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Abstract 

 

With projections indicating that nearly 70% of the global population will reside in urban areas by 2050, 

rapid urbanization is profoundly modifying land cover with built surfaces, along with the transformation 

of the urban morphology (UM) and exacerbating the thermal environment of cities. UM constantly 

evolves in response to people’s needs and local contexts, leading to diverse building structures and 

materials. These changes significantly impact the thermal environment, making especially cities hotter than 

their surrounding areas. Given the growing risks, it is essential to study the relationship between UM and 

land surface temperature (LST). This study focuses on LST over air temperature because LST directly 

affects near-surface air temperatures and offers broader spatial coverage as it can be mapped using thermal 

infrared (TIR) data. It is more consistently available across diverse urban environments compared to 

sparse and unevenly distributed air temperature data measured by sensors on ground. Previous research 

has mainly focused on landscape metrics, spectral indices, and surface attributes’ impacts on LST. They 

have often neglected finer-scale building-level analyses which are the most important urban elements 

having influence on heat patterns. Although some studies have considered 3D aspects, comprehensive 2D 

analyses are scarce due to the underutilization of building data, particularly in European cities, despite 

better data availability. This research addresses this gap by investigating the impacts of UM on daytime 

LST during the summer period in Paris, Rotterdam, Milan, and Vienna, chosen as illustrative examples. 

Utilizing NASA’s high-resolution ECOSTRESS data, the research conducts a hotspot analysis to identify 

areas with significant temperature anomalies and understand their relationship with specific land uses. A 

comprehensive set of thirty urban morphometrics (UMMs) is measured using momepy, an open-source 

python toolkit, to study the UM patterns of these cities at the building level. Afterwards, a Random Forest 

Regression (RFR) model is applied at a grid level of 70 by 70 meters (the spatial resolution of 

ECOSTRESS) to explore the relationship between the UMMs and LST. The hotspot analysis reveals that 

most of the hotspots across all these cities are mainly business parks, industrial estates and manufacturing 

units. While the coldspots are predominantly low-density residential areas. The RFR model effectively 

captures the underlying patterns and relationships between UMMs and LST, explaining over 80% of the 

variability in LST across all cities. Key findings of the model highlight that mean height, orientation, 

alignment, building adjacency, and interbuilding-distance are the most influential UMMs across all cities. 

However, differences between cities also exist. For example, LST shows a positive correlation with mean 

building height in all cities except Paris. The patterns between orientation and LST varies, where 

Rotterdam and Milan exhibit a negative relationship, while Paris displays a contrasting pattern. Building 

adjacency and alignment demonstrated non-linear cooling effects on the urban environment across all 

cities. Lastly, the qualitative validation confirms that the variety of UMMs used in this study is both 

informative and crucial in this research field. The study outlines several implications for improving 

thermal comfort in existing as well as new urban developments across European cities. The limitation of 

the study encompasses the fact that the influence of UMMs do not demonstrate direct causality with LST 

and depend on various other factors such as building materials and wind patterns. Further research should 

aim to explore and deepen the understanding of the relatively novel UMMs used in this study, particularly 

regarding their influence on LST, as they have not been extensively explored in existing literature. 

 

Keywords: urban morphometrics, momepy, building morphology, land surface temperature 
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1 Introduction 

1.1 Background 

According to the United Nations’ revised World Urbanization Prospects, 68% of the world’s population is 

predicted to live in urban areas by 2050 (United Nations, 2018). In the context of Europe, even though 

some regions are experiencing a decrease in population, cities have become highly urbanized compared to 

other parts of the world, with large concentrations of people living in urban areas (European Commission 

et al., 2019). By 2050, it is projected that Europe’s urbanization rate will surge to around 83.7% (United 

Nations, 2018). Between 2015 and 2030, built-up areas are expected to grow by over 3%, covering 

approximately 7% of the EU’s territory by 2030 (European Commission, 2019). This may be attributed to 

factors such as rural-urban migration, economic growth, higher quality of life and better access to facilities 

(World Health Organisation, 2021).  

 

However, this urban expansion is not without consequences, particularly rising temperatures. The 

unprecedented intensification of heatwaves in urban areas of the European region has become a growing 

concern (World Health Organisation, 2021). Given the current trend of global warming, extreme heat 

patterns are going to continue unabated in near future (Guerreiro et al., 2018). According to Chrysanthou 

et al. (2014), urbanisation is responsible for a 0.0026 °C/decade increase out of the 0.179 °C/decade 

overall temperature rise in Europe. Moreover, Smid et al. (2019) estimates that the probability of 

heatwaves for 31 European capitals has increased, while in the coming decades all metropolitan cities in 

Europe will be more susceptible to higher temperatures.  

 

Thus, monitoring and understanding these temperature variations are crucial for effective climate 

adaptation strategies. Land surface temperature (LST) and air temperature are the two main indicators 

typically used to assess heat in urban areas. Meteorological monitoring stations usually measure the air 

temperature, which are few and often dispersed. They can only offer an incomplete scenario of the 

temperature differences within diverse urban areas and their surrounding regions (Huang & Wang, 2019). 

LST has the capacity to influence the near-surface air temperature within an urban atmosphere (Mutiibwa 

et al., 2015), and moderate the internal climate of the buildings (Voogt & Oke, 2003). Moreover, as 

compared to the standard air temperature measurements, daytime LST exhibits a closer relationship with 

the radiative and thermodynamic properties of the Earth’s surface (Hulley et al., 2019). Thus, most of the 

urban heat studies have relied on remotely sensed LST as a substitute for air temperature.  

 

The high urbanisation rate has profound impacts on the built environment, along with the transformation 

of the urban morphology (Zhang et al., 2019). Urban morphology (UM) provides a quantitative 

representation of a city’s physical shape, internal arrangements, and spatial structure (Liu et al., 2023). 

Depending on the people’s demands and local context (diverse building structures, materials, human 

activities), their form keeps changing, which is evident in various spatial organization patterns of urban 
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areas throughout the world (Fleischmann, et al., 2021). This constant modification of urban vertical 

landscapes, coupled with surface geometrical and physical features (Huang & Wang, 2019), largely 

undermines the thermal environment of urban areas (Geletič et al., 2019; Zhou et al., 2022).  

 

Heat-absorbing surfaces such as roads, roofs, and pavements, exhibit higher solar absorption and thermal 

retention compared to natural landscapes, leading to increased surface temperatures (Ayanlade, 2016; 

Senanayake et al., 2013). Limited vegetation cover and restricted ventilation between densely packed 

buildings can further exacerbate this effect (Huang & Wang, 2019; Mohajerani et al., 2017). Such urban 

characteristics can disturb the equilibrium of natural surface energy and radiation and make the urban 

areas relatively warmer (Kabano et al., 2021). Thus, urban heat fluctuations are observed near the city 

surfaces and approximately reach up to the average height of the buildings. These alterations in the UM 

impact the moisture, thermal, radiative, and aerodynamic attributes of the surroundings, resulting in the 

retention of heat in urban areas (Ayanlade, 2016). As a result, LST in cities is usually higher than their 

surrounding areas, which poses major sustainability challenges, especially in urbans areas (Portela et al., 

2020). Thus, the intertwining factors of rapid urbanization and changing UM can contribute to rising 

temperatures and increased heat stress in urban environments. 

 

This phenomenon has been linked to a variety of adverse effects, including growing energy demand in 

cities (Santamouris et al., 2015), urban climatic problems like untimely rainfall (Liu & Niyogi, 2020), 

increased pollution (Ulpiani, 2021), air and water quality degradation (Sabrin et al., 2020; Wang et al., 

2021), exacerbating heat stress and ozone generation in the lower atmosphere (Gabriel & Endlicher, 2011; 

Kong et al., 2021), development of several health issues in vulnerable populations (Tan et al., 2010; 

Zander et al., 2018), and biodiversity disturbances (McGlynn et al., 2019). 

 

About 27% of cities and 65% of the total urban population have been experiencing the Surface Urban 

Heat Island (SUHI) effect that could have drastic impacts on the economic sector leading to 5.6% GDP 

losses by 2100 (Estrada et al., 2017). The SUHI is measured by differencing the LST values of urban and 

rural areas (Voogt & Oke, 2003). The European Environment Agency (EEA) estimates that roughly half 

of hospitals and schools in European cities are situated on heat islands (at least 2 °C warmer than the 

regional average), which are a result of roads, pavements, and buildings absorbing solar heat and pushing 

up temperatures in built-up areas (Chamberlain & Merritt, 2023). 

 

It is evident how the European cities built over the years have largely contributed to the increasing 

temperatures in the region. As Europe’s level of urbanization continues to rise, there is a growing need to 

address the adverse effects of increasing temperatures. Given the increasing risks to different aspects 

discussed above, it becomes essential to have knowledge of three-dimensional (3D) and 2D urban forms, 

which are recognized as major factors in influencing LST (Ward et al., 2016). These factors are 

multifaceted and complex (Sandu, 2016), necessitating a comprehensive study. Moreover, it is imperative 

to explore various approaches to optimize these urban forms for mitigating future risks and implementing 

effective climate adaptation strategies (Guo et al., 2022; Peng et al., 2021).  

 

This research primarily focuses on exploring the relationships between UM and LST using Urban 

Morphometrics (UMMs) and Machine Learning (ML) techniques. By examining a diverse sample of four 

European cities—Paris, Rotterdam, Milan, and Vienna—this study aims to uncover the underlying factors 

and potential relationships that contribute to variations in LST within and across these cities. 

Understanding these relationships is crucial for identifying the key urban morphological elements that 

influence thermal environments. Findings of this study will provide valuable insights to urban planners, 

architects, and other concerned actors on how different UM configurations contribute to variations in 



ANALYZING THE IMPACTS OF URBAN MORPHOLOGY (UM) ON LAND SURFACE TEMPERATURE (LST) IN EUROPEAN CITIES 

3 

LST within and across cities and how they could be optimized strategically for the improvement of the 

thermal environment in those cities. It is also expected that the methods used in this research could be 

replicated in diverse urban settings for similar types of LST studies.  

1.2 Research gap 

Firstly, there is increased interest in understanding the influence of UM of cities on the LSTs in the 

European region. However, these types of studies have been mainly limited to study areas of Chinese 

cities (refer to Annexure I). They have more homogeneous urban layouts, with extensive high-rise 

developments and large-scale urban expansion. In contrast, European cities often exhibit a mix of historic 

cores and modern urban forms, characterized by compact city centres, intricate street layouts, and diverse 

architectural styles (European Environment Agency, 2008). These differences in UM can lead to distinct 

temperature variations within cities. This highlights the need for research tailored towards European cities 

where such studies are notably scarce. Understanding how different UM influence LST is essential for 

informed urban planning, design, and policy interventions aimed at enhancing the thermal comfort and 

sustainability of European cities. 

 

Secondly, majority of these studies have mainly concentrated on Landscape Metrics (LMs), spectral indices 

and surface attributes, but it is also important to recognize the significance of UM in the context of LST at 

a building level (Zheng et al., 2018). UM can be measured across various scales, but studies done at a finer 

scale can add more scientific insights into analysing cities (Wang et al., 2022). A more comprehensive 

understanding of UM can be achieved by analysing the specific features of buildings, plots and roads 

(Dibble et al., 2019). Among them, buildings are the most important urban elements which exert the 

greatest influence on heat patterns (Kong et al., 2022). Various studies have reviewed that building density 

and building height are a fundamental part of the UM (Labetski et al., 2023), that largely influences the 

LST (Futcher et al., 2017; Guan et al., 2021; Yang et al., 2019). They can significantly enhance solar 

radiation absorption and reduce the natural ventilation of urban areas, as a result, trapping in a substantial 

amount of heat within an urban environment. Although building morphology has been studied as a part of 

the 3D aspect in some of the past studies, including building height and volume, sky view factor, shape 

coefficient, frontal area index, and building shadow (see Table 2.1), a thorough analysis of the 2D 

characteristics account for a negligible number of studies. The primary reason for this is the 

underutilization of building data (Labetski et al., 2023; Yang et al., 2018). Moreover, a multitude of 

datasets is available, and users often encounter challenges in selecting the most suitable one for their 

analyses (Gonzales, 2023). There is still considerable scope for further research on the influence of the 2D 

and 3D aspect of UM on LST in European cities. Hence, this research uses an open-source 

morphometrics toolkit called momepy to measure UM across multiple European cities. It is relatively a 

newer method in this area of research. The toolkit includes a wide range of 2D and 3D morphometric 

characters to detect patterns of urban form. It distinguishes itself from the metrics or factors typically used 

in previous UM related-studies and based on basic urban elements such as building and streets, introduces 

a comprehensive set of spatial metrics (Fleischmann, 2019). 

 

Lastly, most of these studies have analyzed LSTs using low or medium-resolution imageries (see Annexure 

I), derived from polar-orbiting satellites such as Landsat with a resolution of 100 meters, resampled to 30 

meters, Moderate Resolution Imaging Spectroradiometer (MODIS) with a resolution of 1 kilometre and 

(ASTER) with a resolution of 90 meters. Some studies (Sobrino & Irakulis, 2020) have even used the Sea 

and Land Surface Temperature Radiometer (SLSTR) thermal bands of Sentinel-3A to extract LST which 

also has a resolution of 1 kilometre. At present, only a limited number of studies have utilized high-

resolution remote sensing imagery to study the relationship between UM and LST (Elmes et al., 2017; 
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Huang & Wang, 2019). This research utilizes NASA’s spaceborne thermal radiometer, ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST data which has a 

spatial resolution of 70 m. It has a revisit time of 1 to 5 days, which is significantly shorter compared to 

other satellites (Xiao et al., 2021), that allowed for an acquisition of larger number of images during the 

study period. 

1.3 Objectives and research questions 

The overall aim of this research is to analyze the impacts of UM on the LST on a selected diverse sample 

of four European cities using Urban Morphometrics (UMMs) and Machine Learning (ML) techniques. To 

achieve this aim, the following specific objectives have been defined. 

 

Objective 1: To analyze the spatial patterns of LST across these cities such as local extremes or hotspots 

during the summer period (June-August) of 2023. 

RQ1.1: What is the variance of daytime LSTs during the study period across the cities? 

RQ1.2: What are the locations and sizes of hot or coldspots with high or low LST values, identifiable 

through metrics such as the Getis Ord Gi*, across these four European cities during the summer of 

2023? 

 

Objective 2: To assess the UM of these cities at a building level. 

RQ2.1: How are the UM of cities in different geographic regions distinct or consistent in terms of 

morphological types and metric variations? 

RQ2.2: What spatial patterns and relationships exist between the distribution of hotspots, land uses 

and the UM characteristics observed across the cities? 

 

Objective 3: To examine the relationship between UM and LST using Random Forest Regression (RFR) 

modelling and compare the results across the cities. 

RQ3.1: How well does the regression model perform in predicting LST based on UM in each city? 

RQ3.2: What are the specific urban morphological features that contribute most significantly to LST 

variations and how does it vary across the selected cities? 

RQ3.3: Do expert insights through interviews contribute to a deeper understanding and contextual 

interpretation of the observed relationships between UM and LST? 

1.4 Thesis structure 

This thesis comprises of six chapters, excluding the introductory chapter. The subsequent chapters include 

‘Literature Review’ (Chapter 2) which provides a review of existing literature on the influence of UM on 

LSTs, and different methodologies adopted for those studies. ‘Study area and datasets’ (Chapter 3) 

introduces the study area and the datasets utilized. ‘Methodology’ (Chapter 4) outlines the methodological 

approach adopted for this research. ‘Results’ (Chapter 5) presents the experimental results obtained from 

the methodology described in Chapter 4. The discussion of these results is presented in Chapter 6, which 

summarizes the findings and implications of the research. Finally, ‘Conclusion’ (Chapter 7) serves as the 

conclusion of this research. 
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2 Literature review 

This chapter provides a review of existing literature and is divided into four main sections. 2.1 

(‘Importance of air and surface temperatures in urban planning’) discusses the significance of studying air 

and surface temperatures in the context of urban planning and the study’s focus on LST. Section 2.2 

(‘Studying LST using thermal remote sensing’) explores the role of thermal remote sensing in examining 

LST and highlights their pros and cons. Section 2.3 (‘Factors influencing LST’) focuses on various 

indicators associated with UM that have been investigated in the past to understand their influence on 

LST. Section 2.4 (‘Methods to assess factors influencing LST) discusses the past methodologies employed 

in these types of studies, and their shortcomings. 

2.1 Importance of air and surface temperatures in urban planning 

The study of air and surface temperatures hold immense significance across various domains such as 

climate change, health, infrastructure, agriculture, biodiversity, urban planning and design and many more. 

