
Automatic precondition generation for VerCors
JORT MOL LOUS, University of Twente, The Netherlands

ABSTRACT
Program verification is a field of computer science, which focuses on deter-
mining if a program functions correctly. This is done by defining pre- and
postconditions and possibly other related specifications. However, the writ-
ing of these specifications is still very much a human task. One of the tools
that suffers from this burden is the verification tool VerCors. To reduce this
burden, algorithms have been proposed for generating preconditions based
on postconditions. In this paper, we look at multiple currently available tools
that use such algorithms to generate preconditions. We compare their use
cases with the scenarios in which VerCors is usually used, looking at their
overlap. We look further at a specific tool that shows higher potential, PGen,
and see the value of integrating it within VerCors. This is done by testing
on multiple self-made examples and a set of real-world examples, that are
used to test VerCors. Using the results we determine if this tool should be
implemented within VerCors

Additional Key Words and Phrases: VerCors, Specifications, Automation,
Precondition Inference

1 INTRODUCTION
VerCors is a tool for program verification tool that is developed by
the FMT group within the University of Twente. This tool focuses
on deductive verification for parallel and concurrent programs. For
such a verification tool to be able to analyze the correctness of a
program, it needs specifications to be written for it. These specifica-
tions are written per function in a program and can be categorized
into two subcategories: Those that specify how a program should
behave, and those that help the tool with proving this behavior [10].
The general forms of this first category are pre- and postconditions.
Preconditions specify the expected input, e.g. by limiting values
to be in a specific range, and postconditions specify the expected
output (given the expected input) of a function, e.g. checking if the
output values are within the same range. An example of a specifica-
tion in the second category is that of loop invariants, which specify
conditions that should be true before and after each iteration of a
loop. These extra specifications allow a verification tool to verify the
iterations of a loop instead of the entire loop at once, and without
them, verification of a program may become infeasible.

However, the writing of these specifications is one of the bottle-
necks for verification [4]. In response to this issue, research is being
done into automatically generating preconditions. This research
focuses specifically on what is called the maximal precondition, this
is the logically weakest precondition, so any weaker precondition
would allow inputs that violate the postcondition. Recently there
were some innovations within the field of precondition generation

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

[23, 24]. While this research does not focus on generating precondi-
tions for code, it uses C-like code to show how their research works.
A precondition generator for code, however, is quite interesting for
use within VerCors. As such, there will be a look at the use cases of
these tools. Aiming to answer the question of how these tools can
be used to generate annotations for code that is verified by VerCors.

In this research, there will be a brief look at currently available
precondition generators and cover their suitability for use together
with VerCors in section 4. Then the workings of PGen will be ana-
lyzed, to see how it can be used within VerCors. This will be done
by running extensive tests from both real-world examples from Ver-
Cors[11] as well as self-made examples. This analysis also hopes to
find the limitations of PGen. The methodology of these tests will be
covered in section 5, while the results of these tests will be covered
in section 6. Finally, in section 7, a final analysis of the use within
VerCors will be covered.

2 RELATED WORK
Much of the work of automatic precondition generation is based on
the field of Satisfiability Modulo Theories. This is a field focused on
finding whether certain formulas are satisfiable. This field includes
checking if programs successfully execute, and thus also includes the
field of generating preconditions. An initiative to create a common
format for it is that of SMT-LIB [3]. This format has been adapted by
one of the most popular SMT solvers Z3[7], and many programs that
use z3 will also translate their functions into this format. Some other
programs in the field of program verification are those of [9] and
[8]. For background on the work that has been done for translating
programs into a format for which they can be verified [2] can be
read. We briefly cover the concept of deductive verification, but
for a further background of this deductive verification [14] offers a
concise history. We describe specification as a bottleneck, as it is a
problem encountered within VerCors. For some research into why
this is a problem for the field of program verification, [4] has done
research identifying the writing of specifications to be a bottleneck
in program verifications. Java is a language that is barely touched
by this research, despite being one of the biggest programming
languages. If the reader is interested in more information about
specification inference tools for Java, [18] covers way more than is
covered in this paper. They also cover the strengths and weaknesses
of these tools. Some work done related to precondition generation,
but not covered in this paper can be found in [1, 6, 13].

3 PROBLEM STATEMENT
While the VerCors tool is built to verify the correctness of programs,
it has to verify the entire function in one go. In practice, this often
means that a function will have to be split into smaller verification
tasks to test the functioning of each part separately. This, however,
results in a large amount of annotations having to be written for
these functions. To reduce the burden of writing these annotations,
automation can be used. As there is no such automation in place

1

TScIT 41, July 5, 2024, Enschede, The Netherlands J. Mol Lous

Table 1. Tools and their results

Tool Method Result

MaxPraNQ
[21, 23]

Convert C code
using SeaHorn[12]
and FreqHorn[8]

Manual rewrite is too in-
tensive, SeaHorn transfor-
mation violates the given
grammar

PreQSyn
[22, 24] Same as MaxPraNQ Same as MaxPrANQ

cccheck [5]
Write code in C#
and use visual stu-
dio

Only works with visual stu-
dio and C#, so almost no
overlap with the use cases
of VerCors

PIE [19]
Write code in C++
and use the C++ im-
plementation of PIE

The C++ implementation is
not properly archived and
documented

QPR Verify
[16, 17]

Download the arti-
fact and run on Ver-
Cors examples

Running the given example
does not work

PGen [20]
Download the bi-
nary and run on
VerCors examples

Manages to generate cor-
rect preconditions

currently, the goal of this research is to find a way in which such
automation could be implemented into VerCors. This resulted in the
following research question:

In what way can current precondition generation tools be applied
to generate annotations for code that is typically verified by VerCors?

