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Abstract

In many fields of physics, using numerical methods to solve systems described by
partial differential equations play a crucial role. These solutions must follow certain
laws of physics in order to have meaning. A solution u to a scalar conservation law
is bounded when u∗ ≤ u ≤ u∗ for some global bounds u∗ and u∗. Yet, a numerical
solution might violate these bounds. We can enforce these bounds for element averages
by properly defining numerical fluxes between elements and limiting them. In this
work, we formulate several methods for calculating numerical fluxes and how to limit
them to ensure mass and bound preservation for HDG solutions. We extend the
results of the work ”Bound-preserving flux limiting schemes for DG discretizations of
conservation laws with applications to the Cahn–Hilliard equation”, by Florian Frank,
Andreas Rupp and Dmitri Kuzmin (CMAME, 2020), by modifying their fractional
step limiter procedure. We also define two separate slope limiters to ensure a point-
wise bound preserved solution. This fractional step limiter (FSL) uses an implicit time
scheme to calculate a higher and lower order solution, which is then used to calculate
the limiting factors. Both the FSL and the slope limiters work for multidimensional
problems.

1 Introduction

Solving partial differential equations play an incredibly important role in many fields of
engineering. These partial differential equations can often not be solved analytically. Thus,
we must resort to numerical methods if we wish to find the solution. The solution for
practical uses often represents a physical quantity, such as a concentration or a density.
These quantities must follow the laws of physics that often take the form of a lower, or
upper bound (bound preserving). Often, the solution must also “conserve mass” i.e., the
total solution over the entire space must remain constant throughout time. In some cases,
the numerical solution violates these so-called conservation laws.
In this work, we expand on the flux limiting schemes [3] by adapting the flux limiting
scheme to be applicable on the hybrid discontinuous Galerkin method. We enforce the
solution to bound-preserving by limiting the mass that flows in, or out of, otherwise bound
violating, elements. We introduce a “fractional step” limiter (FSL) which ensures bound
preservation of local means. The FSL uses non-limited higher and lower order solutions
in order to make an approximation of the limiting factors. These limiting factors decrease
the numerical flux in or out of “troubled” elements.
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1.1 Discontinuous Galerkin method

The discontinuous Galerkin (DG) method is a method that uses polynomials to approx-
imate a solution on the closure of elements of a given triangulation. This means that a
solution resulting from the DG method is not uniquely defined on intersection of elements.
The DG method uses numerical fluxes to transport mass across elements. Implementing
conservation laws becomes much less complicated as we can directly control these numerical
fluxes.

1.2 Hybrid discontinuous Galerkin formulation

The hybrid discontinuous Galerkin (HDG) method is quite similar to the standard DG
method (see 1.1). One big difference between these two methods is that in contrary to
the DG method, the HDG method also approximates the solution on the vertices. The
HDG method still uses numerical fluxes, however these fluxes are used to transport mass
between an element and its vertices. A downside to the HDG method is that one can
not use explicit Euler to calculate the solution to a time dependent problem. Hence, we
must resort to an implicit Euler scheme. This however makes the implementing of some
conservation laws more complicated. In the rest of this paper we use Legendre polynomials
for both the DG and HDG method, as these Legendre polynomials have the useful property
that they form a L2-orthonormal basis.

2 Formalization of the problem

2.1 General formulation

We consider a flux F and the corresponding conservation law

∂u

∂t
+ div(F (u)) = 0,

equipped with some (possibly periodic) boundary conditions and an initial condition. Now
let b(x) ∈ Rd be given wind/velocity and let Ω be a d-dimensional bounded domain. In
this work we define F (u) = bu, thus we solve the following problem:

∂tu(x, t) + div(b u(x, t)) = 0, for (x, t) ∈ Ω× R+,

u(x, t) = u0, for (x, t) ∈ Ω× {0},
(1)

for an unknown u : Ω×R+ → R, an initial condition u0 : Ω→ R. If the solution u(x, t) is
bounded, we require

u∗ ≤ u(x, t) ≤ u∗ ∀(x, t) ∈ Ω× R+, (2)

for some upper bound u∗ ∈ R and lower bound u∗ ∈ R. We now formulate a DG and HDG
scheme for general differential equations.

2.2 DG formulation

In the following section, we are going to derive a semi discrete DG formulation. For this,
let T be a triangulation of the domain Ω into non overlapping elements {T} such that

Ω =
⋃
T∈T

T.

2



On each element T ∈ T we define the space of polynomials of order k by Pk(T ). We extend
this notation to via

Pk(T ) := {ph ∈ L2(Ω) : ph|T ∈ Pk(T ) ∀T ∈ T }.