For instance, temperature monitoring is crucial for maintaining the health of vegetation, optimizing crop 

yields, and managing water resources effectively. Fluctuations in temperature can directly impact plant 

growth, pest populations, and soil moisture levels, which are vital for food security and sustainable 

farming practices (Akpenpuun et al., 2023). Studying temperatures in the infrastructure sector ensures 

material durability, enhances energy efficiency, and mitigates risks from extreme weather. This knowledge 

helps design safer, more sustainable, and adaptable infrastructure, especially in the face of climate change 

(European Commission, n.d.). In the field of urban planning and design, understanding these 

temperatures is pivotal for creating sustainable and resilient cities. Urban areas are particularly susceptible 

to the UHI effect, where densely built environments and human activities lead to higher temperatures 

compared to surrounding rural areas. As urban areas continue to expand and face the challenges of climate 

change, temperature considerations play a critical role in shaping the fabric of our communities. 

Incorporating temperature analysis into urban planning allows for the development of adaptation 

strategies to mitigate heat island effects and enhance the overall liveability of cities (Visvanathan et al., 

2024). Moreover, understanding temperature patterns enable planners to address disparities in heat 

exposure across different scales, ensuring that vulnerable communities have access to adequate cooling 

resources and green spaces (Chen, 2024). 

 

It is well established that escalating temperatures attributed to climate change pose significant risks to both 

human health and ecological systems. Understanding the spatial variations in heat exposure can be 

effectively studied using both air temperature and LST. Air temperature is primarily used for assessing 

atmospheric conditions and human comfort levels, while LST plays an important role in the near-surface 

energy balance and is typically employed in analysing surface heat patterns (Martilli et al., 2020). Due to 

significant variations in air temperature over time and space in urban areas, comprehensive data is required 

to study urban air temperatures (Kloog et al., 2014). The ability to provide detailed spatial information 
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needed to mitigate the adverse effects of urban heat is limited by the insufficient number of monitoring 

stations (Baranka et al., 2016). On the other hand, availability of LST data for such studies is quite 

consistent (Zhou et al., 2019). Satellite-based LST, known for its high spatial resolution and ease of use, is 

one of the simplest methods to analyze urban thermal environments (Han, 2023; Jothimani et al., 2021). 

Hence, understanding LST becomes particularly relevant for this study as it focuses on building 

morphology, which directly influences surface attributes affecting heat absorption and retention. 

2.2 Studying LST using thermal remote sensing 

A plethora of research has been conducted in the past investigating the causes, effects, and modelling of 

LST. Numerous advanced mathematical and physical models have been used to derive LST. These include 

Surface Energy Balance (SEB) models (Bhattacharya et al., 2022; Hu et al., 2023), Temperature-

Emmisivity Separation (TES) algorithms (Rokugawa et al., 1999; Ru et al., 2023), and Gaussian models 

(Guo et al., 2022). Moreover, various statistical and machine learning models play an important role in 

linking LST with surface attributes, which will be discussed further in Section 2.4. With the advancement 

of remote sensing technology, assessment of LST using broad detection ranges and extensive spatial 

information has become possible and more cost-efficient (Halder et al., 2021). Thermal infrared (TIR) 

imagery offers the advantage of providing a spatially continuous and time-synchronized dense grid of 

temperature data over entire cities (Steininger, 1996). This capability allows researchers to study the effects 

of both natural and human-caused alterations on surface temperatures (Jin & Dickinson, 2010). It has 

been a powerful tool used by planners and decision makers for investigating thermal challenges and 

monitor the urban environment (Shawabkeh et al., 2023; Derdouri et al., 2021; Hu & Brunsell, 2013). 

 

The utilization of thermal remote sensing to determine LST has been extensively reviewed in scholarly 

literature (Qin & Karnieli, 1999; Voogt & Oke, 2003; Weng, 2009). Rao (1972) was the pioneer in 

examining the potential of thermal footprint detection generated by urban areas. Since then, TIR data 

obtained through remote sensing have been extensively employed for the retrieval of LST (Quattrochi & 

Luvall, 1999; Weng et al., 2004). Various combinations of sensors and platforms (including satellites, 

aircraft, and ground-based systems) have been designed to collect TIR data from the Earth’s surface, 

specifically retrieving urban surface temperatures.  
 

Many TIR instruments operating within the 8-14 μm atmospheric window wavelength region have been 

deployed on various satellites since the 1960s. These instruments have been extensively utilized to produce 

a variety of LST products, spanning different spatial resolutions from regional to global scales. These 

include the National Oceanic and Atmospheric Administration (NOAA), Landsat series, MODIS and 

ASTER operating on Earth Observing System’s Terra and Aqua satellites, respectively and the SLSTR 

operating on Sentinel 3 satellite (Li et al., 2023). ASTER and MODIS can scan specific geographic 

locations twice a day, capturing temperature variations during both daytime and nighttime, facilitating 

various studies to understand diurnal patterns of LST. The ECOSTRESS instrument, launched most 

recently and currently operational aboard the International Space Station (ISS), has garnered significant 

attention due to its higher spatial resolution and lower temporal resolution compared to all the previously 

mentioned instruments (Xiao et al., 2021). 

 

Annexure I lists down several studies that have examined the spatial patterns of LST and their relation to 

various LMs, spectral indices and surface attributes in urban areas using thermal remote sensing. High-

resolution imagery, primarily acquired through airborne remote sensing, has been employed to analyse the 

thermal dynamics of urban surfaces, particularly concerning surface attributes like sky view factor 

(Heldens et al., 2013; Scarano & Mancini, 2017), or building morphological attributes (Berger et al., 2017). 
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Landsat’s TIR data has also been extensively utilized to derive LSTs in most of these studies. Li et al. 

(2011) used Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images, with a spatial resolution of 60 

meters, to retrieve LST in the Shanghai metropolitan region in China. Estoque et al. (2017) carried out a 

similar study in Bangkok, Manila and Jakarta, while Scarano & Mancini (2017) focused in Bari, Italy, both 

using Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) which has a 

resampled spatial resolution of 30 meters. Apart from these studies, Heldens et al. (2013), Huang & Wang 

(2019), Chen et al. (2020), Guo et al. (2020) and numerous others have utilized various missions of 

Landsat (7-9) to retrieve LST in their research. Scarano & Mancini (2017) also used ASTER data (spatial 

resolution of 90 meters) to conduct a comparative analysis of LST patterns, examining the impact of 

different spatial resolutions. Yang et al. (2017) utilised version 5 of EOS-Aqua-MODIS 8-day composite 

product (1 kilometre spatial resolution) to analyse the relationship between SUHI and various LMs across 

332 cities situated in various climatic zones throughout China. 

 

While thermal remote sensing offers numerous benefits for retrieving LST, it also comes with some 

shortcomings. A significant limitation arises from the 3D structure of urban surfaces, which impacts the 

effective radiometric source of the remotely sensed area. This limitation leads to incomplete coverage of 

the urban surface within the sensor’s instantaneous field of view, influenced by both sensor viewing 

geometry and surface roughness (Voogt & Oke, 2003). Consequently, a considerable portion of the urban 

surface may not be observed, impacting the accuracy of LST retrievals. Furthermore, TIR data are 

susceptible to cloud cover, which diminishes their effectiveness in areas with frequent cloud presence (Mo 

et al., 2021).  

 

Despite its limitations, thermal remote sensing remains indispensable for urban climate and environmental 

studies. Without it, assessing factors like LST and understanding urban heat dynamics would be 

significantly challenging (Weng, 2009). 

2.3 Factors influencing LST  

Previous research has associated LST with various biophysical and meteorological factors such as built-up 

areas, urban and street layouts, land use and land cover, vegetation, population, and the level of human 

activities (Weng, 2009). However, the relationship between LMs, various spectral indices or surface 

attributes and LSTs under different scenarios have been most extensively studied in the past. Table 2.1 

shows a comprehensive list of factors that have been used by various authors to analyse the impacts of 

UM on LST.  

 

LMs are a widely studied field closely associated with UM that quantifies the spatial characteristics and 

patterns of the urban landscape (Bhatti et al., 2018). This area of research underscores the significance of 

alterations in land use, the presence of impermeable surfaces, the presence of vegetation, and the influence 

of water bodies in contributing to higher LSTs. Estoque et al. (2017) used LMs such as shape and 

aggregation of patches to study the relationship between impervious surfaces and green spaces with mean 

LST in three Southeast Asian megacities. The study revealed that impervious surfaces had an LST of 

approximately 3 ºC higher as compared to green spaces. Yang et al. (2017) analysed the SUHI effect and 

its correlation with the corresponding differences in urban landscape patterns using five most common 

LMs, namely, i) Percentage of landscape (PLAND), ii) Patch Density (PD), iii) Mean Shape Index (MSI), 

iv) Shannon’s Diversity Index (SHDI), v) Contagion Index (CONTAG), and vi) Clumpiness Index (CI). 

The results showed that the correlation between the metrics and SUHI is distinct and strongly influenced 

by daily variations, seasonal fluctuations, and climatic factors. Similarly, Zhang et al. (2022) employed a 
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five class-level and four landscape-level metrics to analyse the spatial patterns of different levels of 

impervious surface density on the UHI effect using Moran’s I analysis in a Chinese city. 

 

Table 2.1 Summary of 2D/3D metrics used by various authors to analyse the impacts of UM on LST (Source: 
Author, 2023) 

 
 

Few studies (Logan et al., 2020; Molina-Gómez et al., 2022; Yao et al., 2022) have also used spectral 

indices such as Normalized Difference Vegetation or Built-up Index (NDV/BI) and Normalized 

Difference Impervious Surface Index (NDISI) to study how configurations and patterns of landscape can 

influence the SUHI effect. These studies have incorporated various statistical methods such as Principal 

Component Analysis (PCA) and Random Forest Regression (RFR) modelling to examine their 

relationship. There are some studies (Li et al., 2011; Li et al., 2020) which have used both landscape 

patterns and spectral indices to study the influence of urban characteristics on LST for different Urban 

Functional Zones (UFZs). Guo et al. (2020) investigated the spatial variability of LST in a Chinese city 

using Moran’s I analysis and correlated it with similar landscape characteristics using the Geographically 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geographically-weighted-regression
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Mean Regression (GWR) model. Another study (Chen et al., 2020) used the same statistical approach to 

assess the interactions between urban morphological indicators (plot area and NDVI) and LST in a Dutch 

city.  

 

Cilek & Cilek (2021) established a statistical relationship between the Local Climate Zones (LCZs) and 

LST during the hot and arid summer period in Adana City, Turkey. The concept of LCZ was coined by 

Stewart & Oke (2012), which is characterized as regions of uniform surface cover (sky view factor, aspect 

ratio), structure (building height/density), thermal properties (surface albedo), and human activity (space 

heating/cooling) that span hundreds of meters to several kilometres in horizontal scale. The LCZ system 

offers a structured framework for conducting research on SUHI and provides a standardized approach for 

comparing temperature data across different urban areas worldwide. Yang et al. (2021) studied the LST 

patterns of LCZs in Shenyang, China and constructed statistical models to examine the key driver of LST 

within each LCZ. Similarly, Puche et al. (2023) have analysed the LST and air temperature patterns for 

different LCZs in the city of Milan using ANOVA. 

 

Most of these studies have determined that the primary cause of intensified LSTs in urban areas, can be 

associated with variations in land cover and structural patterns when compared to rural areas. Recently few 

studies such as Han (2023), He et al. (2023), Zhu et al. (2023), have also taken into account the influence 

of building morphology such as sky view factor, building height/density on LST, Floor Area Ratio (FAR). 

This thesis makes an effort to advance this field of research by exploring a broader range of building 

metrics, thereby contributing to a deeper understanding of the relationship between UM and LST 

patterns. 

2.4 Methods to assess factors influencing LST 

Researchers have utilized correlations, regressions, ML and various other analytical methods to examine 

the relationship between UM and LST. Providing an exhaustive overview of all the techniques is neither 

feasible nor practical. Therefore, only the most commonly used techniques have been shown in Annexure 

I. The following sections provide concise discussions of some of these methods. 

2.4.1 Simple linear regression and correlation 

Pearson’s and Spearman’s rank correlations have been used by various authors (Berger et al., 2017; Huang 

& Wang, 2019; Li et al., 2020; Scarano & Mancini, 2017; Yang et al., 2021; Yao et al., 2022) to study the 

relation between different UM factors and LST. Pearson’s correlation measures the linear association 

between two continuous variables (Mujtaba et al., 2019). While Spearman’s rank correlation assesses the 

monotonic relationship between two ranked variables. It works by ranking the data and then calculating 

the correlation using these ranks (Schober & Schwarte, 2018). Both correlation coefficients are scaled to 

range from -1 to +1. A value of 0 indicates no linear or monotonic association. As the coefficient 

approaches 1 or -1, the relationship between the variables becomes stronger and indicates a near-perfect 

linear relationship for Pearson’s correlation and a near-perfect monotonic relationship for Spearman’s 

correlation, where the data points form a constantly increasing or decreasing pattern. Pearson’s correlation 

is advantageous for its simplicity and clear measure of linear relationships, making it widely recognized and 

easy to compare across studies. However, it assumes linearity and normality, capturing only linear 

associations and being highly sensitive to outliers. In contrast, Spearman’s rank correlation is more robust, 

as it does not assume a specific distribution and is less affected by outliers, effectively capturing 

monotonic relationships, suitable for non-linear data. However, it is less informative about the magnitude 

of relationships and can lose information when data is ranked, particularly in small datasets. Additionally, 

the ranking process can be computationally intensive for large datasets (Winter et al., 2016). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geographically-weighted-regression
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Studies such as Chen et al. (2020) and Guo et al. (2020) used Ordinary Least Squares (OLS) regression to 

analyse the impact of UM on LST. It is a statistical method used for estimating the relationship between a 

dependent variable and one or more independent variables. It aims to find the best-fitting linear regression 

model by minimizing the sum of squared differences between the observed data points and the predicted 

values. This method is easy to interpret and widely used for inferential statistics and prediction (Burton, 

2021). However, OLS regression is sensitive to outliers, violates assumptions such as normality and 

homoscedasticity, and may overfit data, especially when dealing with complex, non-linear patterns. Its 

limited flexibility in capturing non-linear relationships and assumption of independence among 

observations also pose challenges. 

 

Geographically Mean Regression (GWR) is a spatial analysis technique that extends traditional regression 

models by allowing the relationships between variables to vary over space (Wu et al., 2022). Unlike OLS 

regression, which assumes that the relationship between independent and dependent variables is constant 

across the study area, GWR provides localized estimates of the parameters by incorporating the 

geographical coordinates of the data points (Fotheringham & Brunsdon, 1999). This approach recognizes 

and incorporates nonstationarity in the data, providing more accurate and context-specific insights (Wu et 

al., 2022). GWR modelling can suffer from multicollinearity if the predictor variables are highly correlated, 

making it difficult to distinguish their individual effects on the response variable. Moreover, this method 

can be computationally demanding, especially with large datasets, as it requires fitting a separate regression 

model for each location in the dataset (Wheeler & Tiefelsdorf, 2005). 

2.4.2 Simple and advanced ML methods 

Principal Component Analysis (PCA) used by Molina-Gómez et al. (2022) is a dimensionality reduction 

technique that transforms a large set of variables into a smaller one that still contains most of the 

information. It does this by identifying the principal components, which are orthogonal directions of 

maximum variance in the data. PCA helps in visualizing high-dimensional data and reducing noise. The 

main advantage is its ability to reduce complexity while preserving data structure. However, PCA assumes 

linear relationships between variables and may not perform well if this assumption is violated (Jollife & 

Cadima, 2016). 
 

Random Forests (RF) is a commonly used ensemble ML algorithm. Developed by Breiman (2001), this 

algorithm can solve both classification and regression problems. Many studies (Han, 2023; Li et al., 2021; 

Yao et al., 2022; Zhu et al., 2023) have adopted this method for analysing the driving factors of both LST 

and air temperature.  RF regression (RFR) is an example of non-linear and non-parametric algorithm that 

is based on random decision trees (Abdel-Rahman et al., 2014; Li et al., 2021). It combines the predictions 

of multiple individual decision trees, where each tree is trained on a random subset of the data (called 

bagging) and makes independent predictions (Breiman, 2001). These predictions are averaged to produce a 

final prediction, which often results in a more generalizable model and also avoids overfitting (Liaw & 

Wiener, 2002). This method is robust to multivariate collinearity among the independent variables (Li et 

al., 2021). RF is also capable of assigning importance score and calculating the impurity of each variable, 

which can indicate how much influence each variable has on the dependent variable (Greenwell et al., 

2018). Logan et al. (2020) tested several linear and non-linear regression models to understand how urban 

characteristics relate to LST. RFR stood out as the most effective model with the highest accuracy. 
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3 Study area and datasets 

This chapter provides a comprehensive overview of the study area, datasets utilized in the research. 

