neural network n=2 d=2.

in the previous section.

Table 6 shows the eigenvectors corresponding to the largest positive eigenvalue at each
saddle point equilibrium point. We observe that for the first jump, from p0 to p1, the
expected direction corresponds linearly with the actual direction of the jump. That is,
if we move a distance, c, in the direction of the eigenvector corresponding to the largest
positive eigenvalue, we arrive at the next saddle point, pi+1 = pi + csi for both i = 1, 2 (in
this case, c = 0.45

0.50 = 0.9). The linearization at p1 has two positive eigenvalues of almost
the same value:{

eigenvalue 0.1948, with eigenvector [−0.50, 0]T ,
eigenvalue 0.2082, with eigenvector [0,−0.50]T .

(31)

This means that both coordinates will change value in the jump from p1 to p∗, only the
second one will change more than the first. This corresponds with our result.

Equilibrium point ϕi = [vi, ui]
T ,

pi = ui ⊙ vi
Eigenvector si

p0 = [0, 0]T s0 = [0.50, 0]T

p1 = [0.45, 0]T s1 = [0, 0.50]T

p∗ = [0.62,−0.72]T -

Table 6: The eigenvector, si, corresponding to the largest positive eigenvalue at
saddle point [vi, ui], which corresponds to pi = ui ⊙ vi for a 2-layer diagonal linear
neural network n = 2 d = 2.

5.3.2 Case d=7 and n=5

Figure 6 shows the resulting plot. Table 7 shows the values of the hyperparameters and
table 8 shows the generated data.

T α d n γ margin
500000 0.001 7 5 10−100 10−4

Table 7: Values hyperparameters for a 2-layer diagonal linear neural network n=5
d=7.

We observe in figure 6 that the loss function has 5 plateaus. Table 9 shows the weights
contributing to these plateaus, the type of these equilibrium points and the iteration at
which the maximum element of the gradient is less than the margin for each plateau.
Looking at the coordinates that get activated with each jump from an equilibrium point,
we see that first only the third coordinate gets activated. In the second jump also the fifth

18

p∗ [10, 20, 0, 0, 0, 0, 0]T

x

[[1.3316, 0.7153,−1, 5454,−0.0084, 0.6213,−0.7201, 0.2655]T ,
[0.1085, 0.0041,−0.1746, 0.4330, 1.2030,−0.9651, 1.0283]T ,
[0.2286, 0.4451,−1.1366, 0.1351, 1.4845,−1.0798,−1.9777]T ,
[−1.7434, 0.2661, 2.3850, 1.1237, 1.6726, 0.0991, 1.3980]T ,

[−0.2712, 0.6132,−0.2673,−0.5493, 0.1327,−0.4761, 1.3085]T]
y [27.6214, 1.1713, 11.1891,−12.1123, 9.5516]T

Table 8: Generated data for a 2-layer diagonal linear neural network n= 5 d=7.

Figure 6: 2-layer diagonal neural network n=5 d=7, Left: the loss function over
time, Right: the coordinates of p over time.

Equilibrium Point ϕ Type Iteration
[0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0]T

Saddle 1

[0, 0,−3.0318, 0, 0, 0, 0
0, 0, 3.0318, 0, 0, 0, 0]T

Saddle 13798

[0, 0,−3.1054, 0, 1.9762, 0, 0
0, 0, 3.1055, 0, 1.9762, 0, 0]T

Saddle 50388

[0, 4.0706,−2.6823, 0, 0, 0, 0
0, 4.0706, 2.6823, 0, 0, 0, 0]T

Saddle 82615

[3.1623, 4.4720,−0.0012, 0, 0, 0, 0
3.1623, 4.4720, 0.0012, 0, 0, 0, 0]T

Minimizer 572728

Table 9: Classification of equilibrium points and the iteration at which we arrive
at the equilibrium points for a 2-layer diagonal linear neural network n=5 d=7.

coordinate gets activated, but at the third jump this same coordinate gets deactivated
again. After the last jump the first and second coordinate are active, and it looks like the
third coordinate gets deactivated in this last jump, but if we zoom in we see that it is still
active, see figure 7.