Now we choose Vh = P1(T ) and V̄h = P0(T ). The DG formulation then reads as: find
uh ∈ Vh, such that∑

T

∫
T
∂tuhvh dx−

∫
T
F (uh) · ∇vh dx+

∫
∂T

F̂ (uh)vh ds = 0, ∀vh ∈ Vh,

where F̂ (uh) is a numerical flux that it single valued at element interfaces. Here we need
to use a numerical flux since the DG solution uh has (generally) no unique value at the
facets. Consider an upwinded numerical flux, thus we define

F̂ (uh) = b · nuuph ,

where uuph on E ⊂ ∂T is defined as

uuph =

{
uh|T if b · n > 0,

uh|T ′ else,

where T ′ is the neighbouring element of T such that E = T ∩ T ′. This then gives the
problem: find uh ∈ Vh, such that∑

T

∫
T
∂tuhvh dx−

∫
T
(buh) · ∇vh dx+

∫
∂T

b · nuuph vh ds = 0, ∀vh ∈ Vh.

2.3 HDG formulation

We introduce a space on the skeleton of the mesh denoted by F . Note that for d = 1 this
gives the set of vertices shared by the element of T . We define the space

V̂h = {p̂h ∈ L2(F) : p̂h|E ∈ P 1(E)∀E ∈ F}.

Although defined here for the general case, for d = 1 this simplifies to scalars (and not!
linear polynomials) defined at each vertex, thus we could equivalently define

V̂h := R|F|.

For a (uh, ûh) ∈ Vh × V̂h we define the HDG numerical flux F̂ (uh, ûh) = b · n (uh, ûh)
up

where (uh, ûh)
up on E ⊂ ∂T is defined by

(uh, ûh)
up =

{
ûh if b · n ≤ 0,

uh else.

For simplicity we define for a T ∈ T the outflow and inflow boundary via

∂Tin := {x ∈ ∂T : b(x) · n ≤ 0}, and ∂Tout = ∂T \ ∂Tin.

Then the HDG formulation reads as: Find (uh, ûh) ∈ Vh × V̂h such that∑
T

∫
T
∂tuhvh dx−

∫
T
(buh) · ∇vh dx

+

∫
∂Tin

b · n ûhvh ds+

∫
∂Tout

b · nuhvh ds = 0, ∀vh ∈ Vh, (3)∑
T

∫
∂Tout

b · n (uh − ûh)v̂h ds = 0, ∀v̂h ∈ V̂h. (4)
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2.4 Time discretization

For the time discretization of Equation (3) we use either an implicit or explicit Euler
method to calculate the solution on an element for the next time step. Let ti +∆t = ti+1

be distinct time steps for i = 0, 1, . . . , N with t0 = 0 and a sufficiently small time step ∆t.
Equation (3) reads as: Find (un+1

h , ûn+1
h ) ∈ Vh × V̂h such that∑

T

∫
T
(un+1

h − unh)vh dx−∆t

∫
T
(bulh) · ∇vh dx

+∆t

∫
∂Tin

b · n ûn+1
h vh ds+∆t

∫
∂Tout

b · nulhvh ds = 0, ∀vh ∈ Vh,∑
T

∫
∂Tout

b · n (ulh − ûn+1
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

(5)

For a time implicit scheme we use l = n+ 1 and for a time explicit scheme we use l = n.
Using this scheme, the total mass of the solution remains the same.

Theorem 2.1 (Mass conservation). For the advection Equation (1), given periodic bound-
ary conditions, the approximation found by using Equation (5) satisfies∑

T

∫
T
unh dx =

∑
T

∫
T
u0 dx ∀n = 0, 1, . . . , N.

Proof. Let vh = 1 on Ω, then the first line of Equation (5) gives∑
T

∫
T
(un+1

h − unh) dx+∆t

∫
∂Tin

b · n ûlh ds+∆t

∫
∂Tout

b · nulh ds = 0. (6)

Next, let v̂h = 1 on an arbitrary interface E = T ∩ T ′. Without loss of generality let
∂Tout = E and thus ∂T ′

in = E. By the second Equation in (5) we see that on E we have
ûh = uh|T∩E , and thus we have∫

Tout

b · nuh =

∫
Tout

b · n ûh = −
∫
T ′
in

b · n ûh,

thus, the numerical flux over some outflow boundary is minus the numerical flux over that
inflow boundary of the adjacent element. By that, Equation (6) simplifies to∑

T

∫
T
(un+1

h − unh) dx

+∆t

∫
∂Tin

b · n ûlh dx+∆t
∑
T

∫
∂Tin

−b · n ûlh dx = 0

(7)

Which results in∑
T

∫
T
un+1
h dx−

∫
T
unh dx = 0.