Section 3.1 (‘Study area’) outlines the geographical scope and characteristics of the study area, offering 

insights into its climatic conditions, urban morphologies, and spatial organizations. Section 3.2 (‘Datasets’) 

provides a detailed information of various datasets employed in the research.  

3.1 Study area 

The cities of Paris, Rotterdam, Milan, and Vienna have been selected as the testbed for this research (as 

shown in Figure 3.1). Despite their distinct morphological characteristics and spatial organizations, as 

outlined in Table 3.1, these cities share a common trait: they are among the hottest in Europe. They have 

been experiencing notable heatwaves in the past, underscoring their vulnerability to extreme 

temperatures—a critical concern in urban environments characterized by high population densities and 

extensive built-up areas.  

 

 

Figure 3.1 Selected case study cities with an arbitrary rectangle of 440 km2 from the urban centres 
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They have been drawn from various climatic zones identified by the Köppen-Geiger Classification 

(Annexure II), spanning across different regions of Europe, each characterized by its unique 

environmental conditions. According to Eurostat, the population density of the city of Paris ranks the 

highest with 21,044 inhabitants/km2 in the entire European Union (Kokkinidis, 2022). Around 60% and 

41% of Paris and Milan Metropolitan area, respectively, is covered by built-up areas (NYU & UN-Habitat, 

2014; Telespazio, 2020), making the SUHI phenomenon prevalent in this region. Moreover, Rotterdam 

faced an unprecedented heatwave in 2023, with temperatures reaching record highs since temperature 

monitoring began in the Netherlands over a century ago (NL Times, 2023). In the second quarter of 2023, 

more than 39,000 people died in the Netherlands, which was 5% higher than what was expected for that 

time. Moreover, Milan experienced its hottest day in centuries, with temperatures surpassing 33 °C 

(Reuters, 2023). These cities exhibit UHI summer intensities exceeding 1.5 °C above the 90th percentile of 

summer temperatures when compared to other urban areas, as depicted in the Climate-ADAPT heat map 

(Annexure III). Lastly and most importantly, the selection of these cities was based on the availability and 

consistency of building and LST data. 

 
Table 3.1 European cities selected for this study and their baseline information 

COUNTRY CITY CLIMATE ZONE BUILT FORM 

France Paris 
Temperate – No Dry 

Season (Warm Summer) 

Mix of grid, axial & radial pattern, polycentric, densely 

populated historic centre (mostly low rise), extensive 

boulevard networks linked to landmarks by roundabouts 

Netherlands Rotterdam 
Temperate – No Dry 

Season (Warm Summer) 

Post-industrial port city, modern core, compact city, with 

mixed land-use and taller buildings 

Italy Milan 
Temperate – No Dry 

Season (Hot Summer) 
Radial pattern, compact & irregular structure 

Austria Vienna 
Cold – No Dry Season 

(Warm Summer) 

Roman-medieval street grid pattern, ring road connected 

to major institutions, well networked tourist space 

system, abundant green spaces outside urban borders 

 
Due to the inconsistencies in the administrative boundary areas across cities, an arbitrary rectangle of 440 

km2 was delineated from the main urban centre. To interpret the heat patterns and UM within the cities, 

the defined study area covered a diverse range of urban gradients. This included the most densely built-up 

areas in the urban centre and gradually decreasing densities reaching to the suburbs. 

3.2 Datasets 

In this research, two primary datasets have been used, i) ECOSTRESS images, to study the LST variations 

across the cities and, ii) building data from EUBUCCO, which served as the base input for the UM 

analysis. They have been discussed in detail in the Sections 3.2.1 and 3.2.2. 

3.2.1 LST data 

The ECOSTRESS instrument was installed on the ISS on July 3, 2018, equipped with five TIR bands 

ranging from 8 to 12.5 μm (Hulley et al., 2022). Owing to the orbit of the ISS, it can record LST 

measurements at a high spatial resolution of 70 meters and temporal resolution of 1 to 5 days, covering a 

swath width of about 400 meters (Xiao et al., 2021). In this study, ECOSTRESS LST and Emissivity data, 

obtained from Level-2 products, were utilized. These data undergo atmospheric correction and 

georeferencing processes to generate precise land surface temperature and emissivity (LST&E) values that 

are acquired from these 5 TIR bands using a physics-based Temperature and Emissivity Separation (TES) 
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algorithm (Hulley & Hook, 2022). Moreover, special attention is required for geometric correction of this 

data due to its unique acquisition from the ISS, which differs from regular satellite missions. An additional 

noteworthy advantage of ECOSTRESS is its recent transition back to the 5-band mode on April 28, 2023. 

This transition occurred after a period of operating in the 3-band mode, which was a result of an anomaly 

in the Mass Storage Unit (MSU) of the instrument (Logan & Smyth, 2019)  

 

Initially, ECOSTRESS data was obtained from NASA’s EarthDataSearch platform, but several challenges 

were encountered such as scan line errors and absence of georeferencing. Later, acquisition from 

Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) Platform resolved these 

issues (https://appeears.earthdatacloud.nasa.gov/). The platform provides a straightforward and effective 

method for accessing and manipulating geospatial data sourced from diverse federal archives (NASA, n.d.) 

It automatically extracts the LST end product in Kelvin for the user-defined area of interest, eliminating 

the need for various pre-processing steps. Moreover, it also offers interactive visualizations such as 

temperature distribution histograms and quality assessment graphs along with summary statistics in .csv 

format for each sample within the application, facilitating in-depth exploration of the data. The details 

about the selection and pre-processing of the ECOSTRESS LST images have been discussed in Section 

4.1.1. 

3.2.2 Building data 

The building data was acquired from EUBUCCO v0.1 (https://eubucco.com/data/), which is a 

comprehensive database containing ~202 million building footprints with 2D&3D attributes. These 

attributes include building height, type, and construction year, which are available for 73%, 46%, and 24% 

of the buildings, respectively, across the entire dataset. It is important to note that these percentages may 

vary across different cities and regions. This dataset serves as the foundation for in-depth studies of urban 

sustainability across different levels—ranging from continental to local studies—utilizing a centralized 

database. It holds significance for numerous applications, such as urban morphological analysis and 

assessing risks associated with natural hazards. It collects up-to-date data for detailed analysis of the 

European Union (EU) building stock, a critical resource for informing policy decisions at the EU, 

national, and municipal levels, guiding urban planning efforts, and supporting academic research. 50 open 

government datasets and OpenStreetMap data have been harmonized and validated to generate the 

EUBUCCO building dataset. It covers 27 EU countries and Switzerland, representing 378 regions and 

40,829 cities (Milojevic-Dupont et al., 2023). 

 

The dataset for Paris comprises of 645,265 building footprints, with height data available for 83.25% of 

the buildings. In Rotterdam, 430,038 building footprints are covered, with 88.55% having height data. 

Milan's dataset consists of 176,207 building footprints, with 86.69% having height data. In Vienna, 

202,620 building footprints are present, with 95.18% having height data. The details of the buildings are 

summarized in Table 3.2. The buildings with missing height data are distributed throughout the study 

areas and are not concentrated in any specific locations. Thus, it did not impact the analysis, as there was 

still sufficient diversity among the remaining buildings and no particular building type was affected. 

 

Table 3.2 Number of buildings and coverage of height data of four cities 

CITY NUMBER OF BUILDINGS COVERAGE (%) OF HEIGHT DATA 

Paris 645,265 83.25 

Rotterdam 430,038 88.55 

Milan 176,207 86.69 

Vienna 202,620 95.18 

https://appeears.earthdatacloud.nasa.gov/
https://eubucco.com/data/
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An example of the building dataset has been shown in Figure 3.2. Furthermore, the quality of the dataset 

was ensured through several levels of pre-processing steps for cleaning, which are discussed further in 

detail in Section 4.2.1. 

 

  

(a) (b) 
 

 

Figure 3.2 Examples of EUBUCCO building dataset of a) Milan and b) Vienna rendered by building height 
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4 Methodology 

This chapter is structured into six main sections, outlining the methodology employed for analyzing UM 

and LST variations in this study. Section 4.1 (‘LST variations’) details the selection and the preprocessing 

steps of the LST images as well as the steps for conducting the hotspot analysis to identify temperature 

anomalies across the study areas. Section 4.2 (‘Urban morphological analysis’) explains how the building 

data was cleaned and pre-processed. Following this, it discusses about the UM analysis conducted in this 

study using the momepy toolkit in Python. Section 4.3 (‘Consolidation of LST and UMMs’) elaborates on 

the consolidation of LST values and UM metrics at a consistent spatial scale for further analysis. Section 

4.4 (‘Relation between LST and UM’) introduces the training and testing of the Random Forest 

Regression (RFR) model to examine the relationship between UM and LST. Furthermore, it provides a 

framework for investigating the most important driving factors behind LST variations in the study areas. 

Section 4.5 (‘Expert interviews’) explains how the interviews with the city experts were conducted for 

validating the results of this study. Lastly, Section 4.6 (‘Tools’) discusses the tools utilized for data 

collection, processing, and analysis of UM and LST data. 

 

 
Figure 4.1 Research methodology (Source: Author, 2023) 

The study’s overall methodology is based on the given workflow (Figure 4.1). As already mentioned, two 

primary datasets have been used, ECOSTRESS LST images and EUBUCCO building data. The former 
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underwent pre-processing steps to derive the mean LST image for each city. Meanwhile, the latter 

underwent cleaning procedures to address various quality issues, followed by an UM analysis performed 

using momepy. Additionally, a hotspot analysis was conducted on the mean LST images to identify areas 

of significant temperature variation within each city. After consolidating both the datasets on a grid level 

at 70 meters by 70 meters scale, a RFR model was applied to explore the relationship between the UMMs 

and LST. The RFR model was further analysed to determine the importance of different UMMs in 

influencing LST and assess the sensitivity of those UMMs. To validate the results obtained from the RFR 

modelling, expert interviews were conducted to provide additional insights and confirm the robustness of 

the findings. 

4.1 LST variations 

The detailed methodology for studying the LST variations has been illustrated in Figure 4.2. These steps 

involved the selection and pre-processing of LST images, followed by the process of conducting the 

hotspot analysis. 

 

 
Figure 4.2 Detailed methodology for analysing LST variations (Source: Author, 2023) 

4.1.1 Selection and pre-processing of ECOSTRESS images 

Due to the variable temporal resolution of the ISS, finding intersecting acquisition dates across the study 

areas was infrequent. Consequently, a time range was selected, and all relevant images within this range 

were averaged to produce a single mean approximate image of LST for each city. To ensure accurate 

approximation between images, the time range was carefully considered with closer proximity. Keeping 

this in mind, multiple ECOSTRESS images during the summer period (June-August) of 2023 were 

retrieved. Considering that the summer solstice typically occurs around June 21st in the Northern 

Hemisphere, the chosen time range aligns with the period of peak solar radiation, thus resulting in higher 

LSTs. Figure 4.3 shows all the available images between the study period. The images from 10.00 hrs to 

17.00 hrs (daytime) were filtered out from the available dataset. This was to have a similar temperature 

range and avoid misleading interpretations of temperature patterns.  

 

Subsequently, many images from the filtered dataset either had a high cloud cover, scanning error or were 

not covering the whole region. To address this issue, images exhibiting high cloud cover and a 

temperature variance exceeding 25 °C that highlighted the outliers with significant deviations from the 

mean temperature values were eliminated. This was done with the help of summary statistics .csv files. 

Interestingly, these images corresponded to those with notably high temperature ranges, as evidenced by 

the histograms in Figure 4.3. Following this approach, six images were selected for Paris, thirteen for 

Rotterdam, six for Milan and three for Vienna.  
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Figure 4.3 Temperature variations of all the available images between June and August, 2023 for Paris, 

Rotterdam, Milan, and Vienna 

 

The selected acquisition dates along with the statistics of the ECOSTRESS images utilized in this research 

are summarized in Table 4.1. These sets of images for each city underwent essential preprocessing steps, 

which involved converting Digital Number (DN) values to Celsius, resampling, reprojecting, and 

ultimately aggregating them to obtain a single mean LST image for each city.  

 



ANALYZING THE IMPACTS OF URBAN MORPHOLOGY (UM) ON LAND SURFACE TEMPERATURE (LST) IN EUROPEAN CITIES 

18 

Table 4.1 Summary statistics for the selected ECOSTRESS images of Paris, Rotterdam, Milan, and Vienna 

CITY 
ACQUISITION DATES 

& TIME (UTC) 
MINIMUM (K) MAXIMUM (K) MEAN (K) 

STANDARD 
DEVIATION 

VARIANCE 

Paris 

2023-06-01 14:21:09 282.10 322.16 308.16 3.63 13.18 

2023-06-03 14:20:40 296.90 321.50 306.75 3.36 11.27 

2023-06-04 13:31:49 297.68 322.12 308.55 3.72 13.86 

2023-06-04 16:45:25 295.34 310.88 302.57 2.30 5.30 

2023-06-05 12:43:21 286.52 326.52 311.26 4.14 17.13 

2023-06-13 12:38:21 286.80 330.02 310.68 3.64 13.23 

Rotterdam 

2023-06-03 14:21:32 291.86 315.74 303.82 3.70 13.72 

2023-06-03 15:57:53 291.24 309.40 300.01 2.82 7.95 

2023-06-04 13:32:41 292.94 318.10 305.98 4.03 16.22 

2023-06-08 13:30:24 293.72 320.16 306.53 3.80 14.47 

2023-06-09 12:41:34 295.02 325.26 310.81 4.51 20.33 

2023-06-09 14:18:30 294.38 322.22 310.43 4.41 19.41 

2023-06-10 13:29:28 295.94 326.88 312.50 4.80 23.01 

2023-06-11 11:03:11 292.38 325.56 312.14 4.45 19.78 

2023-06-13 12:38:21 296.40 359.12 310.97 4.36 19.04 

2023-06-14 11:49:14 296.38 332.42 309.90 4.35 18.94 

2023-06-14 11:50:06 296.46 323.64 310.75 4.31 18.58 

2023-08-09 13:59:05 285.36 312.80 300.28 3.33 11.08 

2023-08-16 10:00:50 287.24 310.92 297.88 3.18 10.14 

Milan 

2023-06-03 12:44:50 284.18 321.32 308.77 3.75 14.08 

2023-06-19 11:00:56 292.20 324.26 313.92 3.53 12.48 

2023-07-23 16:24:41 298.98 312.02 304.96 2.19 4.81 

2023-07-26 15:36:47 297.68 314.04 305.15 2.56 6.54 

2023-07-27 14:48:35 281.72 319.08 307.49 3.71 13.78 

2023-08-14 13:14:41 290.10 326.86 315.63 4.05 16.44 

Vienna 

2023-06-03 12:46:34 292.14 315.34 302.94 4.51 20.34 

2023-06-13 12:40:57 276.78 318.48 303.33 5.37 24.79 

2023-06-18 10:13:09 284.06 320.16 307.00 4.27 18.25 

 

4.1.2 Getis-Ord Gi* hotspot analysis 

A hotspot analysis was achieved, using the Getis-Ord Gi* statistics, on the mean summer LST image of 

each city. This was to identify areas where daytime LST values exhibited spatial clustering, resulting in 

either positive (hotspots) or negative (coldspots) anomalies in the LST patterns. The LST values 

corresponding to the building footprints were initially extracted from the image. Thus, the hotspot analysis 

was conducted only on the LST data within the built-up areas to observe spatial variations. This approach 

helped in identifying areas with significant temperature anomalies within urban environments and 

understanding their correlation with specific land uses. Getis-Ord Gi* is a local statistical method that 

groups the neighbouring pixels of similar values into statistically significant clusters at a local scale (Ord & 

Getis, 1995). The criterion for identifying these hot/coldspots is that the area in an image should be 

relatively different than the rest of the image (NV5 Geospatial, n.d.). The algorithm examines each pixel 

and its nearby pixels within a specified range, classifying them as ‘hot’, ‘cold’ or ‘neutral’ based on 

statistically significant clusters of high or low values. It is a reliable and effective hot-spot detection 
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technique that has been employed in prior research (Feyisa et al., 2016; Grigoraș & Urițescu, 2018). In the 

context of LST, it is computed using the following formula: 

Where Tj is the LST value for feature j, Wij is the spatial weight between pixel i and neighbouring pixel j. 