Five plateaus are seen in figure 6, but only four are recognized by our algorithm with
the chosen hyperparameters. The last plateau, around iteration 150000, is not calculated,
so cannot be classified. A reason for this could be that the transition is not sharp enough,

19

Figure 7: 2-layer diagonal neural network n=5 d=7, Left: the loss function over
time, Right: the coordinates of p over time zoomed in at the fifth plateau.

i.e., the gradient does not surpass the threshold. Therefore, increasing the margin to 10−3

has been tried, but also in this case, the equilibrium point did not get computed. However,
when we increased the number of iterations significantly, we are able to find the minimizer.
With T set to 1000000, the last equilibrium point is classified as an asymptotically stable
minimizer, see table 9. So the loss function jumps from four saddles to a minimizer at
which the first, second and third coordinate are active. It is also observed that |u| = |v|
for all equilibrium points, similar to the previous cases.

Table 10 shows the eigenvectors corresponding to the largest positive eigenvalue at
each saddle point equilibrium point. We observe that only for the first two jumps, the

Equilibrium point ϕi = [vi, ui]
T ,

pi = ui ⊙ vi
Eigenvector si

p0 = 0 s0 = −0.50e3
p1 = −9.19e3 s1 = 0.50e5

p2 = −9.64e3 + 3.91e5 s2 = 0.50e7
p3 = 1.65e2 − 7.19e3 s3 = 0.50e7

p∗ = 10.00e1 + 20.00e2 -

Table 10: The eigenvector, si, corresponding to the largest positive eigenvalue at
saddle point [vi, ui], which corresponds to pi = ui ⊙ vi for a 2-layer diagonal linear
neural network n = 5 d = 7.

expected direction corresponds linearly with the actual direction of the jump. That is,
if we move a distance, c, in the direction of the eigenvector corresponding to the largest
positive eigenvalue, we arrive at the next saddle point, pi+1 = pi + csi for i = 1, 2. For
the last two jumps, the eigenvector does not correspond linearly with the direction of the
jumps.

5.4 Non-zero weight initialization

In this section, we look at the loss function in the case that the weights are not initialized
to zero. Instead of v0 = 0, we set it to the weight-initialization scale v0 = γ1.

20

d=7 and n=5
With hyperparameters T = 1000000, α = 0.01, the margin = 10−4 and, similar to the
previous case, p∗ = [10, 20, 0, 0, 0, 0, 0], we find the minimizers denoted in table 11 for
different values of γ. The loss at all these minimizers is zero.

v0 = γ1 Minimizer ϕ

γ

[
v1
u1

] [
v2
u2

] [
v3
u3

] [
v4
u4

] [
v5
u5

] [
v6
u6

] [
v7
u7

]

10−50

[
3.1621
3.1621

] [
4.4713
4.4713

] [
−0.0012
0.0012

] [
0
0

] [
0
0

] [
0
0

] [
0
0

]

1
10

[
3.1435
3.1459

] [
4.4689
4.4705

] [
−0.3655
−0.3789

] [
0.2836
0.3141

] [
−0.0108
0.0032

] [
0.3134
0.2518

] [
0.1346
0.1849

]

1
[
2.7458
3.0597

] [
4.3476
4.5327

] [
−1.1612
1.7114

] [
0.8205
1.5908

] [
−0.1777
0.1430

] [
2.0119
0.5520

] [
0.2537
1.3989

]

2
[
2.1233
3.4828

] [
4.0702
4.8180

] [
−1.1172
2.8516

] [
0.7903
2.8424

] [
−0.4516
0.4030

] [
3.8570
0.4290

] [
0.1995
2.7850

]
Table 11: The minimizers of the loss function for different values of γ, for a 2-layer
diagonal linear neural network with n = 5, d = 7, T = 1000000, α = 0.01 and the
margin = 10−4

We observe that for a small weight initialization, the minimizer is indeed a sparse
vector, unlike the minimizer for a larger weight initialization. If we increase γ further to
γ = 7 the loss function diverges. In figure 8 the loss function is shown up to iteration 300
for γ = 5. We see that we jump straight to the minimum, and the coordinates of p oscillate
during this jump, after which they converge.

21

Figure 8: 2-layer diagonal neural network n=5 d=7 γ = 5, Left: the loss function
over time, Right: the coordinates of p over time with oscillation during the first few
iterations.

6 Discussion & Conclusion

In this paper, we have looked at the saddle-to-saddle behaviour of the gradient flow in
shallow diagonal linear neural networks and how the saddle points influence the minimum
solution of the loss function found with gradient descent.