This will be answered by the following subquestions:
SQ1: Which of the currently available precondition genera-
tors can generate preconditions for code?

SQ2: For which kind of programs can these tools generate
preconditions?

SQ3: How can the output of these tools be used to generate
VerCors annotations?

To answer the first subquestion, multiple tools were (briefly) inves-
tigated for their appropriateness for generating preconditions. A
quick overview of the results can be found in table 2.

3.1 PreQSyn and MaxPrANQ
The first tools that were investigated were the tools PreQSyn [24]
and MaxPrANQ [23]. These are the most recent tools to generate
preconditions. Since they are quite recent they were extensively
investigated for their use.
These tools take as input a program in the SMT-LIB2 [3] format.
This is a format commonly used by SMT solvers. These solvers
are commonly used to prove the correctness of programs in tools
like VerCors (which uses the SMT solver Z3). This means that for
it to verify the code, that code will first need to be translated into

SMT-LIB2. There are already existing tools for that purpose, for
example for C there is the tool SeaHorn [12] and for Java, there is
the tool Jayhorn [15]. Both of these tools have to goal of verifying
the runtime correctness of programs, and they apply certain trans-
formations to the programs to be able to more optimally verify this.

MaxPrANQ and PreQSyn only work on a certain subset of programs.
This is a subset called "linear array programs". This subset consists
of programs that can read and write to variables and the elements
of arrays. These arrays can only be accessed in a for loop for which
in iteration 𝑖 you can access element 𝑖 of the array.

At first, Jayhorn was used to translate Java code to the SMT-LIB2
format. However, it was quickly found that as this tool is mostly
for reasoning about runtime correctness, many variables are added
to model the Java runtime. On top of that, the tool reasons from
the main method, which makes it less appropriate for verifying
independent functions with undefined variables, which is the main
type of function that preconditions are defined for. For example
to model the content of a function test, one would have to call the
function in main, one way of doing this can be seen in example 1.
When translating this code, Jayhorn adds about 50 variables in the
translation. This makes the program too complicated to be verified
by MaxPrANQ and PreQSyn. Taking this into account, Jayhorn did
not seem to be appropriate for generating preconditions for Java
code.

1 c l a s s AddAss ignJava {
2
3 void t e s t () {
4 in t x = 5 ;
5 x += 2 ;
6 }
7
8 public s t a t i c void main (S t r i n g [] a r g s) {
9 AddAss ignJava a = new AddAss ignJava () ;
10 a . t e s t () ;
11 }
12 }

Code example 1. a simple Java program

After that SeaHorn was tried to translate C code to the SMT-LIB2
format. One of the examples that were tested for this can be found
in example 2. This code was adapted from one of the examples of
[23] to work together with SeaHorn. SeaHorn does not have any
strict grammar, so no large changes have been made. Some smaller
changes were made, such as defining the length of the array in line
2 and defining the array as a global variable. Further the examples
were changed to use the sassert function of Seahorn, which allows
it to more effectively reason about assertions and postconditions.
Compared to Jayhorn, SeaHornmanages to encode C code at runtime
with fewer variables. The transformations of SeaHorn however, do
not preserve the grammar of the linear array program that is needed.
SeaHorn encodes the access of (integer) arrays by accessing them
with j + 4*i. This can be seen in how lines 9-10 of example 2 are

2

Automatic precondition generation for VerCors TScIT 41, July 5, 2024, Enschede, The Netherlands

encoded, which can be seen in example 3. Example 4 shows the
same lines after being further transformed by FreqHorn[8], to show
it in a more readable format.

1 # include " seahorn / seahorn . h "
2 #define N 1000
3
4 in t a [N] ;
5
6 in t main ()
7 {
8 in t i ;
9 for (i = 0 ; i <N ; i ++)
10 a [i] =2 ∗ a [i] ;
11
12 for (i = 1 ; i <N ; i ++)
13 s a s s e r t (a [i] >= 2 ∗ i) ;
14 }

Code example 2. a C program doubling the content of an array

1 (= main@%_2_0 (+ @a_0 (∗ 0 4 0 0 0) (∗ main@
% . 0 . i 1 _ 0 4)))

2 . . .
3 (= main@%_3_0 (s e l e c t main@%shadow .mem . 0 . 0

_0 main@%_2_0))
4 (= main@%_4_0 (∗ main@%_3_0 2))
5 . . .
6 (s t o r e main@%shadow .mem . 0 . 0 _0 main@%_2_0

main@%_4_0))
Code example 3. A fragment of the same program after being transformed
through seahorn

1 (l e t ((a ! 1 (∗ 2 (s e l e c t _FH_2 (+ _FH_0 (∗ 4
_FH_1))))))

2 . . .
3 (s t o r e _FH_2 (+ _FH_0 (∗ 4 _FH_1)) a ! 1)))

Code example 4. A fragment of the same program after further being
transformed through freqhorn

This transformation of SeaHorn replicates the way C stores and ac-
cesses arrays in memory, however, this makes a program that would
be within the class of linear array programs be outside of the class
when translated. A translation without encoding the runtime behav-
ior of the programming language is possible, but the main interest
in verifying programs seems to be accounting for runtime behavior.
Naturally, the runtime of most languages does not fit within the
grammar of linear array programs, so there does not seem to be a
tool whose main purpose is translating code to SMT-LIB2 format.