 

The Gi* statistic was calculated for each feature in the image, which was represented in terms of 

probability (p-value) and standard deviation (z-scores). The z-score is the degree of clustering among 

features, and p-value is the likelihood that the observed hotspot patterns are only a result of Complete 

Spatial Randomness (CSR). A higher positive z-score means there’s a stronger clustering of high values 

(hotspot). Whereas a lower negative z-score means there’s a stronger clustering of low values (coldspot). A 

z-score close to zero suggests that there is no notable clustering observed in the study area, thus 

confirming the null hypothesis of CSR. After calculating the z-scores, False Discovery Rate (FDR) 

correction was applied to the p-values associated with these scores. FDR correction helps control for the 

inflated risk of false positives that arises from conducting multiple statistical tests (Caldas de Castro & 

Singer, 2006). By adjusting the p-values, it ensures a more accurate determination of significance. Three 

groups of thermal patterns were identified in this study: 

 

1. Hot Spots: z-score > 1.65, statistically significant clustering of high LST values 

2. Cold Spots: z-score < -1.65, statistically significant clustering of low LST values 

3. Neutral Areas: -1.65 < z-score < 1.65, no significant spatial autocorrelation  

 

The results of the hotspot analysis were further utilized for visual interpretation in conjunction with the 

findings of the UM analysis. 

4.2 Urban Morphological (UM) analysis 

The detailed methodology for the UM analysis involved several steps, as illustrated in Figure 4.4. These 

steps encompassed the processing of building data and the computation of UMMs using the momepy 

toolkit. 

 

 
Figure 4.4 Detailed methodology for analysing UM (Source: Author, 2023) 

4.2.1 Cleaning of EUBUCCO building data 

The EUBUCCO building dataset, exhibited various quality issues such as long and extremely narrow or 

overlapping buildings, since it has been integrated from 50 different sources. To have the same quality 

across all the cities and make it fit for the analysis, it underwent a few validating and pre-processing 

(cleaning) steps. Initially, the quality of the building data was validated using the Topology Checker plugin in 

QGIS software, employing five topological rules.  These rules identified common geometric errors such as 

 

Gi
*=

∑ WijTj
j

∑ Tj
j

 (1) 
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overlaps, duplicates, gaps, invalid and multi-part geometries within the building dataset. Subsequently, the 

v.clean tool (a part of GRASS GIS) was used to automatically rectify these errors. This tool facilitated the 

data cleaning process by addressing common issues without requiring manual intervention, thereby 

streamlining the overall process. The data was further pre-processed in momepy, which also offered a set 

of tools that were used to fix (to an extent) the issue of imprecise data. The basic steps involved (as shown 

in Figure 4.5): 

 

1. Removing too small/large buildings that might be sensitive to certain morphometric computations. 

2. Combining adjacent buildings that are long and narrow into a single building. 

3. Merging buildings that are completely enclosed within other buildings into the parental buildings. 

 

Additionally, buildings with missing height data were removed from the dataset. Although this might have 

slightly affected the morphometric analysis, the influence was deemed minimal due to the low percentage 

of buildings with incomplete information. 

 

 
(a) (b) 

Figure 4.5 Example of pre-processing building datasets of (a) Rotterdam (where small and narrow buildings shown in 
red were removed) and (b) Paris (where long and narrow adjacent buildings were combined and enclosed buildings 
were merged into the parent buildings) 

4.2.2 Computation of Urban Morphometrics (UMMs) 

After the quality assessment of the building data, the UM of the selected cities was analysed using Urban 

Morphometrics (UMMs) in Python. UMM is a novel method for analysing UM that delivers a 

comprehensive and systematic measurement of urban characteristics in the form of numerical place codes 

(Dibble et al., 2019). An open-source python toolkit called momepy developed by Fleischmann (2019) has 

six modules of those morphometric characters - dimension, shape, distribution, intensity, diversity, and connectivity.  

 

The dimension module is designed for measuring the physical size of morphological elements, their 

constituent parts, and the aggregated structures they form within an urban environment. The shape module 

facilitates the quantification of the diverse geometries representing various morphological features found 

within a built environment. The distribution module enables the capture of the arrangement and dispersion 

patterns of elements belonging to a specific category, as well as the relationships between different types 

of elements across the built environment. The intensity module focuses on computing density and other 

intensity-related characteristics, providing insights into the concentration of urban features. The diversity 

module calculates various aspects of diversity within urban forms, offering insights into the heterogeneity 

and complexity of the built environment. Lastly, the connectivity module is dedicated to capturing the 

connectivity of urban street networks, providing valuable information on the accessibility and 
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interconnectedness of urban spaces. Together, these modules offer a comprehensive toolkit for analysing 

and understanding the multifaceted nature of urban form and structure (Fleischmann, 2018). 

 

The focus of this study was primarily on the first four modules of the momepy toolkit. This encompassed 

an examination of various metrics associated with each module, as proposed by Fleischmann et al. (2021) 

and an exploration of their potential influence on LST. It is to be noted that the metrics under the 

connectivity module were not considered in this study as they typically require a street layout as a base for 

analysis. The main units for the morphometric analysis in this study were buildings and morphological 

tessellations (MT) i.e. spatial segmentation based on building footprints (illustrated in Figure 4.6). MTs are 

similar to Voronoi tessellations but are generated around the building features rather than points.  

Fleischmann et al. (2020) suggested that spatial units such as MTs can serve as proxy data in capturing 

cadastral plot-scale spatial information of urban forms. The concept of a plot often presents challenges 

due to its ambiguity, resource-intensive nature, and inconsistent representation across different 

geographical contexts. In contrast, MTs remain consistent and contiguous throughout as they rely solely 

on the building footprint layer. This uniformity ensures reliable spatial data across diverse urban 

environments, facilitating comparative analyses with greater efficiency and reduces data dependency. 

Metrics such as floor area ratio and coverage area can be readily computed using MTs, offering results 

comparable to those derived from plot data. The steps to generate these MTs were conceptualised by 

Fleischmann et al. (2020) and were implemented into a Python script which was integrated as a part of the 

momepy toolkit. Therefore, based on the building data, the MTs were generated for each city, where each 

MT was linked to its parent building using a common unique_id. 

 

 
Figure 4.6 Units of morphometric analysis – building and morphological tessellation (MTs) cells across different 
areas of (a) Milan and (b) Vienna 

Momepy utilizes GeoDataFrame objects from the geopandas library as its foundation. The initial step 

involved providing the necessary data in the form of a GeoDataFrame. Each city had two of them, one 

containing the spatial information of building footprints and the other containing the MTs. Subsequently, 

the analysis was performed, which allowed for the computation of relevant metrics for the provided 

GeoDataFrames. The results of this analysis were returned as pandas series, where each of the metrics 

were integrated as additional columns within the existing GeoDataFrames 

 

The metrics computed in the study were divided into two types – simple and relational metrics. Simple 

metrics relied on a single GeoDataFrame (either building footprints or MTs in this case) as the primary 

data source. These metrics offered straightforward measurements of various morphological aspects and 

provided information regarding individual features.  
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Table 4.2 List of UMMs computed using momepy for analysing UM of Paris, Rotterdam, Milan, and Vienna 

CHARACTERS MORPHOMETRICS URBAN UNIT SPATIAL CONTEXT 

Dimension 

Simple Metrics   

Area Building & MT Building & MT 

FloorArea Building Building 

LongestAxisLength (LAL) Building Building 

Perimeter Building Building 

Volume Building Building 

Relational Metrics   

CoveredArea MT Spatial Weight 

MeanHeight Building Spatial Weight 

Shape 

Simple Metrics   

CircularCompactness Building Building 

Convexity Building Building 

Elongation Building Building 

EquivalentRectangularIndex (ERI) Building Building 

FormFactor Building Building 

FractalDimension Building Building 

Rectangularity Building Building 

ShapeIndex Building Building 

SquareCompactness Building Building 

Squareness Building Building 

VolumeFacadeRatio (VFR) Building Building 

Distribution 

Simple Metrics   

Orientation Building & MT Building & MT 

SharedWalls Building Building 

Relational Metrics   

Alignment Building Spatial Weight 

BuildingAdjacency Building Spatial Weight 

CellAlignment Building MT 

NeighbourDistance Building Spatial Weight 

MeanInterbuildingDistance (MID) Building Spatial Weight 

Intensity 
Relational Metrics   

FloorAreaDensity MT Spatial Weight 

Diversity 

Relational Metrics   

Gini MT Spatial Weight 

Range MT Spatial Weight 

Shannon MT Spatial Weight 

Simpson MT Spatial Weight 

 

While relational metrics assessed the relationships between two elements, building footprints and MTs, 

represented as separate GeoDataFrames. Some of the relational metrics also assessed relationships based 

on spatial weights matrices. To analyse the patterns of morphometric characters within a spatial context, 
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spatial weights take into the account the neighbouring elements and capture the relationship between 

them. Specifically, in this case, focusing on building footprints, spatial weights were represented as a 

binary matrix where a value of 1 signified neighbouring elements and 0 indicated the absence of such 

proximity. These metrics enabled the exploration of spatial interactions and dependencies between both 

the units. A detailed list of metrics used in this study can be found in Table 4.2, which includes a total of 

thirty UMMs. Descriptions of these UMMs are provided in Annexure IV. Additionally, more information 

about momepy can be found in https://docs.momepy.org/en/stable/index.html. 

4.3 Consolidation of LST and UMMs 

Consequently, all the metrics and LST data were consolidated at an appropriate and comparable scale of 

70 meters, mirroring the spatial resolution of ECOSTRESS data (Figure 4.7). This integration process 

involved generating a vector grid covering the study area, with each grid cell representing a uniform spatial 

unit of 70 meters by 70 meters. By employing spatial analysis techniques such as Spatial Join and Zonal 

Statistics, the metrics pertaining to building morphology and its corresponding LST values were attached to 

the grid cells. 

 

   

Figure 4.7 Consolidation of LST and UMM at a grid of 70 m by 70 m resolution for Milan 

This approach, being used by various authors (Estoque et al., 2017; Han, 2023) in the past, ensured spatial 

homogeneity by representing the study area in consistent spatial units and helped reduce computational 

complexity and noise in the data. Additionally, the structured grid format simplified model interpretation 

and allowed for the examination of UM’s influence on LST at a broader level across the study areas. 

However, it’s important to acknowledge potential disadvantages, including the loss of fine-scale spatial 

detail present in individual buildings and the generalization of unique building characteristics within grid 

cells.  

4.4 Relation between LST and UM 

While several traditional statistical methods have been used (as shown in Annexure I), many of them (e.g., 

Pearson’s correlation, OLS regression, PCA) often provide limited interpretability, especially when dealing 

with complex relationships or high-dimensional data. As discussed in Section 2.4, these methods may 

encounter issues related to collinearity (Hu et al., 2022) and find it challenging to calculate the importance 

of all independent variables (Yao et al., 2022). 

 

Hence, RFR was employed as the fundamental model for examining the relationship between UM and 

LST in this study, where the twenty-four UMMs (mentioned in Table 4.2 excluding the metrics with MTs 

as the urban unit) and LST were considered as the independent and dependent variables, respectively. Six 

UMMs (CoveredArea, FloorAreaDensity, Gini, Range, Shannon and Simpson) were not included in the 

https://docs.momepy.org/en/stable/index.html
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model due to high computation demands. The detailed methodology for the RFR modelling has been 

illustrated in Figure 4.8. 

 

 
Figure 4.8 Detailed methodology for RFR modelling (Source: Author, 2023) 

4.4.1 Model training 

To train the RFR model, the entire consolidated dataset for all the cities underwent a randomized split 

into an 80-20 ratio, allocating 80% for training and 20% for testing. Following this, hyperparameter tuning 

was conducted utilizing the k-fold cross-validation technique to obtain the optimal ntree (optimal number 

of trees) and mtry (number of input variables randomly sampled as candidates at each split) for constructing 

a more accurate model (Jung & Hu, 2015). This technique divides the dataset into k subsets (or folds), 

where the model is trained on k-1 folds and validated on the remaining fold. This process iterates k times, 

where each fold is utilized as the validation set once. By averaging the performance metrics across the k 

iterations, k-fold cross-validation provides a more reliable estimate of the model’s performance and helps 

prevent overfitting by leveraging all available data for both training and validation (Raschka, 2018). The k-

fold cross-validation technique, with k set to 5 in this study, was employed to iteratively train and validate 

the model on different subsets of the data. The number of trees was systematically adjusted from 100 to 

300, with increments of 100, to explore its impact on model performance. The optimal ntree varied across 

cities, with both Rotterdam and Paris achieving peak accuracy with 300 trees. Conversely, Milan and 

Vienna demonstrated their highest accuracies with 100 trees. Notably, the mtry value was set to 8 for all 

cities, nearly one-third of the total number of variables (twenty-four in this case), which is the ideal mtry 

value in a RFR model (Liaw & Wiener, 2002). 

4.4.2 Model evaluation 

The performance of the model was evaluated using three main metrics, namely, i) Co-efficient of 

determination (R2), ii) Mean Absolute Error (MAE), and iii) Root Mean Square Error (RMSE). Co-

efficient of determination or r-squared is a statistical measure that indicates how much of the variability in 

the dependent variable can be explained by the independent variables. It ranges from 0 to 1, where 1 

indicates a perfect fit. A higher R2 value indicates a better fit of the model to the data. Mean Absolute 

Error (MAE) represents the average absolute difference between the predicted values and the actual 

values. Lower MAE values indicate smaller average errors between predicted and actual values, implying 

better model performance in terms of accuracy. Root Mean Square Error (RMSE) calculates the square 

root of the average of squared differences between predicted values and actual values. RMSE, similar to 

MAE, computes the average magnitude of errors but penalizes larger errors more heavily because of the 

squaring process, making it more sensitive to outliers. A low RMSE value indicates that the model’s 

predictions are, on average, closer to the actual observed values.  
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Where,  y
i
  represents the observed LST values,   ŷ

i
  represents the predicted LST values from the model,  y ̅ 

represents the mean of the observed LST values and n is the number of data points. The combination of 

these three metrics offered a comprehensive evaluation of the model's performance and accuracy.  

4.4.3 Feature importance 

Based on this model, the influence of each UM metric on the LST was evaluated by quantifying the 

%IncMSE (percentage increase in mean squared error) and IncNodePurity (increase in node purity) for each 

city. %IncMSE is calculated by comparing the change in MSE of the out-of-bag (OOB) samples before 

and after permuting a predictor variable. A high value indicates a strong correlation between the variable 

and the dependent variable, suggesting that the variable is essential for the model and contributes 

significantly to its predictive accuracy. It assesses variable importance based on its impact on the overall 

predictive accuracy of the RF model. Whereas IncNodePurity is calculated based on the improvement in 

node purity achieved by splitting nodes using a particular variable. A higher value indicates significant 

contribution of the variable to creating more homogeneous partitions within decision tree nodes, thus 

enhancing the model's ability to effectively separate data points into distinct categories or predicted values. 

It evaluates the variable importance within individual decision trees and their contribution to node purity  

(Yan & Bai, 2020) After this process, a relative importance (RI) percentage was derived by normalizing the 

%IncMSE values of the UMMs for each city to obtain the contribution of each UMM to LST. 

4.4.4 Sensitivity analysis 

Following the assessment of variable importance, a sensitivity analysis was conducted to delve deeper into 

the relationships between UMMs and LST within each city. Partial Dependence Plots (PDPs) were 

generated for the most important independent UMMs to see whether they have a positive or negative 

effect on the LST. They can help understand how changes in a particular UMM impact the LST, while 

keeping other features constant or averaging over them (Friedman, 2001). These plots not only revealed 

the direction of influence but also provided insights into the nature of the relationship, whether it is linear, 

non-linear, or subject to interactions with other features. 

 

Following this, a comparative analysis was conducted across different cities to discern how the influence 

of UM on LST varies spatially.  

4.5 Expert interviews 

The results of this research were backed up by qualitative interviews with city experts in the field. Three 

experienced city experts, each from Rotterdam, Milan (with additional knowledge of Paris), and Vienna, 

were engaged in semi-structured interviews. These interviews adhered to the framework outlined in the 

manual by Groenendijk & Dopheide (2003), during which they were presented with the hotspot and 

UMM maps, alongside PDP plots. Open-ended questions were posed to them, focusing on the behaviour 

of the hotspot patterns with different land uses as well as the potential reasons behind the relationship 
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between important UMMs and LST. They primarily supported the results by helping to explain the 

observed patterns and the possible implications of this study in mitigating heat in urban areas. The 

interviews provided a deeper understanding and context for the findings, enhancing the overall analysis. 