From the analytical analysis, we saw that equilibrium points of (gradient flow) are
sparse vectors and that for each equilibrium point the stability can be determined by
looking at the linearization of (gradient flow) around this point. Furthermore, we charac-
terized the jump directions for several simple diagonal linear neural networks. We checked
correctness of our implementation of a shallow diagonal linear neural network using the
results of the analytical analysis. This implementation was used to determine the equilib-
rium points of (gradient flow) for wider neural networks. We saw that the loss function
jumps from saddle points to an asymptotically stable minimizer in the case of small weight
initialization, and that at each jump, certain coordinates activate or deactivate.

One of the goals of this study was to characterize the direction of the jumps. In the
numerical analysis, we studied these directions for two examples of shallow diagonal linear
neural networks. We observed that for these examples, the direction of the first two jumps
is linear in the expected direction, that is, the direction of the eigenvectors corresponding
to the largest positive eigenvalues. However, this cannot be concluded for the other jumps.
It would be an interesting topic for further research to characterize these jumps.

Unfortunately, there was not enough time to study the jump times during this research.
It would be interesting to characterize the time at which we jump from one saddle to
another saddle or minimizer. If we can predict the time we spend at a saddle point, we
can ’speed up’ the time by the bijection described in section 3.1 in this time interval and
switch to the normal learning rate α for the times in between the saddles. Therefore, we
recommend this topic for further research.

In this study, we did not look at the saddle-to-saddle behaviour for non-linear neural
networks or more complex neural networks, which have a higher width and depth. We
recommend these studies for further exploration.

22

References

[1] Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang,
Boaz Barak, and Haofeng Zhang. SGD on Neural Networks Learns Functions of Increas-
ing Complexity. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., May 2019.

[2] Scott Pesme and Nicolas Flammarion. Saddle-to-Saddle Dynamics in Diagonal Linear
Networks, October 2023. arXiv:2304.00488 [cs, math].

[3] Scott Pesme and Nicolas Flammarion. Saddle-to-Saddle Dynamics in Diagonal Linear
Networks. Slides presentation Neurips, 2023.

[4] Simon J.D. Prince. Understanding Deep Learning. The MIT Press, December 2023.

7 Appendix

7.1 Backpropagation

This section uses chapter 7 of [4] to explain the backpropagation algorithm. Applying the
gradient descent method to the loss function of a neural network gives rise to the issue
of calculating the gradients efficiently. This is difficult since large neural networks have
millions of parameters and the derivative needs to be computed for every parameter at
every iteration of the training algorithm.

The backpropagation algorithm is an efficient method for computing all the partial
derivatives of the loss function for every parameter. It consists of a forward pass and a
backward pass. In the forward pass, we compute and store all the intermediate values of
the network and the network output. In the backward pass we calculate the derivates of
with respect to each parameter, starting at the last layer of the network, reusing previous
calculations, and we move toward the input layer.

We consider a neural network with K layers as described in equations (4). We want to
compute ∂li

∂βk
and ∂li

∂Ωk
, for the parameters ϕk = {βk,Ωk} at every layer k ∈ {0, 1, ...,K}

and for each data sample i. When we use the activation function a[·], the backpropagation
algorithm can be described in the following way.

The forward pass is defined by computing all intermediate values and the network
output:

f0 = β0 +Ω0xi, (32)
hk = a[fk−1], (33)
fk = βk +Ωkhk, (34)

for k = 1, 2, ...,K. Where fk denotes the pre-activation of layer k.
For the backward pass, we start with the derivative ∂li

∂fK
of the loss function li with

respect to the network output fK and work backward through the network:
for k = K,K − 1, ..., 1

∂li
∂βk

=
∂li
∂fk

, (35)

∂li
∂Ωk

=
∂li
∂fk

hT
k , (36)

∂li
∂fk−1

= a′[fk−1]⊙ΩT
k

∂li
∂fk

, (37)

23

where ⊙ denotes elementwise multiplication, and a′[·] is the derivative of the activation
function. Finally, we compute the derivatives with respect to the first set of biases and
weights:

∂li
∂β0

=
∂li
∂f0

, (38)

∂li
∂Ω0

=
∂li
∂f0

xT
i . (39)

We calculate these derivatives for every training example and sum them together to retrieve
the gradient for the gradient descent parameter update.