This makes the use of MaxPrANQ and PreQSyn very limited for
working on code. The authors of MaxPrANQ and PreQSyn were
contacted about a potential translation, and they suggested that a
transformation respecting the grammar must be done manually. As

such these tools cannot be implemented within VerCors to automat-
ically generate preconditions based on the code.

3.2 The search for another tool
As the tools originally proposed were found to not be appropriate,
another tool would need to be found to continue the research. As
VerCors mainly works on C, Java, and OpenCL, the new tool would
have to work on one of those languages or a language similar to it.

3.2.1 cccheck. One of the tools we looked at was cccheck [5]. This
is a tool for generating necessary preconditions for C# (.NET) code.
This is implemented in CodeContracts, an extension for Visual
Studio. However, no implementation outside of Visual Studio was
given. As Visual Studio is not used together with VerCors, this tool
was thus not considered further.

3.2.2 PIE. Another tool that was looked at was that of PIE (Precon-
dition Inference Engine). This tool aims to generate preconditions
for C++ and OCaml programs. The project has been further con-
tinued by a project called LoopInvGen [19], this project however
works on a format called SyGuS so it has a similar problem to that
of MaxPrANQ and PreQSyn. The PIE version has been archived, but
only the OCaml version seems to have been kept. Since OCaml is
not supported by VerCors and C++ is barely supported, this tool was
also deemed inappropriate.

3.2.3 QPR Verify. The work of [16] implements a precondition
generator in the toolQPR Verify [17]. This approach tries to generate
preconditions based on bounded model checker theories. Following
the instructions to run the precondition-learner functionality of
QPR Verify with the provided command and examples gives an error.
As following the instructions gave an error this tool was dropped
right after that.

3.3 PGen
Finally the tool PGen [20] was tried. This is a tool that generates
preconditions for C code. It does this by trying to find all the inputs
for which the program violates the postcondition. To find these
inputs it estimates both the inputs for which the program satisfies
the postcondition and those for which it violates the postcondition.
It will then try to refine both sets until there is no overlap between
the sets. At that point, the set of inputs that satisfy the postcondition
should be the precondition.
Unlike the other tools, this tool was quite easy to set up. This tool
also seemed more promising because it showed its ability to gen-
erate quantified preconditions within the benchmarks. This tool
almost immediately worked on example C programs, generating
valid preconditions. As this was the easiest-to-use tool, this tool was
chosen to be further investigated.

4 METHODOLOGY
To check for which kind of programs PGen can generate precondi-
tions, it was run on multiple tests. These tests are separated into two
different categories. The first category is that of self-written tests,
these tests are mostly array programs that test simple functions that
you might see in bigger programs. The second category is that of
code examples from VerCors. These tests were taken from the public

3

TScIT 41, July 5, 2024, Enschede, The Netherlands J. Mol Lous

repository of tests made for testing VerCors [11]. The tests are cate-
gorized into different categories based on programming concepts.
For the selection of these tests, finding tests that contained arrays
was prioritized. So, tests were taken from concepts that commonly
use arrays. This was to validate the patterns found by real-world
examples. The rest of the tests were taken from the ’C’ category of
tests, as these covered some C- and general programming concepts
that were not covered by the self-made tests.

4.1 Writing the tests
For the self-written tests the basic example that was started with
was the following:

1 void foo (in t ar [] , in t l e n) {
2 in t i ;
3 in t k ;
4 for (i = 0 ; i < l en ; i ++) {
5 a r [i] = 0 ;
6 }
7 for (k=_ZERO ; k < l en ; k++) {
8 i f (a r [k] != 0) goto ERROR_1 ;
9 }
10 goto end ;
11 ERROR_1 : ;
12 end : ;
13 }

Code example 5. a program checking if array elements are zero

The code in example 5 initializes an array with all values being zero
in a loop at lines 4-6.
Lines 7-9 model the postcondition:

ensures(\forall int k; 0 <= k && k < len; ar[k] == 0);

Since PGen reasons about the correctness of a program by checking
if it can reach an error state, for it to be able to do so an error state
needs to exist. This is the flag ERROR_1 at line 11. To encode the
postcondition the inverse of the postcondition is taken, which is

\exists int k; 0 <= k && k < len; ar[k] != 0

When that is true the program is sent to the ERROR position, this is
done in line 8. Since the error state is a flag, an extra flag is needed
to skip over the error state for successful executions. This is the flag
end at line 12, and the goto at line 10 skips the error state.
To model the range 0-len, the variable k is initialised as _ZERO. This
is because PGen reasoning works better on abstract ranges. The
range of the initialization loop, however, is modeled from 0 - len. En-
coding the initialization and the postcondition differently has shown
to give better results, this will be further elaborated on in the results.

These changes were also applied to the other examples, includ-
ing those taken from VerCors. Apart from adjusting the programs
to fit these traits, these programs also needed another change to be
made for the program to work. The syntax requirement for Pgen
specifically requires all variables that are going to be used in a func-
tion to be declared at the start of a function. If that is not the case
it will give a syntax error. This is also needed for for loops, which
means that:

for (int i = 0; i < len; i++)

would need to be changed to:
int i;
for (i = 0; i < len; i++)

Due to the late discovery of this fact, some postconditions were
written in the functionally identical while notation, this has not
shown to change performance.