4.6 Tools 

Pre-processing of the LST images, involving steps such as resampling, reprojection and aggregating, were 

conducted in RStudio, followed by the hotspot analysis which was performed using the elsa package. Initial 

cleaning of the building data was done in QGIS software. Subsequent levels of cleaning and the UMM 

computations were carried out in Python programming language, particularly using the momepy module 

developed by Fleischmann (2019). Development, testing and evaluation of the random forest regression 

models were undertaken in RStudio, using the randomForest, caret and, pdp packages. All these scripts and 

software tools were utilized within the CRIB, university’s geospatial computing platform. Its high 

computational capacity helped in reducing significant processing time. 
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5 Results 

This chapter presents the findings of the study, organized into three main sections. Each section addresses 

specific aspects of the research aligned with its corresponding objectives. Sections 5.1 (‘LST variations and 

hotspot analysis’) and 5.2 (‘UM analysis’) presents the results related to understanding of the LST 

variations and hotspot analysis (Objective 1) and urban morphological characteristics (Objective 2) of the 

four cities, respectively. Section 5.3 (‘Relation between LST and UM’) presents the results obtained from 

the RFR regression modelling to examine the influence of UM on LST (Objective 3). 

5.1 LST variations and hotspot analysis 

This section addresses Objective 1 of this research. It presents the processed mean LST images obtained 

from the filtered ECOSTRESS dataset, along with the results derived from the hotspot analysis conducted 

using the Getis Ord Gi* statistics based on these processed images.  

 
Figure 5.1 illustrates the boxplot representing the mean LST variation across the selected raw images (refer 

to Table 4.1). Notably, all images for each of the cities exhibited mean temperatures exceeding 300.00 K, 

with the exception of one, in Rotterdam, which recorded a mean temperature of 287.88 K. Across all 

cities, the temperature variance remained relatively low, with a maximum variance of 14.62 K observed in 

Rotterdam due to the higher number of available images. The highest mean temperature observed was in 

one of the images of Milan (315.63 K). Furthermore, even the lowest mean temperature recorded in Milan 

surpassed the lowest temperatures observed in the other three cities. Vienna, despite having only three 

images, demonstrated closely clustered mean temperatures, with a variance of 4.06 K between them. 

Hence, the limited dataset size didn’t significantly affect the LST consistency in Vienna. 

 

 
Figure 5.1 Boxplot of the distribution of mean LST values of the selected ECOSTRESS images of Paris, Rotterdam, 
Milan, and Vienna 
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Figure 5.2 shows the processed mean LST images of the study areas during the summer period (June-

August) of 2023 between 10.00 hrs to 17.00 hrs alongside their corresponding hotspot maps. Paris 

experienced a mean LST ranging from 28 to 41 °C. Rotterdam showed the mean LST ranging from 25 to 

41 °C. Milan showed the mean LST ranging from 31 to 41 °C and Vienna had a mean LST range of 23 to 

38 °C. Milan experienced the highest mean LST during the study period indicating relatively higher 

temperatures as compared to the other cities. Furthermore, these LST images were used as the target 

variable for the RFR modelling for each city which has been discussed in more detail in Section 4.4.  

 
The summary of the hotspot analysis has been given in Table 5.1 including the minimum, maximum, and 

mean temperatures for each Gi* spot category in these cities. In Paris and Rotterdam, results show that 

the spatial coverage of hotspots exceeds that of coldspots within the built-up areas. Specifically, in Paris, 

hotspots cover approximately 9.42% of the built-up area with a minimum LST of 38 °C and a maximum 

of 41 °C, while in Rotterdam, they cover approximately 10.24% with LST minimum and maximum values 

same as that of Paris. In Paris, the most pronounced instances of extreme LST hotspots are 

predominantly observed in two main areas. From Figure 5.3, it can be observed that these areas are mostly 

prevalent in the northeastern section of the city, including a major business park (1) and warehouse 

districts (2). Additionally, they are present in the southeastern region, particularly in sections along the left 

bank of the Seine River, which feature a commercial area adjacent to a railway station (3) and an industrial 

area (4). Hotspots in Rotterdam are primarily concentrated in the central part of the city (as shown in 

Figure 5.4), running perpendicular to the Nieuwe Maas River which mainly is the business park and an 

industrial neighbourhood (2). Additionally, smaller clusters of hotspots are scattered across various parts 

of the urban area, including the port area (3) and another industrial estate (4) in the south. 

 
Table 5.1 Area covered by Gi* spots, along with their corresponding descriptive statistics of LST  

CITY SPOTS  RELATIVE AREA (KM2) 
LST (°C) 

MINIMUM MAXIMUM MEAN 

Paris 

Cold 31.47 (8.97%) 25 35 33 

Neutral 286.26 (81.61%) 32 40 36 

Hot 33.01 (9.42%) 38 41 40 

Rotterdam 

Cold 19.79 (10.06%) 24 36 31 

Neutral 156.67 (79.70%) 30 38 34 

Hot 20.09 (10.24%) 38 41 40 

Milan 

Cold 23.46 (9.98%) 29 37 34 

Neutral 193.66 (82.39%) 32 39 38 

Hot 17.92 (7.63%) 39 41 40 

Vienna 

Cold 20.52 (9.98%) 22 32 28 

Neutral 166.87 (81.21%) 27 39 34 

Hot 18.07 (8.81%) 36 38 37 

 
In contrast, Milan and Vienna exhibited different spatial distribution patterns, with a relatively larger area 

covered by the coldspots as compared to hotspots within their built-up areas. Hotspots accounted for 

7.63% and 8.81%, respectively of the areas. In Milan, hotspots were dispersed radially across the 

southeastern part of the city as shown in Figure 5.5. These hotspots are particularly noticeable on the 

outskirts, away from the urban centre, and are mainly found in manufacturing units (2 and 4) and 

wholesale markets (3). Whereas hotspots in Vienna (Figure 5.6) are predominantly concentrated within the 

urban centre (3), which includes a large portion of a residential area. These hotspots also extend to some 

parts of the southern regions (4 and 5). 
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Figure 5.2 Processed mean LST images of Paris, Rotterdam, Milan, and Vienna obtained from the filtered ECOSTRESS and their corresponding hotspot maps 

within the built-up area 
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Figure 5.3 Built forms in hot and coldspots of Paris at a detailed level 
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Figure 5.4 Built forms in hot and coldspots of Rotterdam at a detailed level 

The observed coldspots across all cities are predominantly situated in the residential areas. These areas are 

generally featuring several characteristics that contribute to lower LST. It can be observed that the 

residential areas have much lower building densities compared to commercial or industrial zones. This 

means there are fewer buildings per unit area, which might reduce the amount of heat absorbed and 

retained by structures and paved surfaces. Moreover, lower building density allows for more space 

between the buildings, potentially enhancing air circulation, which could contribute to the lower LST 

observed in these areas. The extremes in the LST could also be attributed to the design and materials used 

in residential buildings. For example, residential buildings might have reflective roofs or lighter-colored 

surfaces that absorb less heat compared to the darker, heat-absorbing materials often used in industrial or 
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commercial buildings. In case of Rotterdam, one of the notable coldspots includes areas with several 

florist shops and greenhouses (Figure 5.4, 1). Greenhouses are designed to control their internal 

environment, often using shading, ventilation, and evaporative cooling techniques. The presence of 

extensive vegetation within these greenhouses might also contribute to cooling through 

evapotranspiration.  
 

 

Figure 5.5 Built forms in hot and coldspots of Milan at a detailed level 
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Figure 5.6 Built forms in hot and coldspots of Vienna at a detailed level 
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5.2 UM analysis 

This section addresses the Objective 2 of this research. Thirty different UMMs for Paris, Rotterdam, 

Milan, and Vienna at a building level have been presented in Figure 5.7-Figure 5.11, that were computed 

using momepy. These maps reveal both consistent and varying UM patterns across the cities. 

 

For example, one notable pattern is the distribution of Mean Height, which is relatively higher in the 

urban centres and lower in the surrounding areas. This indicates the presence of high-rise buildings and 

denser development in the urban core, which are typical characteristics of central business districts and 

densely populated urban areas. Figure 5.8, column one, clearly illustrate this pattern, with lighter shades 

indicating higher values of Mean Height clustering in the central areas. Conversely, as one moves towards 

the periphery of these urban areas, the Mean Height values decrease, signifying a transition to lower-rise 

residential and commercial buildings typical of suburban and rural landscapes. A notable difference among 

these cities is that Milan and Vienna have the highest mean building heights, both having an average (μ) 

height of 14 meters, compared to Paris (μ = 12 meters) and Rotterdam (μ = 9 meters). This indicates that 

buildings in Milan and Vienna tend to be taller on average. 

 

Similarly, the Mean Interbuilding Distance (MID) of the buildings are significantly lower in the central 

urban areas, reflecting a closely spaced buildings and compact development which is common in city 

centres. This is shown in Figure 5.11, column one, with darker shades indicating smaller interbuilding 

distances in these densely built-up areas. On the other hand, the surrounding suburban and rural areas, 

characterized by more spread-out development and lower density, show higher MID values. The maps 

highlight this gradation, with lighter shades representing larger distances between buildings as one moves 

away from the urban core. One significant distinction is observed in the average MID across the cities 

studied. In Paris, it is ~88 meters, which is notably the lowest among the four cities. In comparison, 

Rotterdam, Milan, and Vienna have average MIDs of ~95, ~145, and ~125 meters, respectively. The 

combination of shorter distance between buildings and the average building height in Paris indicates that it 

exhibits a relatively higher density of buildings within the designated study area as compared to the more 

spaced-out building configurations seen in other cities. 

 

Furthermore, these UMMs were visually interpreted for each city alongside the hotspot areas identified in 

Section 5.1. While all UMMs were examined, it was particularly evident that certain metrics exhibited clear 

patterns and relationships with the distribution of hotspots across the four cities. In the following 

sections, some of the examples from each city have been discussed. 

 

In Paris, Orientation (Figure 5.10, column one) reveals that most coldspots in the city are situated in areas 

characterized by lower orientation, represented in shades of purple and blue (~0-20°). These coldspots are 

predominantly located in the southwest mainly comprising residential areas. Conversely, hotspots are 

heavily concentrated in the northeast of the city and correspond to areas with higher orientation values 

(~28-45°). These zones largely correspond to the industrial estates discussed earlier in Section 5.1. 

 

In Rotterdam, the Mean Height (Figure 5.8, column one) illustrates that the regions shaded in purple, 

spanning ~3 to 7 meters in height, predominantly appear as coldspots. These areas are notably prominent 

in the north section of the city, characterized by the presence of large buildings which are primarily florist 

shops and expansive greenhouses, along with scattered small structures. Whereas areas with buildings 

ranging from ~7 to 11 meters in height, depicted in light blue and green hues, mostly emerge as hotspots.  

These areas encompass a major business park and an industrial neighbourhood located centrally, along 

with another estate and a port area situated in the southern region, as depicted in Figure 5.4. 
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Figure 5.7 Different UMMs computed for Paris, Rotterdam, Milan, and Vienna (Part 1) 
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Figure 5.8 Different UMMs computed for Paris, Rotterdam, Milan, and Vienna (Part 2) 
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Figure 5.9 Different UMMs computed for Paris, Rotterdam, Milan, and Vienna (Part 3) 
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Figure 5.10 Different UMM computed for Paris, Rotterdam, Milan, and Vienna (Part 4) 
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Figure 5.11 Different UMM computed for Paris, Rotterdam, Milan, and Vienna (Part 5) 
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In context of Orientation (Figure 5.10, column one), hotspots are mostly evident in areas shaded in dark 

blue (~8-16°), with some regions displaying purple hues (~0-8°). Additionally, both hot and coldspots can 

be found in areas characterized by light blue and green colour with values ranging from ~15 to 25°. In 

MID (Figure 5.11, column one), coldspots predominantly emerge in regions where MID is represented in 

yellow (above ~100 meters). On the other hand, hotspots can be identified across a range of colours 

spanning from purple (lowest MID) to blue to green hues, and occasionally in specific regions marked by 

yellow shading. 

 

In Milan, Orientation (Figure 5.10, column one) shows hotspots primarily coinciding with regions shaded 

in purple (~0-4°). These areas are particularly concentrated in the extreme eastern and southwestern parts 

of the city. Certain hotspots are also observed in the light green (~20-31°) coloured region, especially 

prominent in the northwest and in yellow (~31-45°), in the southwest. In the case of Building Adjacency 

(Figure 5.10, column four), coldspots are predominantly located within the yellow and light green regions, 

which correspond to higher values. Conversely, as the values transition from high to low, represented by 

shades of light blue, dark blue, and purple, these areas essentially correspond to the hotspots. Vienna also 

exhibits similar patterns with Building Adjacency, where the coldspots are also primarily situated within 

the yellow and light green regions, often found on the outskirts of the city. In Alignment (Figure 5.10, 

column three), areas shaded in purple, indicating the lowest alignment, coincide with the hotspots, with 

two major concentrations in the south of the city. Additionally, hotspots are also observed in certain 

regions shaded in blue and green hues (~2-7°), particularly in the central areas of the city. 

5.3 Relation between LST and UM 

This section addresses Objective 3 of this research and is structured into three subsections. Subsection 

5.3.1 presents the results obtained from the RFR model for all the cities, detailing its performance metrics 

and model evaluations. Subsection 5.3.2 shows the results of the feature importance analysis, identifying 

the key contributors of LST variations in each city. Lastly, Subsection 5.3.3 presents the outcomes of the 

sensitivity analysis, elaborating on the nature and direction of the influence of UMMs on LST. 

5.3.1 RFR Model performance 

As mentioned in Section 4.4, the RFR model considered twenty-four UMMs (mentioned in Table 4.2 

excluding the metrics with MTs as the urban unit) as the independent variables and the processed mean 

LST image (shown in Figure 5.2) as the target variable for each city. As outlined in the methodology, the 

datasets after splitting into training and testing sets varied for each city, which have been summarized in 

Table 5.2.  

 

Table 5.2 Distribution of training and testing samples for the RFR model for Paris, Rotterdam, Milan, and Vienna 

CITY TOTAL SAMPLES TRAINING SET TESTING SET 

Paris 737,597 590,077 147,520 

Rotterdam 446,275 357,020 89,255 

Milan 249,032 199,225 49,807 

Vienna 283,973 227,178 56,795 

 

Table 5.3 shows the performance metrics of the RFR model applied to Paris, Rotterdam, Milan, and 

Vienna. For each city, the table outlines the hyperparameter values (mtry and ntree), and their corresponding 

performance metrics of the trained (mean of squared variables and percentage of variables explained) and 

tested model (RSME, MAE, R2). 



ANALYZING THE IMPACTS OF URBAN MORPHOLOGY (UM) ON LAND SURFACE TEMPERATURE (LST) IN EUROPEAN CITIES 

41 

 

The model demonstrated similar performances for different number of trees across each city as shown in 

Table 5.3. Moreover, the feature importance remained relatively stable across various tree numbers which 

have been discussed in detailed in Section 5.3.2. In case of Paris, the model yielded the best results with 

300 trees where 80.04% of the variability in LST can be explained by the UMMs. It also achieved the 

highest R2 of 0.812, lowest RMSE and MAE values of 0.659 and 0.418, respectively on the testing set. For 

Rotterdam, the best results were once again achieved using 300 trees with 89.48% variability explained in 

the LST. The RMSE, MAE and R2 values were 0.610, 0.389, 0.902, respectively. For Milan and Vienna, 

the most accurate results were achieved with 100 trees, where the model was able to account for 85.06% 

and 87.87% of the variation in the LST, respectively. They also had high R2 values of 0.865 and 0.899, 

respectively, indicating a good model fit of the data. 

 

Table 5.3 Performance metrics of the RFR model for Paris, Rotterdam, Milan, and Vienna (best performance 
highlighted in green color) 

CITY 

Hyperparameters Training Performance Testing Performance 

ntree mtry 
Mean of squared 

residuals 
% Var 

explained 
RMSE MAE R2 

Paris 

100 8 0.4522794 79.35 0.6649854 0.4225103 0.8083977 

200 8 0.4409825 79.86 0.6609585 0.4198395 0.8113810 

300 8 0.4371835 80.04 0.6594360 0.4185121 0.8124834 

Rotterdam 

100 8 0.3904680 89.10 0.6137751 0.3922143 0.9006409 

200 8 0.7500006 88.17 0.8545865 0.5341727 0.8904171 

300 8 0.3766988 89.48 0.6102121 0.3893371 0.9020464 

Milan 

100 8 0.3422951 85.06 0.5753788 0.3732098 0.8656429 

200 8 0.4368008 81.72 0.6040958 0.3759762 0.8490204 

300 8 0.4316374 81.94 0.6013489 0.3749244 0.8507018 

Vienna 

100 8 0.7687621 87.87 0.8561070 0.5355361 0.8998065 

200 8 0.7512704 88.15 0.8541133 0.5338468 0.8904862 

300 8 0.7415837 88.30 0.8517708 0.5321406 0.8912356 

 

Overall, the RFR models effectively captured the underlying patterns and relationships between the 

UMMs and LST with more than 80% variability explained across all the cities and also generalized well on 

the unseen dataset. Among all the cities, Rotterdam and Vienna exhibited the best performance.  