This holds for all n = 0, 1, . . . , N .∑
T

∫
T
unh dx =

∑
T

∫
T
u0h dx =

∫
Ω
u0 dx.
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3 Flux limiting

The next section focuses on the concept of flux limiters and how they can be applied. Flux
limiting, as the name suggests, limits the amount of mass that is transported from one
element to the next (flux). In a time explicit or implicit scheme we do this by multiplying
our numerical flux F̂ by a factor αT,T ′ which is defined on every interface. We have
that αT,T ′ ∈ [0, 1]. The idea of flux limiting is only applied to a low order HDG
approximation. Equation (5) will then read as: Given u0 : Ω → [u∗, u

∗] and for n =
0, 1, . . . , N , find (ūn+1

h , ûn+1
h ) ∈ V̄h × V̂h such that∑

T

∫
T
(ūn+1

h − ūnh)vh dx

+αT,T ′∆t
(∫

∂Tin

b · n ûn+1
h vh ds+

∫
∂Tout

b · n ūlhvh ds
)
= 0, ∀vh ∈ V̄h,∑

T

∫
∂Tout

b · n (ūlh − ûn+1
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

(8)

Theorem 2.1 also holds for the solution of Equation (8). The proof for this is quite similar.
The fluxes will be multiplied by αT,T ′ but the fluxes will still cancel out in the end.

3.1 Fully explicit FSL for DG schemes

We will not discuss the implementation of the fractional step limiter for the DG method
in great detail as this can be found in [3]. Note that explicit FSL method do not work for
the HDG method as mentioned in section 1.2.

The idea behind this FSL is that we first calculate a non-limited higher order solution,
which is used as an initial guess. We then calculate a lower order solution that is bound
preserving. Finally, we compare these two solutions to find how much flux, from one
element to the next, we can add to the low order approximation without violating the
bounds.

3.2 FSL for the HDG scheme

We now formulate an algorithm that ensures bound preservation for local means for the
HDG scheme. In the following section, we will extend on this idea and modify the algorithm
given in the paper [3] to work on the HDG scheme. We will use an implicit time scheme in
our algorithm. This however creates a problem when trying to find the limiting factors αT .
When using an implicit scheme, the αT ’s depend on the numerical fluxes of the solution
in the next time step, which we do not yet know. There are two ways to circumvent this
problem. The first way is; we calculate the α’s iteratively in order to approximate the true
value of α. The second option is using a combination of implicit and explicit time schemes.

3.2.1 Fully implicit approach

We first formulate the fully implicit method. A very important difference compared to the
algorithm presented in [3], is that in step 4 we make a step from ū

(0)
h,T instead of ū(m−1)

h,T .

In [3] we keep adding a small amount of flux on top of ū(m−1)
h,T until the next step would

cause a violation of the boundedness. In Algorithm 1, we try to find a value for α(m)
T such

that we can make this step in one go. We need to find these values of α(m)
T iteratively as
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Algorithm 1 Fully implicit fractional time step limiter for bounding local means:

Given a time step n ∈ {1, 2, . . . N} and un−1
h .

Step 1: Solve higher order solution: Solve Equation (5) to get a higher order
solution (uhighh , ûhighh ) ∈ Vh × V̂h, using l = n+ 1.
Step 2: Approximate low order solution: Solve Equation (8) with αT,T ′ = 1 to get
a low order solution (ulowh , ûlowh ) ∈ V̄h × V̂h, using l = n + 1, that is bound preserving
(see Theorem 3.2 below).
Step 3: Initialize iteration: Choose 0 < ϵ1, ϵ2 ≪ 1 and let

F̂ high = F̂ (uhighh , ûhighh ) and F̂ low = F̂ (ulowh , ûlowh ).

Then we set
m = 1 and F̂ (m−1) = F̂ high − F̂ low.

Step 4: Finding the limiting factors: Use Algorithm 2 to find αT,T ′ such that:∑
T

∫
T
(ū

(m)
h − ū0h)vh dx

+αT,T ′∆t
(∫

∂Tin

b · n û
(m)
h vh ds+

∫
∂Tout

b · n ū
(m)
h vh ds

)
= 0, ∀vh ∈ V̄h,∑

T

∫
∂Tout

b · n (ū
(m)
h − û

(m)
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

satisfies u∗ ≤ ū
(m)
h ≤ u∗ on each element T . Use this equation to calculate ū

(m)
h and

û
(m)
h .

Step 5: Calculate Fluxes:

F̂ (m) = F̂ (ū
(m)
h , û

(m)
h )

Step 6: Check whether to terminate: If

max
T,T ′
|F̂ high − F̂ (m)| < ϵ1 or max

T,T ′
|F̂ (m) − F̂ (m−1)| < ϵ2 for m > 1 only,

then go to Step 7, otherwise set m← m+ 1 go back to step 4.
Step 7: Construct final solution: for every element T , set

unh,T = uhighh,T − ūhighh,T + ū
(m)
h,T , with ūhighh,T =

1

|T |

∫
T
uhighh,T ,

thus in the final solution unh we have replaced the (possibly) non bound preserving mean
values ūhighh,T by the corrected values ū

(m)
h,T (see Theorem 3.1 below).
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the values of α(m)
T depend on the solution ū

(m)
h , which in turn depend on α

(m)
T . By making

a step from ū
(0)
h we can guarantee an convergence of F̂ (m).