The zero_array test was taken as a basis to test multiple options
and multiple notations. As such many tests follow the same format
as this test with (slightly) changed initialization and postcondition.
For instance, example 6 shows a variation that tests multiple post-
conditions.

1 void foo (in t ar [] , in t l e n) {
2 in t i = 0 ;
3 in t k = _ZERO ;
4 while (i < l en) {
5 a r [i] ++ ;
6 i ++ ;
7 }
8 while (k < l en) {
9 i f (a r [k] % 2 != 0 | | a r [k] % 3 != 0)

goto ERROR_1 ;
10 k ++ ;
11 }
12 goto end ;
13 ERROR_1 : ;
14 end : ;
15 }

Code example 6. a program testing multiple post conditions

To test different notations, many of the examples also have a variant
with only the postcondition loop and a variant using loop invariants.
The examples with only postconditions were created by removing
everything except the postcondition from a program. As can be seen
in example 7, which is missing lines 2 and 4-6 from example 5. This
made it possible to check if the first loop was taken into account
when generating the precondition.

1 void foo (in t ar [] , in t l e n) {
2 in t k ;
3 for (k = _ZERO ; k < l en ; k++) {
4 i f (a r [k] != 0) goto ERROR_1 ;
5 }
6 goto end ;
7 ERROR_1 : ;
8 end : ;
9 }

Code example 7. a version of example 1 with the initialization removed

The loop invariant variation, however, was used as a performance
comparison. In theory, one loop should be easier to reason about
than two loops that depend on each other. These programs thus
aim to check if this theory impacts PGen. These variations were

4

Automatic precondition generation for VerCors TScIT 41, July 5, 2024, Enschede, The Netherlands

made by putting the postcondition check inside the first loop in a
program. In example 8 this is done by combining lines 4-7 and 7-9
from example 5 into lines 3-6. This means that the postcondition is
translated into a loop invariant of ar[k] == 0.

1 void foo (in t ar [] , in t l e n) {
2 in t k ;
3 for (k=_ZERO ; k < l en ; k++) {
4 a r [k] = 0 ;
5 i f (a r [k] != 0) goto ERROR_1 ;
6 }
7 goto end ;
8 ERROR_1 : ;
9 end : ;
10 }

Code example 8. example 1 with only the postcondition

These variants can be quite similar, but for reproducibility, they
are listed separately.

4.2 Running the tests
To run these programs the following command was used:

time ~/artifact2/tools/P-Gen/p-gen --reach --mainproc foo -
-file ./zero_array.c --stringabs --expheap --beyondwp -
-precond --noinline --tprover z3 --dontabsarray

Here, reach indicates that it will reason by trying to reach the error
state, no way for the tool to generate preconditions was found with
this option disabled. mainproc gives the name of the function to
be analyzed, for all self-made tests this program was named foo
for simplicity. stringabs tells the program to treat strings as arrays,
this was not necessary for any self-made tests, but no performance
drop was found by enabling it. The expheap option tells the program
to encode the heap as an array. Similarly to the stringabs option,
enabling this option did not seem to affect the programs for which
it was not needed. The beyondwp option enables a more advanced
refinement option, this option allows the program to find quantified
preconditions. The precond option tells the program to generate a
precondition, disabling this option only tells the route to the error
state instead of generating preconditions. The noinline option tells
the program to not change the variable names, this makes the gen-
erated preconditions understandable. The tprover option tells the
program which SMT solver to use, in this case, Z3 is used, which
was also suggested as the solver that worked the best with PGen.
Version 2.2 was used as it was used in combination with PGen in [22].
The latest version was also tried, but it is not backward compatible
with version 2.2, and PGen uses options that have been removed
and/or renamed. Finally the dontabsarray option tells the program
to not abstract arrays, all programs were run with this option both
on and off because this option gave quite varying results. The total
program was run with the Linux time command, to measure the
relative time it took for programs to execute.

The outputs of running these tests were collected in one place in
combination with the time it took to run them.

<1s 5s 30s 2min 5min d.n.f
0

20

40

60

80 74

3 6 2 2

17

A
m
ou

nt

Fig. 1. Execution time for programs

5 RESULTS

5.1 SQ2
We look at the results from multiple examples to answer the ques-
tion of which kind of programs PGen works. The results of running
the tests can be found in table 2. This table shows how many of
which tests gave which result. Since the generated preconditions
could be quite long, the results were described in multiple categories.
These categories are: contains the precondition, incorrect precon-
dition, lacking a quantified precondition, too slow to finish, and
intermediate precondition. Lacking a quantified precondition refers
to programs that expect a quantified precondition, but for which it
only reasons about a limited amount of array elements (such as the
first three elements). Intermediate precondition is used to refer to a
precondition that ignored a certain part of the program, and is thus
true somewhere in the code but not at the start. For a program to be
considered too slow it would have to run for more than 5 minutes,
since in general it could be determined at that point if it was at the
point of terminating or not. The time for Z3 to timeout was set to
around 5 minutes, so when Z3 timed out the program was consid-
ered too slow. Since z3 is called multiple times per iteration, it was
unlikely that the program would terminate after one Z3 timeout. A
representation of the time taken for programs to terminate is given
in figure 1. Since performance can differ these were rounded with
as much as a 50% error margin to the nearest number in the graph.
Two programs managed to terminate right after the soft time limit
of 5 minutes was passed, as these tests managed to finish before I
was able to cancel them.