5.3.2 Relative importance of UMMs on LST 

The relative importance (RI) of the UMMs on LST for each city has been shown in Figure 5.12. Among 

the top ten UMMs, six UMMs consistently emerged across all cities. These UMMs include Alignment, 

Orientation, Mean Height, MID, Building Adjacency, Neighbour Distance. Alignment refers to the mean 

deviation of solar orientation of objects on the neighbouring cells from a reference building. Orientation 

can be defined as the angle of the longest axis of a building’s bounding rectangle relative to the cardinal 

directions, ranging from 0 to 45°. This angle represents the deviation of the building’s orientation from 

the perfect alignment with cardinal directions (North-South or East-West). Mean Height, as the name 

suggests, is the average height of buildings within 100 meters of its neighbours. MID is the mean 

interbuilding distance between buildings on neighbouring cells. Building Adjacency reflects the extent to 

which buildings join together into larger structures. Lastly, Neighbour Distance is the mean distance from 

its adjacent buildings. 
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The above mentioned UMMs have the maximum role in influencing the LSTs in these cities, which 

enhanced the overall predictive power of the RFR model. This observation aligns with the findings from 

the visual analysis of the UMMs and distribution of hotspots detailed in Section 4.2. 

 

 
Figure 5.12 Relative importance of UMMs in influencing the LST in Paris, Rotterdam, Milan, and Vienna revealed by 
the RFR model (common UMMs in all cities under top ten in brown colour) 

 

Additionally, Squareness emerged as a noteworthy UMM in Paris, securing the fifth position in 

importance rankings. Interestingly, it stood out as the only distinctive UMM among the top six important 

features in Paris, distinguishing it from the UMM rankings of other cities. 

 

Although, the UMMs mentioned above were common across all the cities, there was a difference in their 

importance ranking. The five most important UMMs contributing to the maximum change in the LST for 

Paris were Mean Height (RI=12.79%), followed by MID (10.87%), Building Adjacency (9.13%), 

Orientation (7.49%) and Squareness (7.32%). For Rotterdam, Alignment, Orientation, Mean Height, MID, 

and Building Adjacency had the highest influence on LST with RI of 11.44%, 10.02%, 8.03%, 7.01%, and 

4.88%, respectively. In case of Milan, Orientation (9.60%), followed by Alignment (8.03%), Building 

Adjacency (7.02%), MID (6.81%), and Mean Height (6.62%) had the greatest influence on LST. Lastly, for 

Vienna, MID (12.95%), Alignment (10.11%), Orientation (8.44%), Neighbour Distance (7.58%), and 

Building Adjacency (6.87%) were the most important UMMs for explaining the variability in LST. A more 

detailed analysis of how the LST of each city varies with these UMMs is discussed in Section 5.3.3. It 
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should be noted that these UMMs among other metrics also contributed the most in improving the purity 

of nodes in the decision trees. 

 

Apart from this, Elongation was common in Rotterdam (4.47%), Milan (5.57%), and Vienna (4.55%) 

coming in the eight positions in the ranking for all three cities. Similarly, Form Factor was common 

among Paris (3.70%), Rotterdam (3.77%), and Milan (4.31%), coming on the ninth position for Paris and 

tenth position for the other two cities. Although their rankings are slightly lower, they also have some 

amount of influence on LST. 

 

Conversely, UMMs like Area, Perimeter, Volume, Long Axis Length (LAL) and Floor Area had the least 

effect on LST variations across all cities as compared to the other UMMs with less than 3% of RI.  

5.3.3 Sensitivity analysis 

The intricate relationships between the important UMMs and LST were revealed by using the PDPs based 

on the RFR results for each city. PDP offered insights into the variation of LST along with the UMMs, 

where the curves in Figure 5.13 (showing six common UMMs) and Figure 5.14 (showing distinct UMMs) 

represents the mean marginal effect. The subsequent sections will initially delve into the shared findings 

across the cities derived from Figure 5.13, followed by a discussion of the distinct outcomes depicted in 

Figure 5.14. 

 

For Paris, the most important UMM contributing to the variations in LST was the Mean Height. It can be 

observed from Figure 5.13 that the direction of change in Mean Height in relation to LST is negative. This 

implies as the building height increases the LST rapidly decreases, following an almost linear pattern. This 

persists until the height reaches approximately ~20 meters, beyond which LST stabilizes at lower 

temperatures, exhibiting minimal variation. As the second important UMM, the effect of MID on LST 

was non-linear. The results revealed that LST experiences a rapid decrease until MID reaches ~100 

meters. Subsequently, there are further declines in LST from ~170 to 200 meters, with spikes observed at 

~120 and 150 meters. Following this, LST exhibits a positive pattern until ~250 meters, after which it 

remains relatively constant for the remaining range of MID values. The relation of LST with the next 

important UMM, Building Adjacency, predominantly exhibited a negative direction, beginning from ~0.25 

and remaining relatively stable. This consistent negative association suggests that as Building Adjacency 

increases, LST tends to decrease, indicating a potential cooling effect on the environment. The fourth 

significant variable, Orientation, demonstrated an increasing effect on LST with an almost linear pattern, 

albeit with a slight dip observed at ~40°. This finding suggests that as the orientation angle of the building 

increases, LST tends to rise consistently, indicating a positive correlation between orientation and surface 

temperature. This pattern is further corroborated by the visual interpretation done in Section 5.2 for Paris.  

 

In Rotterdam, the most crucial UMM was Alignment, characterized by a stable and almost linear negative 

pattern from ~2° to 27°. Beyond this range, the relationship between Alignment and LST remained 

relatively unchanged despite increasing values. Orientation emerged as the second most important UMM, 

characterized by several fluctuations but with an overall negative pattern. This suggests that as the 

orientation of the buildings varies, LST tends to decrease, with a notable peak observed at ~35°. This 

observation was also verified by the visual interpretation done in Section 5.2 for Rotterdam. The pattern 

for Mean Height, the third most important UMM, grows positively from 0 till ~15 meters. Beyond this 

point, the LST begins to decrease till ~25 meters, eventually flattening out. This suggests that taller 

buildings may contribute to higher temperatures only up to a certain point. The next significant UMM 

influencing LST was MID. The analysis revealed a stable negative relation between MID and LST. LST 

exhibited a gradual and steady decrease with the increase in MID until ~300 meters. Beyond this 
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threshold, LST remained relatively constant. This pattern suggests that as the distance between the 

buildings increases, surface temperatures tend to decrease consistently. 

 

For the city of Milan, the most significant UMM influencing LST was Orientation, which exhibited a 

partial U-shaped pattern. The centre of the dip in the U-shape was observed at ~20°. Following this, the 

right side of the U-shaped curve showed a slight increase before sharply dropping from ~30° till ~40°. 

The subsequent UMM in line, Alignment, exhibited a relatively complex relationship with LST. The 

graphs revealed a notable dip in temperature around 2-3°, resulting in a sharp decrease from the highest 

temperature to 0 °C. While this anomaly may seem unusual, it can be considered negligible or disregarded 

in the overall pattern. Following this, it started stabilizing after an alignment of ~5° and displayed a 

negative pattern until ~20°. Beyond this point, the relation remained relatively unchanged. This suggests 

that within the observed range, deviations between the buildings from the optimal alignment angle are 

associated with lower surface temperatures, indicating a cooling effect. The next significant UMM, 

Building Adjacency, exhibited a monotonic negative effect on LST in Milan. The relation indicates that as 

building adjacency values increase, temperatures tend to decrease. MID was the next important UMM 

influencing the LST in this city. The pattern observed in the relationship between MID and LST starts 

with a slight decrease in slope, followed by a sharp increase until ~200 meters. Beyond this threshold, LST 

gradually decreases with the increase in MID, albeit with a few peaks in between. 

 

For Vienna, the most crucial UMM was MID, which displayed a relatively non-linear pattern. The results 

reveal a deep and narrow dip between 100 and 300 meters, indicating a significant fluctuation in LST 

within this range of interbuilding distances. The pattern for Alignment, the second most important UMM, 

exhibited a smooth monotonic negative relation with LST. This pattern was also observed in the visual 

interpretation in Section 5.2. Next important UMM was Orientation, characterized by a complex 

relationship resembling an inverted U-shape. Initially, the pattern exhibited a positive association between 

orientation and LST. However, beyond a certain threshold, from ~20 to ~45°, this relationship abruptly 

changes to negative, resulting in a substantial drop in the temperature. The fourth important UMM, 

Neighbour Distance, exhibited a negative relation with LST. The LST decreases sharply as the distance 

increases up to approximately 750 meters, beyond which the pattern stabilizes. 

 
In summary, while commonalities existed in the patterns and relationships between UMMs and LST 

across Paris, Rotterdam, Milan, and Vienna, variations were also apparent. From Figure 5.13, it is evident 

that LST exhibited a positive correlation with Mean Height across all cities except Paris. It has a 

fluctuating ascent pattern: when the height of the buildings is below a certain threshold—15 meters for 

Rotterdam and 20 meters for both Milan and Vienna—the LST tends to be higher. As the height of the 

buildings starts increasing from that threshold, those areas become cooler, showing a negative relationship 

with LST. This pattern is particularly evident in the cases of Rotterdam and Milan, while Vienna exhibits 

comparatively a weaker negative relation. Moreover, beyond the threshold, the height has no influence on 

the LST in Rotterdam and Vienna, while it increases slightly and then remains constant for Milan. There is 

an initial positive pattern in the relationship between MID and LST across Paris, Milan, and Vienna and 

afterwards, a notable dip at around 200 meters. Once the MID reaches a certain threshold (which varies 

for each city), the LST stabilizes indicating a diminishing effect of MID on temperature at larger scales. 

The results also reveals a generally negative relationship between Orientation and LST, with some positive 

patterns observed in the middle (~20 to 35°) for both Milan and Rotterdam. However, the pattern was 

entirely opposite in Paris. Both Building Adjacency and Neighbour Distance demonstrates non-linear 

cooling effects on the urban environment across all cities.  

 



ANALYZING THE IMPACTS OF URBAN MORPHOLOGY (UM) ON LAND SURFACE TEMPERATURE (LST) IN EUROPEAN CITIES 

45 

 
Figure 5.13 Partial dependence plots of the important UMMs under top ten that were common across Paris, Rotterdam, Milan, and Vienna with their corresponding rank of RI 
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Figure 5.14 shows the pattern and direction of the distinct UMMs for each city which were coming under 

top ten important UMMs. It is noteworthy that Squareness, which ranked fifth in importance for Paris, 

exhibited a monotonic negative pattern with LST, indicating a cooling effect on the urban environment. 

Additionally, Rectangularity contributed to LST variations in both Paris and Milan, displaying a positive 

pattern. Cell Alignment was a common UMM observed in Paris and Vienna, characterized by a negative 

and an almost linear relation. Convexity and Equivalent Rectangular Index (ERI) had a positive influence 

on LST in Vienna.  

 

 

Figure 5.14 Partial dependence plots of the important but distinct UMMs under top ten RI 

5.4 Expert validation 

This research included in-depth semi-structured interviews with three city experts on urban planning, each 

from Rotterdam, Milan and Vienna. They provided valuable insights into these findings regarding the 

potential reasons underlying these patterns and the heat dynamics across these cities. According to them, 

the diverse range of building metrics employed in this study is both heuristic and highly relevant within 

this field of research.  
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The experts from Rotterdam and Vienna noted that some UMMs, such as Orientation, may not directly 

impact LST and could be influenced by factors such as reflective building materials or the slope of the 

roofs. They also cautioned that the patterns seen in the PDPs may not fully represent their actual impact 

unless the original data points are plotted. This is because PDPs illustrate the effect of a particular variable 

on the outcome while averaging out the effects of other variables. 

 

The expert from Milan explained the contrasting relationship between Mean Height and LSTs in 

Rotterdam and Milan, where mid-rise buildings have a cooling effect on the environment, by drawing 

upon the historical backdrop of these cities. She highlighted that, European cities, including those analysed 

in this study, often have deeply ingrained and historically significant planning regimes. For instance, 

figures like Georges-Eugène Haussmann, known for transforming Paris with wide boulevards, 

significantly shaped the city’s urban fabric. Many buildings constructed during his time still remain today. 

However, the design and construction materials from that era may not be able to withstand today’s 

extreme temperatures. Both Rotterdam and Milan were heavily bombed during the Second World War, 

leading to extensive rebuilding efforts. As a result, the modern urban landscape of Rotterdam, in particular 

is characterized by taller buildings compared to other Dutch cities, which generally have lower building 

heights. This extensive reconstruction has influenced the urban heat dynamics, contributing to the 

observed patterns in LST. She emphasized on the importance of balancing historical preservation with the 

integration of sustainable urban principles, particularly when retrofitting older buildings for energy 

efficiency.  
 

Additionally, she confirmed the hotspot analysis and supported the observation that industrial areas on the 

periphery of Milan, especially near the ring road are mostly hotspots. This can be attributed to high heat 

emissions from manufacturing processes and energy consumption, lack of vegetation, and heat-retaining 

materials like metal and concrete. The proximity to the ring road exacerbates this by contributing 

additional heat through heavy traffic and vehicle emissions, with asphalt absorbing and slowly releasing 

heat. 

 

In addressing the implications for urban heat mitigation, she highlighted the need to recognize that each 

city faces unique challenges and requires tailored strategies that must be carefully balanced by local 

governments. The integration of innovative projects, such as rooftop initiatives of Milan and Rotterdam, 

highlights the potential to reshape urban environments while enhancing resilience to urban heat. 
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6 Discussion 

This thesis aimed to analyse the effects of UM on LST using UMMs and ML techniques, focusing on four 

European cities—Paris, Rotterdam, Milan, and Vienna. This chapter discusses the results presented in 

Chapter 5), providing an in-depth examination of the findings in relation to existing literature and insights 

from expert interviews. The discussion is organized into three sections. Section 6.1 (‘Reflection on 

influence of UM on LST’) explores how UMMs influence LST and discusses the potential reasons for 

these effects. Section 6.2 (‘Implications for urban heat mitigation’) explores the implications of this study 

for mitigating urban heat in European cities. Finally, Section 6.3 (‘Limitations’) outlines the existing 

limitations of this study. 

6.1 Reflection on influence of UM on LST 

It has already been well established by several studies that building morphology is one of the most 

important factors in determining LST (He et al., 2023; Huang & Wang, 2019; Puche et al., 2023; Wang et 

al., 2022). Building on this foundation, the present study revealed that building UMMs play an important 

role in influencing LSTs across the four cities. After employing the RFR model, it was observed that the 

relative impact of UMMs on the LST varied significantly. Accordingly, the key UMMs influencing the 

variation in LST among cities were identified. 

 
In Paris, a significant inverse statistical relationship between Mean Height and LST has been found, which 

is consistent with previous studies by Puche et al. (2023), Cilek & Cilek (2021) and Zhu et al. (2023). These 

studies demonstrated that an increase in building height can reduce LST. Theoretically, high rise buildings 

can cast larger shadows than low-rise buildings, which reduces the amount of solar radiation that reaches 

the ground and, consequently, lowers the surface temperatures (Li et al., 2011). Huang & Wang (2019) 

pointed out that taller buildings can also improve surface roughness that can lead to the creation of 

mechanical turbulence, which in turn enhances convective heat dissipation. In contrast, the relationship 

between Mean Height and LSTs in the other cities is found to be opposite to that of Paris, but with mid-

rise buildings still having a cooling effect on the urban environment. Similar patterns have been reported 

by Hu et al. (2020) and Li et al. (2021) where the positive influence of building height on LST reached its 

peak at a height of 10-15 meters before gradually declining.  

 

One of the underlying reasons explained by the Milan expert is the post-war histories of these cities. Both 

cities underwent extensive rebuilding after World War II, resulting in Rotterdam having taller buildings 

compared to other Dutch cities. Regional characteristics, such as proximity to water bodies or higher 

elevations, also play a significant role in shaping local climates. Research by Robitu et al. (2004) indicates 

that the cooling effect of water bodies can extend up to 30 meters from their banks. For Rotterdam, a city 

receiving water from two sources, the Maas River and the Rhine River, water has a significant influence on 

the temperature. According to Heusinkveld et al. (2014), the temperature variation of these rivers is less 
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than 2 °C even on hot days, which helps maintain a stable and cooler microclimate during the daytime in 

their vicinity. This impact is amplified because of the predominant southwest winds (Janssen, 2011). 