Note that in step 6, we could also state a condition:

max
T,T ′
|α(m)

T,T ′ − α
(m−1)
T,T ′ | < ϵ3 for m > 1 only,

for some 0 < ϵ3 << 1. However, the convergence of α(m)
T,T ′ can not be guaranteed, so having

this condition as your only terminating condition could cause an infinite loop.

Algorithm 2 Zalesak’s fully implicit FCT Limiter.
This algorithm finds αT,T ′ such that:∑

T

∫
T
(ū

(m)
h − ū

(0)
h )vh dx

+αT,T ′∆t
(∫

∂Tin

b · n û
(m)
h vh ds+

∫
∂Tout

b · n ū
(m)
h vh ds

)
= 0, ∀vh ∈ V̄h,∑

T

∫
∂Tout

b · n (ū
(m)
h − û

(m)
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

satisfies u∗ ≤ ū
(m)
h ≤ u∗ on each element T .

Step 1: Sum up fluxes:

P+
T = ∆t

∑
T ′ ̸=T

max{0,−F̂ (m)
T,T ′}, P−

T = ∆t
∑
T ′ ̸=T

min{0,−F̂ (m)
T,T ′}.

Step 2: Admissible bounds:

Q+
T = |T |(u∗ − ū

(m)
h ), Q−

E = |T |(u∗ − ū
(m)
h ).

Step 3: Element limiting factors:

[0, 1] ∋ α±
T = min{1,

Q±
T

P±
T

}.

Step 4: Flux correction factors: For T ′ ̸= T ,

α
(m)
T,T ′ =

{
min{α−

T ′ , α
+
T } if F̂ (m) < 0,

min{α+
T ′ , α

−
T } if F̂ (m) > 0.

Theorem 3.1. All ū(m)
h,T generated by Algorithm (1) and Algorithm (2) are BP, i.e., ∀m ∈

N, ∀T, u∗ ≤ ū
(m)
h,T ≤ u∗.
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Proof. We assume u∗ ≤ ū
(0)
h,T ≤ u∗. We show that ū

(m)
h,T ≤ u∗

ū
(m)
h,T =ū

(0)
h,T −

∆t

|T |
∑
T

α
(m)
T,T ′F̂

(m),

≤ū(0)h,T −
∆t

|T |
∑
T

min{α−
T ′ , α

+
T }max{0,−F̂ (m)},

≤ū(0)h,T −
∆t

|T |
∑
T

min{1,
Q−

T

P−
T

,
Q+

T

P+
T

}max{0,−F̂ (m)}.

We can now use the fact that
∑

imin{xi, yi} ≤ min{
∑

i xi,
∑

i yi}, which gives that

ū
(m)
h,T ≤ ū

(0)
h,T −min

{∆t

|T |
∑
T

max{0,−F̂ (m)},

∆t

|T |
Q+

T

P+
T

∑
T

max{0,−F̂ (m)},

∆t

|T |
Q−

T

P−
T

∑
T

max{0,−F̂ (m)}
}
.

It holds that

∆t

|T |
Q+

T

P+
T

∑
T

max{0,−F̂ (m)} =
∆t|T |(u∗ − ū

(0)
h,T )

∑
T ′ ̸=T max{0,−F̂ (m)}

∆t|T |
∑

T ′ ̸=T max{0,−F̂ (m)}
,

=u∗ − ū
(0)
h,T .

This gives our final inequality:

ū
(m)
h,T ≤ ū

(0)
h,T − u∗ − ū

(0)
h,T = u∗.

Which gives that ū
(m)
h,T is upper bounded by u∗ for all m. The proof for showing that

ū
(m)
h,T is bounded below by u∗ is very similar to this proof, where the difference is that you

decompose F̂ (m) into the outflows instead of the inflows.

In step 2 of Algorithm 1, and correspondingly needed for the assumption of Theorem
3.1, we require the low order solution ulowh to be bound preserving. We can show that
when we use an implicit time scheme and given an bounded solution that the solution in
our next time step is also bounded by these same bounds.