As can be seen in table 2 36/104 of the tests found correct precondi-
tions. There are also 12 tests which find intermediate preconditions.
These preconditions are for programs with two loops, for which
it only finds a precondition that is true before the second loop. As
intermediate checks are used to assist in verification these can also
be considered useful outputs.
None of the programs with two loops managed to reason about
both loops. This is partially due to choosing to have one loop as a
range from 0 to len, while the postcondition was from _ZERO to
len. However, programs where both loops had a range from 0 to len
gave no quantified postcondition, while still only reasoning about
the second array. On the other hand, changing both arrays to have
a range from _ZERO to len ends in non-termination. Combining

5

TScIT 41, July 5, 2024, Enschede, The Netherlands J. Mol Lous

Table 2. Test results

Category Total found precondition too slow to finish no quantified incorrect precondition intermediate precondition
All tests 104 36 17 17 22 12

dontabsarray enabled 52 19 14 6 9 4
dontabsarray disabled 52 17 3 11 13 8

Table 3. Variant results

Category Total found precondition too slow to finish no quantified incorrect precondition intermediate precondition
No modification 18 2 4 1 3 8

loop invariant variation 18 12 2 1 3 0
Only postcondition loop 18 9 4 1 4 0

arrays into one, such as with the loop invariant variations, does
allow for reasoning over the content of multiple arrays.

There are 17 programs that took too long to terminate, this seems to
be because the program does not stop after finding one quantified
precondition. When running with the dontabsarray option, the pro-
gram will try to fill in multiple values. This means that the program
can spend a lot of time testing different values. The programs that
failed to terminate can be split into two categories. The first was
the category of postconditions which checked if the array values
were bigger or smaller than a certain value. Unlike equals, smaller
than and bigger than have a range of correct values, this range
means that the program can try a lot of values without discovering
that it should terminate. The other category of programs that took
too long too terminate were the programs that relied on multiple
postconditions. These programs similarly struggled because they
did not realize they could have a lot of values to check, e.g. they
would have to determine that all values in an array were not one of
two values. When running the program without the dontabsarray
option, the first category successfully managed to find precondi-
tions, however the second category only found preconditions for
one of the postconditions.

The programs that did not give a quantified precondition were
all quite different. If a feature was not supported, a program likely
ended up in this category. This includes features like floating points,
array comparison, functions and nested arrays.

For the incorrect preconditions, the previously mentioned category
of programs with multiple postconditions also manages to result in
incorrect preconditions, being the only programs for which having
dontabsarray enabled resulted in an incorrect precondition instead
of non-termination. The difference with the programs that did not
terminate, is that these programs have postconditions that comple-
ment each other. These consist of programs that check if a number
is divisible by both 2 and 3 for example. The other programs in
this example result in preconditions where the preconditions where
less strict than the expected precondition, such as with conditional
values.

As mentioned in section 4, for certain programs there were multiple

variations created. The differences between the variations van be
found in table 3. As can be seen in the table, in general, the programs
that use loop invariants have the best general results. In none of the
examples where PGen fails to find the correct precondition for the
invariant version, did it manage to find a correct precondition the
other variants of the program. Most notably it allows for programs
to account for the changes done in the initialization phase.

5.2 Unexpected behaviour
Some unexpected behavior was also found. One of the oddest be-
haviors was found. This program increments an array and checks
if the value is equal to five after incrementing. This program fails
to terminate with the option dontabsarray enabled. This is odd be-
cause it does terminate for the value four, and also for i + 1. So it can
reason about undefined variables and lower values, but it struggles
when the value is higher than five. This discovery was relatively
late and the impact on real programs could not be fully researched.

Another somewhat more predictable behavior is the difference be-
tween having the option dontabsarray enabled and disabled. When
finding the correct postcondition, having the option disabled always
results in finding the quantified condition negated. While for all
quantified conditions found while the option was enabled (which
were also all correct), PGen always returned the condition without
the negation. This can be explained by the fact that having the
option disabled means it will always exit earlier when having to
reason about arrays, and thus the program was still in the process of
proving. The proof is done by proving the inverse is unreachable, so
it makes sense for the inverse to be returned. The more unexpected
part of this behavior is the fact that if the program terminates early
with the option enabled, which it sometimes does, the result is not
negated.

Further, the attempts at encoding existential (there exists) post-
conditions were disappointing. Replicating the encoding given in
the benchmarks resulted in a program that did not give a quantified
precondition. Using another implementation made the program ei-
ther not terminate or give a non-quantified precondition. Further
examples from VerCors were run, from these examples it was found
that floats were not properly supported by PGen. When their values
are integers they can reason about them, however, it will model any

6

Automatic precondition generation for VerCors TScIT 41, July 5, 2024, Enschede, The Netherlands

other value as a new variable. For example, for the code of example
9 it generates the precondition
:

ABS_STR_2- test3(3 , ABS_STR_3) == 0
&& ABS_STR_5- ABS_STR_4< 0

1 in t t e s t 3 (in t x , in t y) {
2 return x % y ;
3 }
4
5 in t main () {
6 f l o a t a = 0 . 5 1 0 0 0 0 ;
7 i f (1 . 0 != t e s t 3 (3 , 2 . 0)) goto ERROR_1 ;
8 i f (3 . 0 < = 2 . 0) goto ERROR_1 ;
9 goto end ;
10 ERROR_1 : ;
11 end : ;
12 return 0 ;
13 }

Code example 9. A program checking floating-point operators

Some function calls outside of the program were found to be mod-
eled similarly, with the code in example 10 having the ceil_f32 func-
tion being replaced by a variable called temp_var. This mean the
generated precondition is:

temp_var_1- 1 == 0

1 in t main () {
2 f l o a t a = 0 . 5 1 0 0 0 0 ;
3 in t b = (in t) (c e i l _ f 3 2 ((a + − 0 . 5 0 0 0 0 0))) ;
4 i f (b != 1) goto ERROR_1 ;
5 goto end ;
6 ERROR_1 : ;
7 end : ;
8 return 0 ;
9 }

Code example 10. A program checking the functionality of the ceil function

However, many of the run examples also tested simple concepts,
with similar concepts. This meant that the examples did not extend
the coverage that much.