The backpropagation algorithm is efficient, since the most complicated computational
step in both the forward and backward pass is the matrix multiplication (by Ω) which
only requires additions and multiplications. However, it is not efficient in memory, since
the intermediate values in the forward pass must all be stored. This can limit the size of
the model we can train.

7.2 Analytical analysis case d = 2

For simplicity, we again look at the case n = 1 and d = 2, and compute the equilibrium
points of (gradient flow) analytically to understand how they are computed and how many
such points exists. We have that y ∈ R and x, u, v, p ∈ R2. We assume that x, y are
non-zero.

We denote the vectors x, u, v, p as:

x =

[
x1
x2

]
, v =

[
v1
v2

]
, u =

[
u1
u2

]
, p =

[
p1
p2

]
=

[
u1v1
u2v2

]
= u⊙ v,

such that the loss function is defined as follows:

F (u, v) =
1

2
(u1v1x1 + u2v2x2 − y)2. (40)

Representing the parameters of the neural network as a vector,

ϕ = [v1, v2, u1, u2]
T . (41)

ODE (gradient flow) can be written out as:
dv1
dt
dv2
dt
du1
dt
du2
dt

 =


−(u1v1x1 + u2v2x2 − y)u1x1
−(u1v1x1 + u2v2x2 − y)u2x2
−(u1v1x1 + u2v2x2 − y)v1x1
−(u1v1x1 + u2v2x2 − y)v2x2

 . (42)

The next step is to find the equilibrium points of (42). A trivial equilibrium point is,
ϕ = [0, 0, 0, 0]T , which corresponds to pi = 0, i = 1, 2.

If we require one parameter, for example u1, to have non-zero value, all elements of the
right-hand side of (42) are zero, except for the first one. Setting this equation to zero, we
get,

u1x1y1 = 0.

Since the data points are already given, the only solution is u1 = 0, which is the trivial
solution.

24

Looking at (42) it can be seen that a non-trivial equilibrium point, requires u1 and v1,
u2 and v2, or all parameters to have a non-zero value. Note that these cases correspond to
the cases p1 ̸= 0, p2 ̸= 0, and pi ̸= 0, i = 1, 2.

The first case, u1, v1 ̸= 0, reduces the equations to find the zeros of −∇F (u, v) to the
following:

−(u1v1x1 − y)u1x1 = 0,

−(u1v1x1 − y)v1x1 = 0.

The solution to this system of equations need to satisfy:

u1v1x1 = y,

which is u1 =
y

v1x1
(can also be written as v1 =

y
u1x1

).

The equilibrium point corresponding to the second case, u2, v2 ̸= 0, is derived in the
same way and is defined as, u2 = y

v2x1
(can also be written as v2 =

y
u2x1

).

For the last case, u1, u2, v1, v2 ̸= 0, substituting the weights does reduce the equations
to find the zeros of−∇F (u, v), but the solutions need to satisfy the following equation:

u1v1x1 + u2v2x2 = y.

The solution can be written in multiple ways, for example u1 =
y−u2v2x2

v1x1
.

Now that we have defined the equilibrium points of ODE (42), we define their stability
using the linearization of the ODE around these points. This requires the computation of
the Jacobian of −∇F (u, v). Afterwards, we substitute the solution in the Jacobian and
compute its eigenvalues, to define if the solution is stable or unstable.

The Jacobian of −∇F (u, v) is defined as follows:

J(u1, u2, v1, v2) = −

 u2
1x

2
1 u1u2x1x2 u1v1x

2
1 + x1q u1v2x1x2

u1u2x1x2 u2
2x

2
2 u2v1x1x2 u2v2x

2
2 + x2q

u1v1x
2
1 + x1q u2v1x1x2 v21x

2
1 v1v2x1x2

u1v2x1x2 u2v2x
2
2 + x2q v1v2x1x2 v22x

2
2

 , (43)

where q = u1v1x1 + u2v2x2 − y.
If we evaluate the Jacobian at the equilibrium points we found in the previous section,

we can classify them. The equilibrium point ϕ = [0, 0, 0, 0]T , corresponds to

J(0, 0, 0, 0) = −

 0 −x1y 0
0 0 0 −x2y
−x1y 0 0 0
0 −x2y 0 0

 , (44)

which eigenvalues are −x1y, x1y,−x2y and x2y, with eigenvectors [−1, 0, 1, 0]T , [1, 0, 1, 0]T ,
[0,−1, 0, 1]T and [0, 1, 0, 1]T respectively. We see that for every data sample the eigenvalues
will have different signs, two positive and two negative values. This means that ϕ =
[0, 0, 0, 0]T is a saddle point.