Theorem 3.2 (Preservation of non-negativity and boundness). Given that u∗ ≤ ūnh ≤ u∗,
let ūn+1

h be the solution of Equation 8 with αT,T ′ = 1. There holds:

u∗ ≤ ūn+1
h ≤ u∗. (9)

Proof. In a first step, we proceed similarly as in the proof of Theorem 2.1 to see that
the hybrid variable ûh corresponds to the upwinded value. Thus, we can reformulate the
problem given in Equation 8 in a DG setting. The proof then follows the same lines as
in the proof from [2] but is given in the following for completeness. Further, for the sake
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of simplicity, we use the same symbols for functions in V̄h and their corresponding (finite
element) coefficient vectors.

From the implicit method, we know:

M(un+1
h − unh) + ∆tCun+1

h = 0,

where M is the positive diagonal mass matrix, implying that all non-zero entries are on
the diagonal and are positive. We rewrite this as:

(M +∆tC)un+1
h = Munh.

As the entries of ∆tC are sufficiently small, the matrix M +∆tC is a diagonal dominant
matrix whose diagonal entries are positive. Hence, M + ∆tC is an M-matrix, which has
the property that the inverse of an M-matrix has all positive entries [2]. We write our
equation as:

un+1
h = (M +∆tC)−1Munh.

Where all entries in the matrix (M + ∆tC)−1, the matrix M and the column vector unh
are greater or equal to zero. Hence,

un+1
h = (M +∆tC)−1Munh ≥ u∗.

Now to proof un+1
h ≤ u∗, we know unh ≤ u∗

Mun+1
h +∆tCun+1

h = Munh ≤Mu∗.

The matrix C itself is also a M-matrix, which has the property that the sum of each row
is equal to 0.

Mun+1
h ≤Mu∗.

Which obviously gives us our final inequality

un+1
h ≤ u∗.

The proof which shows that an explicit time scheme returns bounded solution, given a
small enough time step, can be found in [4] .

3.3 Semi implicit approach

Although it is true that we can not solve the HDG scheme using an explicit time scheme,
this does not mean that we can not update the mean values using an explicit time scheme.
We slightly alter Algorithm 1 and Algorithm 2. We change step 4 and 5 of Algorithm 3 to
instead use an explicit time scheme and a different method recycling fluxes.

Also the method to calculate α
(m−1)
T,T ′ can be changed to calculate the α’s explicitly.

This new version can be seen as a combination of Algorithm 1 and the algorithm presented
in [3].
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Algorithm 3 Semi implicit fractional time step limiter for bounding local means:

Given a time step n ∈ {1, 2, . . . N} and un−1
h .

Step 1: Solve higher order solution: Solve Equation (5) to get a higher order
solution (uhighh , ûhighh ) ∈ Vh × V̂h, using l = n+ 1.
Step 2: Approximate low order solution: Solve Equation (8) with αT,T ′ = 1 to get
a low order solution (ulowh , ûlowh ) ∈ V̄h × V̂h, using l = n + 1, that is bound preserving
(see Theorem 3.2 below).
Step 3: Initialize iteration: Choose 0 < ϵ1, ϵ2 ≪ 1 and let

F̂ high = F̂ (uhighh , ûhighh ) and F̂ low = F̂ (ulowh , ûlowh ).

Then we set
m = 1 and F̂ (m−1) = F̂ high − F̂ low.

Step 4: Finding the limiting factors: Use Algorithm 2 to find αT,T ′ such that:∑
T

∫
T
(ū

(m)
h − ū

(m−1)
h )vh dx

+αT,T ′∆t
(∫

∂Tin

b · n û
(m)
h vh ds+

∫
∂Tout

b · n ū
(m−1)
h vh ds

)
= 0, ∀vh ∈ V̄h,∑

T

∫
∂Tout

b · n (ū
(m−1)
h − û

(m)
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

satisfies u∗ ≤ ū
(m)
h ≤ u∗ on each element T . Use this equation to calculate ū

(m)
h and

û
(m)
h .

Step 5: Calculate Fluxes:

F̂ (m) = F̂ (ū
(m)
h , û

(m)
h )

Step 6: Check whether to terminate: If

max
T,T ′
|F̂ high − F̂ (m)| < ϵ1 or max

T,T ′
|F̂ (m) − F̂ (m−1)| < ϵ2 for m > 1 only,

then go to Step 7, otherwise set m← m+ 1 go back to step 4.
Step 7: Construct final solution: for every element T , set

unh,T = uhighh,T − ūhighh,T + ū
(m)
h,T , with ūhighh,T =

1

|T |

∫
T
uhighh,T ,

thus in the final solution unh we have replaced the (possibly) non bound preserving mean
values ūhighh,T by the corrected values ū

(m)
h,T
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Algorithm 4 Zalesak’s semi-implicit FCT Limiter.
This algorithm finds αT,T ′ such that:∑

T

∫
T
(ū

(m)
h − ū

(m−1)
h )vh dx

+αT,T ′∆t
(∫

∂Tin

b · n û
(m)
h vh ds+

∫
∂Tout

b · n ū
(m−1)
h vh ds

)
= 0, ∀vh ∈ V̄h,∑

T

∫
∂Tout

b · n (ū
(m−1)
h − û

(m)
h )v̂h ds = 0, ∀v̂h ∈ V̂h.

satisfies u∗ ≤ ū
(m)
h ≤ u∗ on each element T .