5.3 SQ3
To look at how the output of PGen can be used to generate VerCors
annotations, we take a further look at the output. An output given
by this program can look like this:
(len- _ZERO- 1 < 0 || FORALL(UNI_1>= _ZERO, UNI_1<= len-
1 , ar[UNI_1] + 1 % 2 == 0))&& (len- _ZERO-
1 < 0 || len- _ZERO- 2 < 0)

This is an example of an output of the category containing the cor-
rect precondition. The precondition of len- _ZERO- 1 < 0 || FORALL(
UNI_1>= _ZERO, UNI_1<= len- 1 , ar[UNI_1] + 1 % 2 == 0) is cor-
rectly identified by the program, however, it adds an extra condition
that makes the total condition incorrect. When given as output

one can see that the second part of the condition makes this con-
dition trivial and can reason that the first part of the condition is
the real condition. This means that the first part of the condition
can be translated into a precondition in VerCors, but the second
part should be ignored. No preconditions were generated that were
not supported by VerCors and the syntax is very similar to that of
VerCors. As such all of the generated preconditions are viable to be
translated to VerCors preconditions without much trouble. For the
examples from VerCors, there was a surprising lack of preconditions
specified in the examples taken. A common precondition was that
of disallowing zero for division, this was not found by PGen. The
other examples were quite simple and able to be verified such as an
increment function with

requires y>=0;
ensures \result > 0;

as their contract. This means that the examples that were compared
had quite a good success rate, but the samples were not diverse
enough to allow for an analysis.

6 CONCLUSIONS
To answer the question of if PGen should and can be implemented
in VerCors multiple factors should be accounted for.
First, the ease of translation should be considered. Since the tool
works on C code little changes have to be made to the program.
Having all variables be declared at the top of the program is in-
convenient, but an easy transformation to perform. Encoding a
postcondition separately is done easily by adding any variables at
the top, and putting an if condition at the end that sends the pro-
gram to the error state if the inverse of the postcondition is true.
For a quantified postcondition, the variable that will be used to loop
over the array needs to be undefined for the program to return a
quantified precondition. The inverse of a universal postcondition
can easily be modeled by sending the program to an error state
when a single element of the array violates the requirement. To
model the inverse of the existential postcondition, having a loop
that continues while the element does not satisfy the condition can
be used. When the end of the array is reached, it can then be sent
to an error state. Secondly, the translation of the results should be
considered. As mentioned in the results, many of the generated
conditions contain both the correct precondition and an incorrect
part of the precondition. When looking at automatically converting
these postconditions one could try exclusively looking at taking the
part of conditions with quantified preconditions. However, these
conditions can contain multiple quantified postconditions. While
taking the first quantified condition seen seems to generally give a
correct precondition, it cannot be considered reliable enough for an
automatic translation to be able to be considered. While a human
would be able to have the same problem, this technique is easy
enough for a human to execute when given the raw output of the
tool.

Most importantly, the grammar of the languages for which this
tool works should be considered. One important distinction to get
out of the way is that this tool does not work well when defining
multiple postconditions that should be true at the same time, these

7

TScIT 41, July 5, 2024, Enschede, The Netherlands J. Mol Lous

have not given any valuable results in testing. For types other than
ints, PGen tends to replace them with a variable, seeing the value
replaced by a variable, it also tends to combine a concrete value
and a newly made variable into one variable. This means that for
floating points and similar non-integer types that rely on mathe-
matic operations, PGen is not very appropriate. For types like string
and char, this replacement does not affect the program as much. In
a similar vein, functions are also replaced by variables. While not
excluded, bigger than and smaller than only work with the dontab-
sarray option disabled, as such these programs are likely to give less
qualitative results. For arrays, PGen only manages to find correct
quantified preconditions when there is one loop. Further nested
arrays are not supported.

The mentioned translations are quite easy to implement, so im-
plementing PGen is a low investment. However, the value of the
results can also be quite low. Many test programs took a long time
to terminate, and slowing down work to wait for this tool to gener-
ate a precondition can decrease efficiency. On top of that multiple
postconditions at the same time cannot be modeled, which makes
the tool almost unusable in a situation where you have multiple
postconditions. Running the tool multiple times for each postcondi-
tion can give a precondition for each postcondition, and taking the
intersection of these preconditions could theoretically result in a
useful precondition. This however is still quite a burden on the user
and does not reduce the burden of writing specifications. Another
negative, but slightly less impactful is the inability of the program
to reason over multiple loops. It may only reason over one loop at a
time. This however can be rectified by separating the program into
smaller tasks and verifying each task separately, for example using
the precondition of the next loop as a postcondition for an earlier
loop.

