
An Object-Event Simulation Approach to Simulation of ArchiMate
Models
MELLE PLOEG, University of Twente, The Netherlands

Simulation is a frequently used tool in enterprise management, with Object-
Event Simulation (OES), a discrete-event simulation paradigm, being one
option. However, in current implementations, simulation models in OES
have to be programmed in JavaScript. ArchiMate is another common tool
in enterprise management, with applications in risk modelling. This paper
proposes a mapping of ArchiMate models to OES models, which allows for
the automatic simulation of ArchiMate models. In an attempt to demonstrate
the viability of the proposed mapping, a proof of concept has also been
created.

Additional Key Words and Phrases: Discrete-event simulation, Object-Event
Simulation, ArchiMate

1 INTRODUCTION
Simulation is a useful tool in many fields, enterprise management
among them. Discrete-event simulation (DES) is a frequently used
approach for this, with many different applications and implementa-
tions [6, 9]. Discrete-event simulations are based on simulations as a
series of events, rather than simulations as a continuous progression
of time. With this generic definition, there are is a multitude of DES
paradigms [13]. This paper will use the paradigm of Object-Event
Simulation (OES). OES models allow modelling of both processes
and information, which lets users create a great variety of simula-
tion models [13]. OES is unique in separating its models into three
separate components: objects, events, and event rules. This sepa-
ration makes creating a mapping easier, as a mapping can draw
from the required data of each component individually, as opposed
to extracting all required data at once. OES is explained further in
subsection 2.2.

Another component of enterprise management is modelling. This
allows people to visualise and communicate business structures
and processes. One use for this is to communicate risks, in order
to find solutions that mitigate these risks [11]. A very frequently
used modelling tool in enterprise management is ArchiMate. When
extended with the Risk and Security Overlay (RSO) [7], it allows
detailed modelling of enterprises, processes and associated risks.

Enterprise modelling and simulation are two useful tools on their
own, but they are even more useful when they can be connected.
The obvious way to do this would be by letting a user easily simulate
an enterprise model. The only other existing solution for this is, to
the best of our knowledge, a proposal called xArchiMate[5], which
uses a different approach to discrete-event simulation. The solution
proposed in this paper uses OES, with its simulation model structure
allowing for easier creation of a mapping. Additionally, current im-
plementations of OES make it quite hard to build simulation models
without technical knowledge, because they have to be programmed
manually.

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

There are two challenges to being able to simulate, that is perform
formal reasoning on, an ontological modelling language such as
ArchiMate [3]. The first, as mentioned by Grov et al. [3], is how to
model risk in such a way that the model provides enough detail
to allow for automated formal reasoning, whilst still being simple
enough to be readable to humans. This same challenge applies
to more general simulation modelling. This challenge has been
addressed with the RSO [7], as this more detailed specification adds
components that can model additional information. However, as
was done for xArchiMate[5], additional specifications for ArchiMate
have been created, because simulation models require a greater
level of detail than most enterprise models. These specifications are
outlined in the proposed solution.
The second challenge as explained by Grov et al. [3] is that of

automating support for reasoning about a model, which is the pri-
mary focus of this paper. In our case, this means creating a mapping
from enterprise models in ArchiMate to OES models, which can
then be ran as simulations. This mapping is the primary focus of
this research.

1.1 ResearchQuestions
The central challenge of this research is creating a connection be-
tween enterprise modelling in ArchiMate and Object-Event Simula-
tion, as a means of allowing for automated support for simulation of
ArchiMate models. This leads us to the primary research question.

RQ How can automated support for Object-Event Simulation
of enterprise models in ArchiMate be created?

A major component of the answer to this research question is a
mapping of ArchiMate to OES, the effectiveness of which must also
be studied. To illustrate this, there are two sub-research questions.

Sub-RQ 1 How can ArchiMate elements be mapped to compo-
nents of an Object-Event Simulation model?

Sub-RQ 2 What is the effectiveness and appropriateness of this
mapping of ArchiMate to Object-Event Simulation?