Step 1: Sum up fluxes:

P+
T = ∆t

∑
T ′ ̸=T

max{0,−F̂ (m−1)
T,T ′ }, P−

T = ∆t
∑
T ′ ̸=T

min{0,−F̂ (m−1)
T,T ′ }.

Step 2: Admissible bounds:

Q+
T = |T |(u∗ − ū

(m−1)
h ), Q−

E = |T |(u∗ − ū
(m−1)
h ).

Step 3: Element limiting factors:

[0, 1] ∋ α±
T = min{1,

Q±
T

P±
T

}.

Step 4: Flux correction factors: For T ′ ̸= T ,

α
(m)
T,T ′ =

{
min{α−

T ′ , α
+
T } if F̂ (m−1) < 0,

min{α+
T ′ , α

−
T } if F̂ (m−1) > 0.
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4 Slope limiting

Slope limiting is a post-processing method that constrains the higher order parts of the
numerical solution. A crucial part of the slope limiting process is that we can show that
changing higher order parts of the solution does not change the mean value of our solution.

Theorem 4.1. Let uh ∈ PM (T ) arbitrary. The higher order parts of the numerical solution
uh do not affect the mean value of uh.

Proof. Let T ∈ T be arbitrary. Since the polynomial unh,T is a summation of different
orders of Legendre polynomials Li with their coefficients, say ai, we can write uT,h as:

uh,T (x) =

M∑
i=0

aiLi(x). (10)

To get the mean value of uT,h, we integrate over the element T :

ūh,T =
1

|T |

∫
T
uT,h(x) dx =

1

|T |

∫
T

N∑
i=0

aiLi(x) dx. (11)

Legendre polynomials have the property that the mean value of all Legendre polynomials
of order higher than zero is equal to 0, and the mean value of the 0-th order Legendre
polynomial is 1

ūh,T =
1

|T |

∫
T
uT,h(x) dx =

1

|T |

N∑
i=0

∫
T
aiLi(x) dx =

1

|T |
a0. (12)

Thus, we can freely change the values of ai for i > 0 without changing the mean value of
uh,T .

4.1 The idea

As mentioned in section 3 the FSL from Algorithm 1 and Algorithm 3 only ensures that
the mean value of each element is bound preserving. The higher order parts can still cause
the solution to exceed these bounds on certain points. In order to ensure point-wise bound
preservation, we implement a vertex based slope limiter (V-SL). After every iteration of
the FSL we multiply the higher order linear part of the solution with a variable β ∈ [0, 1]
such that:

u∂T∗ ≤ ūnh,T + β∇unh,T · (CT − x) ≤ u∗∂T . (13)

Here u∂T∗ and u∗∂T denote a lower bound and higher bound on the vertices respectively.
Further, CT is the position of the centre of the element. The term (CT −x) should thus be
interpreted as the distance between the centre of the element and the considered interface.

12
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Figure 1: A visualisation of slope limiting on an example situation to demonstrate
the point-wise bound preservation. The red dotted lines represent the local means
on the element, the blue lines represent the higher order solution and the green dots
the approximation on the facets found by the HDG scheme. u∗ and u∗ represent
the lower bound and upper bound respectively.

4.2 Vertex based slope limiter

We implement the linear Kuzmin slope limiter [6]. This V-SL constraints the slope on an
element based on the mean values on the neighbouring elements. Let ξ(T ) denote the set
of facets of an element T We define our vertex wise lower- and upper bound as follows:

u∂T∗ = min
{T ′∈T :∂T ′∈ξ(T )}

ūh,T ′ and u∗∂T = max
{T ′∈T :∂T ′∈ξ(T )}

ūh,T ′ . (14)

To force the numerical solution to be bounded at every value of x we define

βT = min
∂T∈ξ(T )


u∗
∂T−ūh,T

uh(∂T )−ūh,T
if uh(∂T ) > u∗∂T ,

1 if u∂T∗ < uh(∂T ) < u∗∂T ,
u∂T
∗ −ūh,T

uh(∂T )−ūh,T
if uh(∂T ) < u∂T∗ .

We use uh(∂T ) to denote the value of the numerical solution on the boundary ∂T ,
looked at from the solution on T .

Thus, by element wise changing the higher order part of the numerical solution, we
can ensure that the entirety of our solution is bound preserving. We can do this without
changing the total mass of the entire solution.