In conclusion Pgen is quite easy to use, and also quite easy to create
a simple implementation for. The benefit of this implementation
is however doubtful. Since the implementation is so simple, how-
ever, it is also possible to try it first and determine if it improves
productivity from person to person. What has been found as a great
advantage is having a frame of reference. Having a wrong output
might be able to allow one to reason to the correct precondition,
while with no output one would have to reason from scratch.

7 LIMITATIONS
An obvious limitation was time. Not only is around 6 weeks not
much time for research, by having to pivot the research halfway
through those 6 weeks gave me about 3 weeks of actually being able
to work with the new tool. While having a similar purpose, my first 3
weeks did not help me in getting more efficient in testing, apart from
the fact that I already had some tests ready. The tools were too differ-
ent for the effort to be able to be translated into the new tool. Further,
this time constraint also made me think more limited in possibilities
and made me make some unfounded assumptions just to be able
to go further with testing. An example of such an assumption was
assuming that for loops did not work because the standard notation
for for loops gave a syntax error. The issue turned out to be the fact

that variables were not allowed to be declared inside a for loop. This
combination made me able to try significantly fewer benchmarks
than I wanted to try, and probably a smaller variety than I wanted to.

On the other hand, I feel like I limited myself toomuchwhen looking
for a new tool to continue the research with, I chose an option for
which I could get results, but it might have been more interesting
to change to research to compare the usefulness of different tools
as I feel like the field is large and I did not give enough tools a try.
Something that did not help in this fact is the difficulty of finding a
tool based on the research. A decent subset of research I could find
did not have a public implementation and was thus not considered.

Somewhat implied by the previous paragraph was the limitation
of creativity. The limited grammar of the original tools made me
mostly think of tests within that grammar. However, PGen did not
mention these limitations anywhere, as such some interesting edge
cases were only thought of after the point where testing was deter-
mined to be finished. This allowed for some testing but no extensive
testing, which means I might have missed some interesting use
cases. This problem was exacerbated by the limited benchmarks and
documentation of PGen, which lacked some examples for which
it failed to find a precondition. While I think the research covers
a lot of common patterns you might want to look at, I think the
benchmarks are the largest point of improvement to be made if the
research is repeated.

8 FUTURE WORK
One interesting research could be translating code to SMT-LIB2
format in a way that retains the linear array program grammar, to
optimally make use of the more recent tools of [23, 24]. This is the
approach that created tools like SeaHorn and JayHorn in the first
place. However, this is unlikely to be useful outside of the purpose
of researching these specific tools, as both SeaHorn and JayHorn
were made with the purpose of verifying and not with the purpose
of translation. It might thus be more interesting to look into the
different ways in which SMT-LIB2 format is used and see if there
could be a way of encoding programs that is multi-purpose, instead
of optimizing the translation for a specific tool.

Apart from that, there is an interest in looking at other precon-
dition generators which might have been missed by this research.
As the benchmarks that were used are quite easily reproducible in
other languages, the research could look at a less limited subset of
languages than those that are verified by VerCors. There might be
a more powerful tool for a language that was not investigated, for
which the translation from VerCors is easy.

ACKNOWLEDGMENTS
I would like to thank Marieke Huisman and Alexander Stekelenburg
for supervising this project

REFERENCES
[1] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal specification

synthesis. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

8

Automatic precondition generation for VerCors TScIT 41, July 5, 2024, Enschede, The Netherlands

Principles of Programming Languages (POPL ’16). Association for Computing Ma-
chinery, New York, NY, USA, 789–801. https://doi.org/10.1145/2837614.2837628

[2] Emanuele De Angelis, Fabio Fioravanti, John P. Gallagher, Manuel V.
Hermenegildo, Alberto Pettorossi, and Maurizio Proietti. 2022. Analysis and
Transformation of Constrained Horn Clauses for Program Verification. The-
ory and Practice of Logic Programming 22, 6 (Nov. 2022), 974–1042. https:
//doi.org/10.1017/S1471068421000211

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org.

[4] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer.
2012. Lessons Learned From Microkernel Verification — Specification is the New
Bottleneck. Electronic Proceedings in Theoretical Computer Science 102 (Nov. 2012),
18–32. https://doi.org/10.4204/EPTCS.102.4

[5] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013.
Automatic Inference of Necessary Preconditions. In Verification, Model Checking,
and Abstract Interpretation, Roberto Giacobazzi, Josh Berdine, and Isabella Mas-
troeni (Eds.). Springer, Berlin, Heidelberg, 128–148. https://doi.org/10.1007/978-
3-642-35873-9_10

[6] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. Precondition Infer-
ence from Intermittent Assertions and Application to Contracts on Collections. In
Verification, Model Checking, and Abstract Interpretation, Ranjit Jhala and David
Schmidt (Eds.). Springer, Berlin, Heidelberg, 150–168. https://doi.org/10.1007/978-
3-642-18275-4_12

[7] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In 2008
Tools and Algorithms for Construction and Analysis of Systems. Springer, Berlin,
Heidelberg, 337–340. https://www.microsoft.com/en-us/research/publication/z3-
an-efficient-smt-solver/

[8] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti Gupta. 2019.
Quantified Invariants via Syntax-Guided Synthesis. In Computer Aided Verification,
Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham, 259–
277. https://doi.org/10.1007/978-3-030-25540-4_14

[9] Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant
for ESC/Java. In FME 2001: Formal Methods for Increasing Software Productivity,
José Nuno Oliveira and Pamela Zave (Eds.). Springer, Berlin, Heidelberg, 500–517.
https://doi.org/10.1007/3-540-45251-6_29