25

In the neighbourhood of ϕ = [0, 0, 0, 0]T the general solution to (gradient flow) can be
written as,

ϕ(t) = C1e
−x1yt


−1
0
1
0

+ C2e
x1yt


1
0
1
0

+ C3e
−x2yt


0
−1
0
1

+ C4e
x2yt


0
1
0
1

 , (45)

where C1, C2, C3 and C4 are arbitrary constants. Now that we determined this general
solution, we can predict the direction of the jump from the saddle point ϕ = [0, 0, 0, 0]T .
If |x1| > |x2| and x1y > 0 we expect the jump to be linearly in the direction of [1, 0, 1, 0]T .
That is, as t increases, we expect to jump to a point for which v1 = u1 ̸= 0 and v2 = u2 = 0.
If |x1| > |x2| and x1y < 0 we expect the jump to be linearly in the direction of [−1, 0, 1, 0]T .
That is, as t increases, we expect to jump to a point for which −v1 = u1 ̸= 0 and
v2 = u2 = 0. If |x1| < |x2| and x2y > 0 we expect the jump to be linearly in the direction
of [0, 1, 0, 1]T . That is, as t increases, we expect to jump to a point for which v2 = u2 ̸= 0
and v1 = u1 = 0. If |x1| < |x2| and x2y < 0 we expect the jump to be linearly in the
direction of [0,−1, 0, 1]T . That is, as t increases, we expect to jump to a point for which
−v2 = u2 ̸== 0 and v1 = u1 = 0.

The Jacobian evaluated at ϕ = [v1, 0,
y

v1x1
, 0]T , corresponds to

J
(y

v1x1
, 0, v1, 0

)
=


−y2

v2
1

0 x1y 0

0 0 0 0
x1y 0 −v21x2

1 0
0 0 0 0

 . (46)

The eigenvalues are,{
0, with multiplicity 3,

−v41x
2
1+y2

v21
, with multiplicity 1.

These eigenvalues are nonpositive. Similar to the previous section, we use Lyapunov’s
Theorem to define the stability of ϕ. The loss function F (u(t), v(t)) is continuously dif-
ferentiable and positive definite on Rd and has its minimum at ϕ = [v1, 0,

y
v1x1

, 0]T , since
F [ϕ] = 0.

For u, v ∈ Rd and n = 1,

d

dt
F (u(t), v(t)) =

d∑
i=1

∂F

∂ui

dui
dt

+

d∑
i=1

∂F

∂vi

dvi
dt

=

d∑
i=1

(u1v1x1 + u2v2x2 − y)vixi · −(u1v1x1 + u2v2x2 − y)vixi+

d∑
i=1

(u1v1x1 + u2v2x2 − y)uixi · −(u1v1x1 + u2v2x2 − y)uixi

= −
d∑

i=1

((u1v1x1 + u2v2x2 − y)vixi)
2 −

d∑
i=1

((u1v1x1 + u2v2x2 − y)uixi)
2

< 0,

(47)

26

for ϕ = [v, u]T for which (u1v1x1 + u2v2x2 − y ̸= 0. So d
dtF (u(t), v(t)) is negative defi-

nite, which means that ϕ = [v1, 0,
y

v1x1
, 0]T is an asymptotically stable minimizer of F (u, v).

The Jacobian evaluated at ϕ = [0, v2, 0,
y

v2x2
]T is,

J
(
0,

y

v2x2
, 0, v2

)
=


0 0 0 0

0 −y2

v2
2

0 x2y

0 0 0 0
0 x2y 0 −v22x2

2

 . (48)

The eigenvalues are,{
0, with multiplicity 3,

−v42x
2
2+y2

v22
, with multiplicity 1.

Using Lyapunov’s Theorem again, denoted in equation (47), we conclude that ϕ = [0, v2, 0,
y

v2x2
]T

is an asymptotically stable minimizer of F (u, v).