Moreover, in the north and southeast of Rotterdam, there are many florist shops and greenhouses, which 

emerged as coldspots in this study, that can positively influence airflow. The presence of large water 

bodies is a common feature in many Dutch cities, and it effectively reduces the daily maximum 

temperatures. Similarly, in Vienna, the Danube River plays a crucial role in moderating the local climate. 

The cooling influence of the Danube is evident in one of the major coldspots highlighted in this study, 

much like the effect seen in Rotterdam. The presence of hilly terrain near urban areas significantly alters 

airflow dynamics and can enhance the ventilation efficiency by two to three times within urban canyons—

narrow street configurations flanked by tall buildings—compared to flat urban terrain (Sun et al., 2012). 

Therefore, the proximity of the Vienna Woods, a hilly region southwest of the city, to the other coldspots 

(mostly observed on the periphery of the city in the same direction), could also influence local wind 

patterns and temperature regulation. 

 

The initial positive relation observed between MID and LST across Paris, Milan and Vienna may be 

attributed to heat accumulation. Previous research has shown that dense clusters of high buildings can 

elevate LST due to restricted air circulation, a phenomenon known as the ‘canyon effect’ (Kim et al., 

2022). This effect is closely associated with UM factors such as building height and spacing among them 

(Guo et al., 2016). It is formed by high buildings along narrow streets, which tend to slow down air flow, 

weaken energy transfer, and cause more heat to accumulate on the surfaces, leading to a rise in LST (Wu 

et al., 2022). However, the relationship between MID and LST has a sudden dip after a certain distance. 

Studies like Wu et al. (2022) and Yuan & Chen (2011) have suggested that increasing the space between 

buildings may improve the efficiency of ventilation and rate of energy exchange and effectively reduce 

LST. But this cooling effect again starts to diminish after a certain point as the distance is further increased 

(You et al., 2017), which is also noted in the findings of this study. 

 

Another interesting finding is that the correlation patterns between Orientation and LST varied among the 

cities, with Rotterdam and Milan displaying a negative pattern, contrasting with the positive pattern 

observed in Paris. The orientation of a building plays a crucial role in determining how much solar 

radiation it can receive (Habibi, 2023). Despite an extensive review of the existing literature, no studies 

were found that explicitly talks about the relationship between the orientation of buildings and LST. 

Theoretically, a building that is oriented perfectly towards the cardinal directions (0° or closer) will have 

less heat-absorbing surface area compared to a building that is oriented at an angle (45° or closer) from 

the cardinal directions. This principle helps explain the observed pattern in Paris, where buildings oriented 

closer to cardinal directions tend to exhibit lower LSTs.  

 

As suggested by the expert from Rotterdam and Vienna, differences in Orientation patterns among cities 

can be attributed to factors such as the use of reflective building materials and types of roofs. Research 

suggests that roofs can contribute 70% of the building’s heat gain (National Disaster Management 

Authority, 2021), with flat roofs particularly prone to absorbing heat easily due to their continuous 

exposure to sunlight throughout the day (Robyn, 2020). Steep-sloped roofs can reflect sunlight better than 

flat or low-sloped roofs. Moreover, a suitable orientation can facilitate sufficient wind speed and airflow to 

achieve successful and comfortable ventilation (Du, 2019). Givoni (1994) proposed that oblique winds, 

which approach the wall at angles between 30 and 120°, can accomplish cross ventilation if both the 

windward and leeward walls have openings.  

 

The above factors are also closely linked to the unique architectural and historical integrity of these cities, 

which was highlighted by the expert from Milan, who gave the example of the Haussman’s renovation of 
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Paris. Approximately 80% of its buildings were constructed before 1945. Many of these buildings (totaling 

around 110,000 properties) are characterized by zinc roofs (dark materials) and limestone façades, chosen 

for their affordability and durability during their time. In today’s date, they contribute to increasing 

temperatures reaching upto 80 °C by absorbing heat from the sun (Willsher, 2023). These buildings 

feature inefficient heating and cooling systems, which collectively account for up to 15% of Paris’ 

greenhouse gas emissions (AFP News, 2019). Similarly, around 20% of Vienna’s building stock dates back 

to the Gründerzeit era, predominantly from the 1850s. These old buildings are still located in the city’s 

historic centre and are now mostly privately owned residential properties (Mukati, 2021). The findings of 

this study revealed that a large portion of the residential area in the centre, coinciding with these historic 

areas, has emerged as a significant hotspot. According to the literature, these buildings require higher 

cooling demands due to their age and lower insulation levels, compared to more modern constructions 

from the 1960s to 1980s (Mukati, 2021). However, the occurrence of hotspot might also be due to the 

absence of green spaces in these central areas. In Rotterdam, the city centre and the pre-war districts in the 

west and south also experience significantly high temperatures (Hoeven & Wandl, 2015). In addition, this 

study confirmed that industries and port areas are the main hotspots, which were moved to new industrial 

zones on the outskirts of the city after the war (Thissen, 2013). Rotterdam’s postwar reconstruction also 

led to 200 million square feet of flat rooftops which is capable of absorbing more heat (Rotterdamse 

Dakendagen, 2020). The industrial areas in Milan, were once connected by the famous Navigli canal 

network for transportation purposes. This is the reason why, most of the hotspots are located on the 

periphery of the city. After the war, the city’s economic revival led to new buildings and industries (Tyson, 

2021). Increased road transportation led to significant canal pollution, because of which the canal was 

covered up and replaced by a ring road. 

 

Examining the contrasting Orientation-LST patterns of Rotterdam and Milan suggests they might already 

have some existing strategies encompassing urban planning regulations, architectural design principles, and 

material choices aimed at enhancing thermal comfort and alleviating high temperatures within the city. 

Despite Rotterdam having a large number of buildings with flat roofs, they have made efforts to utilize 

this area with innovative solutions. Many buildings have constructed cool roofs and façades, which can 

significantly decrease the surface temeratures. The city also has a Rethinking Rooftops movement, where 

Rooftop Days festival is organized by the government every year. This event highlights the potential of 

rooftops in addressing various urban challenges, including the reduction of urban heat (Rotterdamse 

Dakendagen, 2020). Similarly, Milan has an ongoing program to explore green roofs and innovative 

Nature-based Solutions (NbS) in its southern district, aiming to eventually implement these strategies 

throughout the entire city. 

 

Building Adjacency shows an overall negative pattern across all cities with respect to LST. While there are 

not many studies specifically addressing this aspect, a possible explanation lies in the characteristics of 

adjacent buildings. Buildings that are joined together would have fewer exposed walls per unit area 

compared to standalone buildings. Consequently, these surfaces would absorb significantly less solar heat. 

Additionally, adjoined buildings would have limited exposure or interaction with external hot air from 

their surroundings. Hence, they may not experience as much convective heat transfer from the 

surrounding environment, which could contribute to lower LST compared to standalone buildings. 

Furthermore, adjacent buildings can shade each other, reducing direct sunlight exposure on the walls and 

roofs, further decreasing heat absorption.  

 

Another crucial point to consider is the varying contributions of UMMs to LST variation at the building 

level. The present study indicates that the twenty-four UMMs can statistically explain more than 80% of 

the variation in LST across all cities using the RFR model. This level of explanatory power is noteworthy, 
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as it aligns closely with the results of some previous studies, such as those by Han (2023) and Yin et al. 

(2022). These studies have reported similarly high levels of explained variance, indicating a robust 

relationship between UM and LST. It is even higher than several studies (Li et al., 2021; Yao et al., 2022). 

These differences may be attributed to the type and number of UM factors considered for the modelling 

or the analytical methods these studies have employed. Although, the result of the statistical model shows 

that the considered UMMs explain much of the LST variation, this does not imply a direct causal 

relationship, as also suggested by the city experts. For instance, proximity to water bodies or the use of 

different building materials (among many others), which significantly influence the heat, may confound 

this relationship. Some UMMs might be correlated with the presence of a water body or the use of 

building materials that impact LST. Thus, the influence of UMMs on LST might partly be due to their 

association with wind speed and surface materials.  

6.2 Implications for urban heat mitigation 

European cities are increasingly at risk from the rising temperatures caused by global warming, which is 

significantly altering their local climates and heat patterns. Urban areas, expected to accommodate nearly 

70% of the global population by 2050, will face twice the amount of heat stress compared to rural areas 

(Hayward et al., 2023). Given the associated risks such as heat stress, health problems, economic 

instability, and damage to infrastructure, there is an urgent need for European cities to adapt to climate 

change to safeguard themselves and their residents from its unavoidable impacts (Matt Rees, 2020). With 

buildings being one of the major contributors to climate change within these urban environments, it is 

essential to focus on making them a central part of the solution (IPCC, 2023). The results from this study 

have profound implications for mitigating urban heat in European cities. Despite numerous studies 

analysing UM factors at various scales (Hu et al., 2022; Huang & Wang, 2019; Cilek & Cilek, 2021; Yang et 

al., 2021; Zhu et al., 2023), obtaining a quantitative understanding at the building level remains challenging 

because of availability of suitable building data. This study emphasizes the importance of understanding 

these factors at the building level to aid urban planners, architects, and other concerned actors in 

improving urban thermal environment in European cities.  

 

The most influential UMMs from this study were found to be Mean Height, Orientation, Alignment, 

Building Adjacency and MID. By strategically managing these factors, urban planners and policymakers 

can effectively mitigate urban heat, thereby creating more comfortable and sustainable city environments. 

The study outlines several implications for improving thermal comfort in existing as well as new urban 

developments across European cities, based on observed LST patterns and the varying impact of UMMs 

on LST.  

 

Many of the older buildings in these cities, as discussed in the previous section, suffer from poor 

insulation, unsuitable locations, and a heavy dependence on air-conditioning, rendering them unfit for the 

extreme climate conditions of the 21st century (Goodell, 2023). Additionally, their outdated designs, 

absence of modern energy efficiency standards, insufficient thermal insulation, and poor ventilation result 

in higher energy usage, often derived from non-renewable sources, increases greenhouse gas emissions. To 

address these issues, it is essential to renovate and update historic and cultural heritage buildings, to 

improve their energy efficiency and enhance the thermal comfort of people. In addition, this study also 

acknowledges that implementing cooling measures can be challenging in densely populated areas, due to 

limited space availability. Alternative approaches can be adopted to make efficient utilization of available 

space. 
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Looking at the existing situation in Paris, adding insulation under the zinc roofs can be expensive. A more 

feasible solution could be painting the roofs white. The albedo or reflectivity of the buildings can 

significantly increase by using light coloured materials, thereby reducing the heat gain (Pal et al., 2020). 

The city should also promote rooftop strategies similar to those implemented in Rotterdam and Milan. 

Vertical greening strategies, such as green roofs, green walls, and street parks, can effectively enhance the 

urban ecological environment and lower surface temperatures in high-density areas (Zhang et al., 2022). 

Green walls with evergreen plants have the potential to lower daytime temperatures by as much as 9 °C on 

hot days (Vox et al., 2018). Given the constraints on reducing impervious surfaces in these urban settings, 

these vertical and rooftop greening methods can play a crucial role in mitigating high surface temperatures.  

 

Additionally, designing buildings with sloped roofs at optimal angles to minimize solar exposure, along 

with incorporating shading devices like awnings and pergolas, is another solution to mitigate solar gain. A 

steep-sloped roof offers natural advantages in terms of insulation and ventilation, whereas a flat roof may 

necessitate extra insulation measures to uphold energy efficiency standards (Irwan et al., 2010). The 

substitution of flat roofs with sloped alternatives can yield a notable 6% reduction in the total annual 

energy consumption of buildings (Peng et al., 2017). High-density cities like Paris should consider 

adopting these strategies to reduce heat storage. These measures will not only help in lowering the LST in 

urban areas but also improve overall thermal comfort for their residents.  
 

The above implications are specific to existing buildings. Addressing design implications for new urban 

developments, the findings of this study indicate that mid-rise buildings between 15 to 25 meters tend to 

reduce LST, suggesting that buildings within this range can promote cooling effects. However, these 

conclusions hold true only if the observed patterns are reliable. Traditional strategies have often relied on 

linear relationships between the UM factors and the surface temperatures (Zhang et al., 2020), like 

reducing the SVF by 0.2 can lower the average daytime temperatures by approximately 0.3 °C (Yang et al., 

2011). Recent research, including this study, suggests that different building morphologies are 

interconnected and collectively impact the thermal environment (S. Du et al., 2022). Thus, it is essential to 

carefully balance the ideal height of the building with adequate inter-building distance to avoid creating 

urban canyons, which can trap heat. According to Cheung & Liu, (2011), increasing the distance between 

buildings (to approximately three times the width of a building) significantly enhances the ventilation rates. 

Moreover, ensuring greater distances between buildings can also help increase shadow coverage, especially 

for high-rise buildings, further contributing to lower LST and enhanced thermal comfort. 

 

The RFR modelling in this study demonstrates strong generalization capabilities. This study has been 

conducted in four European cities, all showing a high percentage of variables explained. This consistency 

suggests that the model can be effectively applied to other European cities, which often share similar 

urban patterns and characteristics. Therefore, the model appears to have broader applicability across 

different European urban contexts, potentially serving as a useful tool for urban planners and 

policymakers in addressing LST variation and mitigating urban heat island effects. 

 

Moreover, the findings of this study suggest that a grid measuring 70 meters by 70 meters could be an 

optimal scale for assessing the impact of building morphology on LST variations, particularly when 

compared to other studies that achieved their highest accuracy with larger grid resolutions. While other 

research found optimal scales ranging from 210 meters by 210 meters to 240 meters by 240 meters 

(Estoque et al., 2017), and even up to 600 meters (Han, 2023), these larger scales may miss finer variations 

in building morphology and LST. This scale of 70 meters by 70 meters proved effective as it balanced 

both detail and computational efficiency and allowed for a comprehensive analysis of UMMs without 

overwhelming data processing resources.  
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Lastly, the study also highlights the efficacy of the momepy toolkit in conducting detailed analysis of 

building morphology and exploring the relationships between UM and thermal dynamics. Notably, 

momepy exhibits versatility in handling complex spatial data, offering a spectrum of functionalities for 

processing and analyzing building datasets. These functionalities include data cleaning, generation of MTs, 

and computation of a comprehensive range of UMMs. Thus, momepy emerges as a reliable instrument for 

computing detailed building metrics, serving as a valuable resource for urban planners, designers, and 

architects. Its robust capabilities can enable them to conduct in-depth analyses of UM, facilitating 

informed decision-making aimed at mitigating heat-related issues. 

6.3 Limitations 

The selection of the study area faced several challenges due to the unavailability of building height and 

ECOSTRESS data, in many potential cities. Although some cities experiencing even higher temperatures 

than the chosen cities would have been ideal for the study, they could not be included due to these data 

constraints. Additionally, there was an initial plan to incorporate thermal data from SDGSAT-1, a recently 

launched Chinese satellite offering higher resolution, but time constraints prevented the submission of a 

proposal to acquire this data. The process of generating MTs and computing UMMs using the momepy at 

the city level proved to be extremely time-consuming. This computational demand often caused the server 

to crash, further complicating the research process. The MT files themselves were very large for each city, 

which further prevented the inclusion of UMMs based on them in the RFR model due to the high 

computational demands. 

 

While the study extensively examined the influence of UMMs on LST, it’s crucial to recognize that these 

findings are solely reliable on the data used and the results of this study. UMMs served as proxies for 

complex interactions within urban environments, and their role may not fully capture the dependencies 

and interactions affecting surface temperatures. The patterns observed indicate only a marginal effect of 

UMMs on LST. Due to the absence of actual data points the PDP curves may not accurately reflect the 

true nature of the relationship between the UMMs and LST. The direct causality between UMMs and 

surface temperatures could be influenced by additional factors beyond the scope of this analysis, such as 

the use of reflective building materials, roof types, wind speed, and regional factors such as water bodies 

and high elevations, as highlighted by the city experts. Additionally, the patterns of several UMMs, such as 

alignment and building adjacency, leave room for discussion regarding their possible causes. Due to the 

limited research available on these specific UMMs, it could not be determined if these patterns align with 

other studies, making interpretations regarding these metrics speculative and in need of further 

investigation. 
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7 Conclusion and recommendations 

To conclude this thesis, this chapter is divided into three sections: Section 7.1 (‘Conclusion) presents the 

final conclusion of this study, Section 7.2 (‘Future research’) gives recommendations for future research, 

and Section 7.3 (‘Ethical considerations, risks and contingencies’) details out the ethical considerations 

related to this study. 