[10] University of Twente FMT group. n.d.. Tutorial VerCors Tool FMT UTwente.
https://utwente.nl/vercors

[11] FMT group, University of Twente. n.d.. vercors/examples at dev utwente-
fmt/vercors. https://github.com/utwente-fmt/vercors/tree/dev/examples

[12] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015.
The SeaHorn Verification Framework. In Computer Aided Verification, Daniel
Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham,
343–361. https://doi.org/10.1007/978-3-319-21690-4_20

[13] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2018. Quantifiers on Demand.
In Automated Technology for Verification and Analysis, Shuvendu K. Lahiri and
Chao Wang (Eds.). Springer International Publishing, Cham, 248–266. https:
//doi.org/10.1007/978-3-030-01090-4_15

[14] Reiner Hähnle andMarieke Huisman. 2019. Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools. In Computing and Software Science:
State of the Art and Perspectives, Bernhard Steffen and Gerhard Woeginger (Eds.).
Springer International Publishing, Cham, 345–373. https://doi.org/10.1007/978-
3-319-91908-9_18

[15] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf. 2016.
JayHorn: A Framework for Verifying Java programs. In Computer Aided Ver-
ification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International
Publishing, Cham, 352–358. https://doi.org/10.1007/978-3-319-41528-4_19

[16] Marko Kleine Büning, Johannes Meuer, and Carsten Sinz. 2022. Refined Modu-
larization for Bounded Model Checking Through Precondition Generation. In
Formal Methods and Software Engineering, Adrian Riesco and Min Zhang (Eds.).
Springer International Publishing, Cham, 209–226. https://doi.org/10.1007/978-
3-031-17244-1_13

[17] Marko Kleine Büning, Carsten Sinz, and David Faragó. 2020. QPR Verify: A
Static Analysis Tool for Embedded Software Based on Bounded Model Checking.
In Software Verification, Maria Christakis, Nadia Polikarpova, Parasara Sridhar
Duggirala, and Peter Schrammel (Eds.). Springer International Publishing, Cham,
21–32. https://doi.org/10.1007/978-3-030-63618-0_2

[18] Sophie Lathouwers and Marieke Huisman. 2024. Survey of annotation generators
for deductive verifiers. Journal of Systems and Software 211 (May 2024), 111972.
https://doi.org/10.1016/j.jss.2024.111972

[19] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondition
inference with learned features. ACM SIGPLAN Notices 51, 6 (June 2016), 42–56.
https://doi.org/10.1145/2980983.2908099

[20] Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-Guided
Precondition Inference. In Programming Languages and Systems, Matthias Felleisen
and Philippa Gardner (Eds.). Springer, Berlin, Heidelberg, 451–471. https://doi.
org/10.1007/978-3-642-37036-6_25

[21] Sumanth Prabhu, Deepak D’Souza, Supratik Chakraborty, R Venkatesh, and Grig-
ory Fedyukovich. 2024. Artifact for the Paper Titled “Weakest Precondition
Inference for Non-Deterministic Linear Array Programs” To Appear in TACAS
2024. https://doi.org/10.6084/m9.figshare.24923517.v1

[22] Sumanth Prabhu, Grigory Fedyukovich, and Deepak D’Souza. 2024. Artifact for
the paper titled "Maximal Quantified Precondition Synthesis for Linear Array
Loops" to appear in ESOP 2024. https://doi.org/10.6084/m9.figshare.24945996.v1

[23] S. Sumanth Prabhu, Deepak D’Souza, Supratik Chakraborty, R. Venkatesh,
and Grigory Fedyukovich. 2024. Weakest Precondition Inference for Non-
Deterministic Linear Array Programs. In Tools and Algorithms for the Construction
and Analysis of Systems, Bernd Finkbeiner and Laura Kovács (Eds.). Springer Na-
ture Switzerland, Cham, 175–195. https://doi.org/10.1007/978-3-031-57249-4_9

[24] S. Sumanth Prabhu, Grigory Fedyukovich, and Deepak D’Souza. 2024. Maximal
Quantified Precondition Synthesis for Linear Array Loops. In Programming Lan-
guages and Systems, Stephanie Weirich (Ed.). Springer Nature Switzerland, Cham,
245–274. https://doi.org/10.1007/978-3-031-57267-8_10

9

https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.4204/EPTCS.102.4
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-18275-4_12
https://doi.org/10.1007/978-3-642-18275-4_12
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://www.microsoft.com/en-us/research/publication/z3-an-efficient-smt-solver/
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/3-540-45251-6_29
https://utwente.nl/vercors
https://github.com/utwente-fmt/vercors/tree/dev/examples
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-031-17244-1_13
https://doi.org/10.1007/978-3-031-17244-1_13
https://doi.org/10.1007/978-3-030-63618-0_2
https://doi.org/10.1016/j.jss.2024.111972
https://doi.org/10.1145/2980983.2908099
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.6084/m9.figshare.24923517.v1
https://doi.org/10.6084/m9.figshare.24945996.v1
https://doi.org/10.1007/978-3-031-57249-4_9
https://doi.org/10.1007/978-3-031-57267-8_10

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 PreQSyn and MaxPrANQ
	3.2 The search for another tool
	3.3 PGen

	4 Methodology
	4.1 Writing the tests
	4.2 Running the tests

	5 Results
	5.1 SQ2
	5.2 Unexpected behaviour
	5.3 SQ3

	6 Conclusions
	7 Limitations
	8 Future Work
	References