4.3 Global Bound based slope limiter

The goal of the slope limiter is to make sure that u∗ ≤ unh,T ≤ u∗ for all values of x in
the element T . The downside of the vertex based slope limiter is, that we sometimes limit
the slope even tough Equation (2) is not violated. To prevent this we propose a new slope
limiter, a so-called bound based slope limiter (B-SL). The idea is the same as for the V-SL
of Section 4.2. Instead of limiting the slope based on neighbouring elements, we limit the
slope based on pre-defined global bounds. We define

βT = min
∂T∈ξ(T )


u∗−ūh,T

uh(∂T )−ūh,T
if uh(∂T ) > u∗,

1 if u∗ < uh(∂T ) < u∗,
u∗−ūh,T

uh(∂T )−ūh,T
if uh(∂T ) < u∗.

(15)
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Using this method we only limit the slope if the solution were to violate the boundaries at
any point. There is of course also a downside to using a B-SL compared to using a V-SL.
Using a B-SL allows the solution to be more discontinuous. The jump of the solution from
one element to the next can be much larger. This is in most cases not a problem, however
when large discontinuities are undesired using a V-SL can be preferable. As we try to
develop a method that allows for a more physically viable solution, we will not analyse
numerical results using B-SL in great detail.

5 Numerical results

In the following sections, we look at the implementation of the FSL and the SL on a
certain scenario, after which we discuss the results. All simulations are done using Python
and the NGSolve framework [1] and (www.ngoslve.org). The code for the simulation can
be found on GitLab [5]. All simulation are made using zeroth and first order Legendre
polynomials in an 1-dimensional space. The mesh is defined on the domain (0, 1), with
periodic boundary. The mesh is partitioned in 50 equally sized elements.

5.1 Linear advection equation

The situation we analyse is the linear advection of a step-function. We use this situation,
as the discontinuity in the step function causes a non-limited solution to break conservation
laws. Thus, this situation is a nice test to see if the FSL and the SL prevent the breaking
of these laws. Consider Equation (1), define b = 1 and let

u0(x) =

{
1 if x ≥ 1

2 ,
0 if x < 1

2 ,
(16)

with upper bound u∗ = 1 and lower bound u∗ = 0. We look at the time interval T := (0, 0.5]
with ∆t = 10−3. This gives us a total of 500 time steps. We see the numerical solution
at t = 0.5 of a non-limited solution, see Figure 2a, the DG explicit method with FSL and
V-SL, see Figure 2b, the HDG fully implicit methods with FSL and V-SL, see Figure 2c,
and finally the HDG semi-implicit methods with FSL and V-SL, see Figure 2d.

From Figure 2a we see at around x = 0.55 and x = 0.45 that we get an under and
overshoot of the solution. These under and overshoots violate the restrictions of 0 = u∗ ≤
uh,T ≤ u∗ = 1. In Figure 2b we see that the solution is between the 0 and 1. This shows
that, indeed, the FSL and the V-SL prevent the violation of the conservation laws. In
Figure 2c and 2d we see the solution found using both an implicit and semi-implicit FSL
for the HDG method. For the fully implicit HDG approach, we observe a difference (Figure
2c) at x = 0.1 and x = 0.5. At these values there seems to be a small dent and bump
respectively, which we do not see when using an explicit FSL in Figure 2d. A reason for
these dents or bumps could be that when using an implicit FSL we do not fully converge
to our desired αT , which then limits our flux too much. However, this would need some
further research to be certain of this.

5.2 Second scenario: Smooth function

We now look at a smooth initial condition that lies well between the upper- and lower
bound. Consider Equation (1), define b = 1 and let

u0(x) = 0.5sin(2πx) + 0.5 (17)

14
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(a) Explicit DG solution without using
limiters.

(b) Explicit DG solution using FSL and
V-SL.

(c) Implicit HDG solution using FSL
and V-SL.

(d) Implicit HDG solution using explicit
FSL and V-SL.

Figure 2: Numerical solution of Equation (1) at time t = 0.5, using 50 elements,
∆t = 10−3,b = 1 and u0 as defined in 16. The line segments represent the high
order solution, the orange lines represent the mean values of the elements, and the
green dots are the solution on the vertices for the HDG method.
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(a) Explicit DG solution of a smooth ini-
tial condition without using limiters.

(b) Explicit DG solution of a smooth ini-
tial condition using FSL and V-SL.

(c) Implicit HDG solution of a smooth
initial condition using FSL and V-SL.

(d) Implicit HDG solution of a smooth
initial condition using explicit FSL and
V-SL.

Figure 3: Numerical solution of Equation (1) at time t = 0.5, using 50 elements,
∆t = 10−3,b = 1 and u0 as defined in 17. The line segments represent the high
order solution, the orange lines represent the mean values of the elements, and the
green dots are the solution on the vertices for the HDG method.

with upper bound u∗ = 1.5 and lower bound u∗ = −0.5. We look at the time interval
T := (0, 0.5] with ∆t = 10−3.