7.1 Conclusion 

This study investigated the impacts of UM on daytime LST during the summer period across four 

European cities—Paris, Rotterdam, Milan, and Vienna—using a comprehensive set of thirty UMMs and 

ML techniques. By leveraging the capabilities of the MOMEPY toolkit and employing a RFR model, the 

study delivers a detailed understanding of how building morphology influences the thermal environment. 

The research identified key UMMs, such as Mean Height, Orientation, Alignment, Building Adjacency, 

and MID, which play a pivotal role in shaping urban LSTs. Taller buildings in Paris were found to have a 

cooling effect due to increased shadowing and mechanical turbulence, aligning with previous studies. In 

contrast, mid-rise buildings in Rotterdam, Milan and Vienna also contributed to cooling. The study 

highlighted the cooling effect of water bodies, particularly in Rotterdam and Vienna, where rivers played a 

crucial role in moderating the local climate. Additionally, it identified that building orientation and 

adjacency significantly affect LST; buildings oriented away from the cardinal directions in Paris exhibited 

higher LSTs, and adjacent buildings generally experienced less heat possibly due to reduced surface areas 

to absorb solar heat. Moreover, the city experts emphasized the importance of historical context, 

particularly the post-war reconstructions and associated building factors, such as building materials, in 

shaping modern urban heat dynamics. In relation to this, the study also correlated this insight with the 

occurrence of hotspots in regions characterized by older, less insulated buildings, particularly notable in 

Vienna, and in industrial zones across all cities. Furthermore, it also identified coldspots in areas featuring 

greenhouses, as observed in Rotterdam and in low-density residential areas across all cities. It is important 

to note that the patterns uncovered in this research highly rely on the data utilized and do not indicate a 

direct relationship between LST and UMMs. It acknowledges that LST could be influenced by additional 

factors beyond the scope of this study. Nevertheless, the RFR model demonstrated promising results, 

highlighting the potential for its broader applicability across other European cities. It also suggests that a 

grid scale of 70 meters by 70 meters can be optimum for assessing UMMs’ impact on LST. Momepy can 

be used as a reliable tool for conducting morphological analysis at a building level and facilitating informed 

decision-making aimed at mitigating heat-related issues. Based on these results, the study outlines several 

implications for improving thermal comfort across European cities. For existing urban areas with limited 

space availability, the study recommends retrofitting historic buildings with improved insulation and 

reflective roofing materials. It also suggests utilizing the flat roofs of the modern buildings by 

implementing vertical greening strategies or replacing them with sloped roofs. Furthermore, the study 

emphasizes the importance of designing new urban developments with appropriate building heights, 
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orientations, and inter-building distances. Overall, this research provides a new perspective by 

encompassing a wide range of UMMs to study the surface temperature patterns, which are crucial for 

developing more effective urban heat mitigation strategies. The inclusion of relatively novel UMMs not 

extensively explored in existing literature underscores a significant gap in current knowledge, emphasizing 

the need for continued research. Further integration of these UMMs in future research will be essential to 

deepen our understanding of their complex relationships with urban thermal environments and to validate 

their broader applicability. 

7.2 Future research 

Integrating high-resolution thermal data, such as that obtained from the SDGSAT, can provide more 

detailed spatial and temporal insights into urban heat patterns. This high-resolution data will enable more 

precise identification of hotspots and the factors contributing to them. Moreover, to capture the joint 

effects of various factors influencing urban heat, it is advisable to employ more sophisticated techniques 

such as multivariate analysis, interaction plots, or advanced machine learning models (e.g., deep learning 

models). They might be better at capturing complex interactions between variables, potentially improving 

the accuracy and predictive performance of the model. However, the integration of such complex 

techniques brings additional challenges. Model design grows in complexity, requiring careful consideration 

of the architecture and parameters of advanced models. Computational requirements increase significantly, 

necessitating more powerful hardware and longer processing times. 

 

Training the RFR model with the MTs layer, which provided information about the diversity within the 

buildings, could have been highly beneficial and may have improved the performance of the model. 

Notably, the UMMs used in this study are relatively new and have not been widely discussed in the 

existing literature. This highlights a significant gap in the current body of knowledge and underscores the 

necessity for further research. Conducting more studies like this one will facilitate a deeper understanding 

of these metrics and their influence on LST, thereby contributing to a more comprehensive body of 

research on urban heat patterns and mitigation strategies. Moreover, the current design strategies aimed at 

mitigating urban heat primarily target the challenges posed during hot summer months. For a more robust 

approach, comprehensive and evidence-based research across diverse regions characterized by different 

climatic zones and urban sizes, conducted at various times of day and seasons, is crucial. Such research is 

essential to grasp how these strategies perform under varying conditions. Further research should aim to 

develop adaptive urban heat mitigation strategies that are specifically tailored to the unique environmental 

and urban contexts of each city. 

7.3 Ethical considerations, risks and contingencies 

The data that support the findings of this study are available in ITC’s repository. The authors, researchers, 

and all the other individuals who supported in the completion of this research were duly acknowledged. 

The information gathered from the expert interviews have been used for academic purposes and the 

responses will remain confidential and anonymous with the highest standard of research ethics, effectively 

addressing privacy and consent concerns. The findings of this study were entirely based on the empirical 

evidence gathered from the collected datasets. During the preparation of this work, the author used 

ChatGPT in order to grasp certain concepts, simplified explanations and paraphrase some sentences to 

refine the language and grammar. After using this tool/service, the author carefully examined and 

modified the output of this tool/service to guarantee its correctness and takes full responsibility for the 

content of the work. 
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Annexures 

Annexure I Summary of different datasets and methods used by various authors to analyse the impacts of urban 
morphology on LST (Source: Author, 2023) 

PAPERS AUTHORS DATA USED METHODS 

Impacts of landscape structure 

on surface urban heat islands: A 

case study of Shanghai, China 

Li et al., 2011 

LST, NDVI, ISA, Fv: 

Landsat 7 ETM+ 

LM: LU Map (Aerial 

Photos) 2.5 m resolution 

Relation: Statistical 

regression analysis & 

scatterplots 

Analysis of Surface Thermal 

Patterns in Relation to Urban 

Structure Types: A Case Study 

for the City of Munich 

Heldens et al., 

2013 

LST: Landsat (60 m 

resolution) & Daedalus (4 

m resolution) 

SVF: DEM 

USTs: Munich 

Municipality 

Relation: Multiple linear 

regression analysis 

Effects of landscape 

composition and pattern on land 

surface temperature: An urban 

heat island study in the 

megacities of Southeast Asia 

Estoque et al., 

2017 

LST, MNDWI, LC, 

LMs: Landsat-8 

OLI/TIRS 

Influence of mean LST, 

impervious surface & 

green space density 

calculated using: 

a) Urban-rural 

gradient analysis by 

creating multiple ring 

buffer zones with a 

distance interval of 

300 m 

b) Multiresolution 

grid-based analysis 

Relation: Bivariate 

correlation analysis & 

scatter plot 

Assessing the relationship 

between surface urban heat 

islands and landscape patterns 

across climatic zones in China 

Yang et al., 

2017 

LST, SUHI: EOS-Aqua-

MODIS 8-day composite 

product (version 5), SRTM 

DEM 

LMs, SUHI: LU/C 

Datasets (CLUDs) 30 m 

resolution 

Relation: Spearman's rank 

correlation coefficient 

Spatio-temporal analysis of the Berger et al., Urban LC: VHR data LC classification using 
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relationship between 2D/3D 

urban site characteristics and 

land surface temperature 

2017 (UltraCamX & Ikonos-2) 

1-4 m resolution 

LST: Landsat ETM+ 

2D/3D UM: nDSMs 

OBIA 

Relation: Spearman's rank 

correlation coefficient 

Assessing the relationship 

between sky view factor and 

land surface temperature to the 

spatial resolution 

Scarano & 

Mancini, 2017 

LST: Landsat 8, ASTER 

& TASI-600 

SVF Maps:  3D building 

database (footprints & 

heights), LC Map (CLC), 

DSM 

DSM created by adding 

building heights to a DTM 

Relation: Correlation 

analysis & scatter plot 

Investigating the effects of 3D 

urban morphology on the 

surface urban heat island effect 

in urban functional zones by 

using high-resolution remote 

sensing data: A case study of 

Wuhan, Central China 

Huang & 

Wang, 2019 

LC, UFZs, LMs: ZiYuan-

3 (ZY-3), 3D building data, 

OSM, & POI data 

LST: Landsat 8 

Relation: ANOVA 

between LST & UFZs 

Pearson correlation 

analysis between LM & 

LST 

Modeling the spatial relation 

between urban morphology, 

land surface temperature and 

urban energy demand 

Chen et al., 

2020 

2D/3D UM: Top10NL-

AHN2 (NL Database) 

NDVI: Landsat 8 

Relation: Ordinary Least 

Squares Regression (OLS) 

& Geographically Mean 

Regression (GWR) Model 

Impact of urban morphology 

and landscape characteristics on 

spatiotemporal heterogeneity of 

land surface temperature 

Guo et al., 

2020 

LST, NDVI/BI/SI: 

Landsat OLI/TM 

Night-Lighting: NGDC, 

NOAA 

DEM: Geospatial Data 

Cloud 

LU: Dalian Land 

Resources 

Global/Local Moran’s I 

Analysis for LST spatial 

autocorrelation 

Relation: Ordinary Least 

Squares Regression (OLS) 

& Geographically Mean 

Regression (GWR) Model 

The influence of urban spatial 

pattern on land surface 

temperature for different 

functional zones 

Li et al., 2020 

LST, NDVI, NDBI: 

Landsat 8 

LC, UFZs, LMs: Ikonos,  

2D/3D UM: Building 

Engineering 

Administration & Real 

Estate Information 

Network 

Relation: Zonal statistics, 

ANOVA & Spearman 

correlation between LST & 

LM within each UFZ 

Night and day: The influence 

and relative importance of urban 

characteristics on remotely 

sensed land surface temperature 

Logan et al., 

2020 

LST, Albedo, ISA, 

NDVI/BI: Landsat 8, LC 

Tree canopy cover: 

DEM, Landsat 5 

Relation: Used 6 models, 

Linear model, Multivariate 

Adaptive Regression Spline 

(MARS), Generalized 

Additive Model (GAM), 

Random Forest Regression  

(RFR), Gradient Boosted 

Regression Trees, 

Convolutional Neural 

Network (CNN) 
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Quantifying 3D building form 

effects on urban land surface 

temperature and modeling 

seasonal correlation patterns 

Li et al., 2021 

LST: Landsat 8, 7 

2D/3D UM: Public data 

sharing platform, Wind 

Direction 

Relation: Random Forest 

Regression (RFR) & Partial 

Dependence Plots (PDPs) 

Analyses of land surface 

temperature (LST) variability 

among local climate zones 

(LCZs) comparing Landsat-8 

and ENVI-met model data 

Cilek & Cilek, 

2021 

LST: Landsat 8 

LCZ: Building data, 

Google Earth Engine, 

Digital city maps 

NDVI: Sentinel 2 

LU: Urban atlas 

 

Relation: Zonal statistics, 

Boxplots, Kolmogorov-

Smirnov tests, Q-Q plots, 

& histogram comparisons 

Understanding land surface 

temperature impact factors 

based on local climate zones 

Yang et al., 

2021 

LST NDVI/MNDWI/ 

NDSI: Landsat 8 

OLI/TIRS 

LCZ: Building data from 

Baidumap, DEM 

Relation: Correlation & 

Boxplots 

Relationship between urban 

morphology and land surface 

temperature—A case study of 

Nanjing City 

Yin et al., 

2022 

LST, LU/C: Landsat 8 

2D/3D UM: 3D building 

database, STRM DEM, 

POI data, road network 

Relation: Geographically 

Mean Regression (GWR) 

Model 

Spatial Pattern Impact of 

Impervious Surface Density on 

Urban Heat Island Effect: A 

Case Study in Xuzhou, China 

Zhang et al., 

2022 
LST, ISA: Landsat 8 

Relation: Bivariate 

Global/Local Moran’s I 

Analysis 

Urban growth and heat islands: 

A case study in micro-territories 

for urban sustainability 

Molina-

Gómez et al., 

2022 

LST, NDVI/BI/WI, 

NDISI: Landsat 7 ETM+, 

8 OLI/TIRS 

Relation: Principal 

Component Analysis 

(PCA)  

Investigating the effects of 

urban morphological factors on 

seasonal land surface 

temperature in a “Furnace city” 

from a block perspective 

Yao et al., 

2022 

LST: Landsat 8 

2D/3D UM: Block & 

Building data 

Night-Lighting: Luojia1–

01 

Relation: Distribution 

Index (DI), Random 

Forest Regression (RFR), 

ANOVA, 

Pearson correlation 

analysis 

Insights into the Effect of 

Urban Morphology and Land 

Cover on Land Surface and Air 

Temperatures in the 

Metropolitan City of Milan 

(Italy) Using Satellite Imagery 

and In Situ Measurements 

Puche et al., 

2023 

LST, LCZ: Landsat 8, 

building height/density 

data 

Random Forest (RF) 

Classification used for 

LCZ mapping 

Relation: ANOVA & Box 

Plots 

Analyzing the scale dependent 

effect of urban building 

morphology on land surface 

temperature using random 

forest algorithm 

Han, 2023 

LST: Landsat 8 

OLI/TIRS 

UM: Building height from 

Baidu, Inc. (3 m 

resolution) 

Relation: Random Forest 

Regression (RFR) Model 

The Influence of Urban Form 

on Land Surface Temperature: 
He et al., 2023 

LST: Landsat 8 

OLI/TIRS 
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Annexure II Köppen-Geiger climate classification map for Europe (1980-2016) 

 

 
Annexure III Summer season intensity of urban heat islands (UHIs) (°C) and the projected number of extreme 
heatwaves in the near future (2020-2052) (Source: European Environment Agency, 2023). The red squares denote 
the cities selected for the study. 
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Annexure IV Description of UMMs computed using momepy 

MORPHOMETRICS DESCRIPTION 

Area Area of each building in a given GeoDataFrame. 

FloorArea Floor area of each building based on height and area. 

LongestAxisLength (LAL) Length of the longest axis of building. 

Perimeter Perimeter of each building in a given GeoDataFrame. 

Volume Volume of each building in a given GeoDataFrame based on its height and 

area. 

CoveredArea Total area covered by neighbours defined in spatial_weights and the 

building itself. 

MeanHeight Mean height of buildings within 100 meters of its neighbours. 

CircularCompactness Compactness index of each object in a given GeoDataFrame. 

Convexity Convexity index of each object in a given GeoDataFrame. 

Elongation Elongation of each object seen as elongation of its minimum bounding 

rectangle. 

EquivalentRectangularIndex (ERI) Equivalent rectangular index of each object in a given GeoDataFrame. 

FormFactor Form factor of each object in a given GeoDataFrame. 

FractalDimension Fractal dimension of each object in given GeoDataFrame. 

Rectangularity Rectangularity of each object in a given GeoDataFrame. 

ShapeIndex Shape index of each object in a given GeoDataFrame. 

SquareCompactness Compactness index of each object in a given GeoDataFrame. 

Squareness Squareness of each building in a given GeoDataFrame. 

VolumeFacadeRatio (VFR) Volume/façade ratio of each building in a given GeoDataFrame. 

Orientation Calculates the deviation of orientation of the longest axis of bounding 

rectangle of a building in range 0 – 45 from cardinal directions are captured. 

SharedWalls Length of shared walls of adjacent buildings. 

Alignment Mean deviation of solar orientation of buildings on adjacent cells from a 

building. 

BuildingAdjacency Tendency of the buildings to join into larger structures. It is calculated as a 

ratio of joined built-up structures and buildings within the extent defined in 

spatial_weights. 

CellAlignment Calculate the difference between cell orientation and the orientation of 

building. 

NeighbourDistance Mean distance to adjacent buildings (based on spatial_weights). 

MeanInterbuildingDistance (MID) Calculates the mean interbuilding distance between buildings on adjacent 

cells based on spatial_weights. 

FloorAreaDensity Gross density of the building. 

Gini Gini index of area of buildings within neighbours defined in 

spatial_weights. 

Range Range of areas of buildings within neighbours defined in spatial_weights 

Shannon Shannon areas of buildings within neighbours defined in spatial_weights. 

Simpson Simpson’s diversity areas of buildings within neighbours defined in 

spatial_weights. 

 
 