The Jacobian at ϕ = [v1, v2,
y−u2v2x2

v1x1
, u2]

T is

J
(y − u2v2x2

v1x1
, u2, v1, v2

)
= −


(y−u2v2x2)

2

v2
1

u2x2(y−u2v2x2)
v1

x1(y − u2v2x2)
v2x2(y−u2v2x2)

v1
u2x2(y−u2v2x2)

v1
u2
2x

2
2 u2v1x1x2 u2v2x

2
2

x1(y − u2v2x2) u2v1x1x2 v21x
2
1 v1v2x1x2

v2x2(y−u2v2x2)
v1

u2v2x
2
2 v1v2x1x2 v22x

2
2

 .

(49)

{
0, with multiplicity 3,

− (u2v1x2)2+(u2v2x2)2−2u2v2x2y+v41x
2
1+(v1v2x2)2+y2

v21
, with multiplicity 1.

Similar to the previous cases, we can conclude, using Lyapunov’s theorem, that, ϕ =
[v1, v2,

y−u2v2x2

v1x1
, u2]

T is also an asymptotically stable minimizer of F (u, v).

7.3 Numerical analysis case d=2

We analyse the case n = 1 and d = 2 and check our results with the analytical analysis ex-
plained in section 7.2. Table 12 shows the values of the hyperparameters and the generated
data.

T α n γ margin p∗ x y

1000000 0.001 1 10−100 10−4

[
−1.5454
−0.0084

] [
1.3316
0.7153

]
-2.0638

Table 12: Values hyperparameters and generated data for a 2-layer diagonal linear
neural network n=1 d=2.

Figure 9 shows the resulting plot.
The weights contributing to the plateaus in the loss function are computed, and the

results are as follows.

27

Figure 9: 2-layer diagonal neural network n=1 d=2, Left: the loss function over
time, Right: the values of the elements of p over time.

The first equilibrium point is ϕ = [0, 0, 0, 0]T , with Jacobian 0 0 −2.7482 0
0 0 0 −1.4762

−2.7482 0 0 0
0 −1.4762 0 0

 ,

which has eigenvalues and corresponding eigenvectors,
eigenvalue − 2.7482, with eigenvector [−0.7071, 0,−0.7071, 0]T ,
eigenvalue 2.7482, with eigenvector [0.7071, 0,−0.7071, 0]T ,
eigenvalue − 1.4762, with eigenvector [0, 0.7071, 0, 0.7071]T ,

eigenvalue 1.4762, with eigenvector [0,−0.7071, 0,−0.7071]T .

The second point is ϕ = [−1.2450, 0, 1.2450, 0]T , with Jacobian−2.7482 0 2.7482 0
0 0 0 0

2.7482 0 −2.7482 0
0 0 0 0

 ,

which has eigenvalues and corresponding eigenvectors,
eigenvalue − 5.4963, with eigenvector [0.7071, 0,−0.7071, 0]T ,
eigenvalue 0, with eigenvector [0.7071, 0, 0.7071, 0]T ,

eigenvalue 0, with eigenvector [0,−0.7071, 0, 0.7071]T ,
eigenvalue 0, with eigenvector [0,−0.7071, 0,−0.7071]T .

These results agree with our analysis is section 7.2. The equilibrium points are [0, 0, 0, 0]T ,
which is a saddle point, and [v1, 0,

y
v1x1

, 0]T , which is an asymptotically stable minimizer,
p∗1 = u1v1 = −1.5454. So we can conclude that the loss function moves from a saddle point
to a minimizer, and only the first coordinate of p gets activated for these generated data
points. Furthermore, it is interesting to note that |u| = |v| for both equilibrium points,

28

which causes the Jacobian to be symmetric, so its eigenvalues are real. The results agree
with our characterization of the jump direction in the analytical analysis, 7.2, since for this
example |x1| > |x2| and x1y = −2.7482, so the jump from [0, 0, 0, 0]T should be linearly in
the direction [−1, 0, 1, 0]T , which corresponds to the actual jump direction.

29

	Introduction
	Neural networks
	Introduction to neural networks
	Gradient descent
	Gradient flow

	Methodology
	Weight initialization

	Analytical analysis 2-layer linear neural network
	Case d=1 and n=1
	Case d=1 and n>1
	General case

	Numerical analysis 2-layer linear neural network
	Implementation shallow diagonal linear neural network
	Comparison analytical analysis
	Case d=1 and n=1
	Case d=1 and n=4

	Neural networks with higher width
	Case d=2 and n=2
	Case d=7 and n=5

	Non-zero weight initialization

	Discussion & Conclusion
	Appendix
	Backpropagation
	Analytical analysis case d = 2
	Numerical analysis case d=2