From Figure 3 we see that when we have a system that does not require any flux limiting
or slope limiting, Algorithm 1 and 3 give an almost identical solution as the non-limited
method.

5.3 Error analysis

By merely looking at the numerical solution of these various methods at a given time, it
is quite hard to determine how “well” the method works. Hence, in this section, we look
at the total error between the numerical solution and the theoretical solution over time. If
we wish to calculate this error, we must first define how to calculate this error. Let

L̂T (tn) = ||uh(tn)− u(tn)||L2(Ω) =

√∑
T

∫
T
(u

(n)
h,T (x)− u(x, tn))2 dx, (18)
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Figure 4: The error for the linear advection problem mentioned in section 5.1
of various simulation schemes as a function of the number of time steps, where
one time step (∆t)= 10−3. The error is calculated at the time step-number
1 , 100 , 200 , 300 , 400 and 500.

thus L̂T (tn) denotes the error at time tn measured in the L2-norm. Here u(x, t) is the
exact solution.

We should note that the value of this error does not have any physical meaning and
is merely used as a way to compare different numerical methods. The error we might be
interested in highly depends on the practical scenario that we wish to solve, and many
more variables.

We calculate the error for all the simulation schemes, including the explicit DG scheme
without any limiters. We use the setting of the first case mentioned in Section 5.1, with
the same parameters. We do this at several given time step: tn = 1, 100, 200, 300, 400 and
500. We do not include the point tn = 0 as this would result in an error of 0 for all schemes.
The chosen time step numbers are such that the step made by the step function happens
exactly at the interface of an element, causing the theoretical solution to be constant in
an element.

In Figure 4 we see the error of various simulation schemes as a function of the number
of time steps. We see that the total error of these different schemes barely differ over time.
Even with those undesired dents and bumps in our solution in the fully implicit HDG
scheme with FSL and V-SL.

We now calculate the error of our solution again using

L(tn) =
∑
T

∫
T
u
(n)
h,T (x)− u(x, tn) dx.

This gives us an “error bias”, giving us insight on whether our solution is consistently too
large or to small. By Theorem 2.1 we expect L(t) = 0 as the total mass of uh(t) must
be equal to the mass of g(t) for all t. For all schemes these error values are around 10−15

which corresponds to the machine precision, i.e. represent a "numerical zero".
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Figure 5: The error, as calculated in (18), of various simulation schemes as a
function of the number elements |T |. The error is evaluated after 100 time steps
for |T | = 20, 40, 80, 160, with ∆t = 10−5.

5.4 Error in terms of grid size

We now look into the error as calculated in Equation (18) as a function of the number of
elements in our mesh. Consider the scenario as described in section 5.2, again with b = 1,
∆t = 10−3 and u0 as defined in (17). We calculate the error after 100 time steps, this way
our time-error is much smaller than the spatial error. The time error becomes negligible
when |T | ≪ r∆t, where r is the number of time steps.

In Figure (5) we see that both the non-limited and limited explicit method have the
same order of convergence. Implementing the limiters does not decrease our rate of con-
vergence. The same holds for both implicit schemes.

6 Conclusions

In this work we formulate a flux limiting scheme for HDG schemes based on the fractional
step limiter of [3]. This limiter ensures upper and lower boundedness for local means. We
develop two methods of implementing the FSL scheme for HDG schemes. The first method
is a fully implicit version. At every time step we implicitly find an initial guess, after which
we find the flux limiting factors αT,T ′ using implicit time steps. The second method again
uses an implicit time step to find an initial guess, but then uses an explicit time step to
find the flux limiting factors. Secondly, we define a vertex-based slope limiting algorithm
from [6] to ensure that point-wise maximum principality holds for first order polynomials.
We also look at how these limiters affect the accuracy of the solution as a function of the
number of time steps. We see that the application of the FSL and the SL does not decrease
the accuracy.

Even though the FSL does significantly increase the computational time, in combination
with the SL it is still a very effective method of enforcing conservation laws.
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7 Discussion

Even though the methods presented in this work allow us to achieve our goal of the preser-
vation of conservation laws, the methods have their downsides and their restrictions. The
biggest restriction of the slope limiter is that when we want to use a second, or higher order
approximation, the slope limiter fails. The slope limiter could perhaps be modified to also
work for higher order solutions. For example, we could use a hierarchical iterative manner
to modify the higher order part. This would however would require some further study.
In this work, we only discuss the application of the FSL and SL for a 1 dimensional linear
advection equation. Looking into multidimensional problems or non-linear equations, such
as Burgers’ equation or the shallow water problem would be very interesting.
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