The first question will be answered through the creation of a map-
ping of ArchiMate to OES. The second will be answered through the
creation of a proof of concept, created using a JavaScript implemen-
tation of OES and the mapping of ArchiMate to OES as proposed in
this paper.

2 BACKGROUND

2.1 ArchiMate
ArchiMate is an enterprise modelling language developed by The
Open Group, created to design and communicate business processes,
IT systems, organisational structures, and more, in an easily under-
standable format[2].

2.1.1 Risk and Security Overlay. While ArchiMate is versatile, it
is lacking when it comes to modelling risk and security aspects.
The Risk and Security Overlay (RSO) mitigates this [7]. It expands

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 41, July 5, 2024, Enschede, The Netherlands Author

on the standard ArchiMate specification by adding elements that
allow a user to specify aspects of risk and risk management such
as threats, vulnerabilities, loss events, and much more. It also adds
the concept of assigning likelihoods to events, which is used in the
solution proposed in this paper.

2.2 Object Event Simulation
Object-Event Simulation (OES) is a discrete-event simulation par-
adigm using object-oriented modelling [1]. With this, OES unites
information systems engineering and discrete event simulation [13].

To create an OES system which can be executed, an object event
model is required. This consists of the following, as explained by
professor Wagner:

• A set of object types, which define the information structure
of the system. Objects can be modelled with a number of
variables to describe their attributes.

• A set of event types, which model different events that can
occur. These events can affect objects or be the cause of other
events, depending on the event rules.

• A set of event rules, one for each event. Event rules describe
the way an event affects the objects in the model, as well as
what other events are caused by the event.

A model like this, combined with an initial state, consisting of initial
object states and initial events, defines an OES system[13]. An OES
system state consists of a current system state, given by the current
values of all objects in the system, and a list of planned events
called the future events list (FEL). Event occurrences trigger event
rules, which changes the state of the system by changing affected
objects and the FEL. A detailed diagram modelling the information
architecture can be found on GitHub[14].

2.2.1 OES Implementation in JavaScript. Prof. Wagner has created
a JavaScript implementation of OES [14] called OESjs, which has
been used as the target for the mapping created for this paper. It is
also the OES implementation used in creating a prototype.

The basic OESjs implementation uses classes to define the object
event model. There is an “oBJECT" class, the implementations of
which model object types, and an “eVENT" class whose implemen-
tations model event types and event rules, through an “onEvent()"
method. Every model also includes a script that models the initial
state, as well as other simulation attributes like the time limit of the
simulation.

3 RELATED WORK
xArchiMate is an existing solution for the execution of ArcihMate
models[5]. The key difference between xArchiMate and the solu-
tion proposed in this paper, is the chosen discrete-event simulation
method: xArchiMate’s uses the concept of Open Objects, which
are objects that have methods as well as attributes. As a conse-
quence, any object can model both the state of a system and an
event acting upon that system. This is in contrast to OES, which,
in the implementation used in this paper, strictly separates state-
representing objects and state-modifying events. The Open Object
approach allows for the creation of more detailed models, but in
turn may increase complexity. [5] mention that, regardless of level
of detail, enterprise architecture models are going to be complex.

The Discrete-Event Modelling Ontology (DeMo) is an ontology
made for ontology-driven simulation, that is an ontology designed
such that its models can be automatically simulated [10]. This is
used in a program called DeMOForge, which maps domain ontolo-
gies to DeMo, which can then be transformed to a discrete-event
simulation model. Silver et al. [10] note a key difference between
mapping between domain ontologies and mapping from a domain
ontology to a modelling ontology. The former usually is used to es-
tablish relationships between concepts, for example of equivalence.
In the latter, concepts are connected as analogs. In our case of using
ArchiMate, this could be mapping a “Resource" in ArchiMate to an
Object in Object-Event Simulation, meaning the Resource will be
treated as functioning as an Object. We will be using this approach
to mapping in this paper, only to map ArchiMate to Object-Event
Simulation models.

ProfessorWagner, the creator of Discrete-Event Simulation (DES),
has also done work on ontological foundations for DES [15]. Because
DES requires both information and event/process modelling, there
is no singular existing ontology that can model OES models [4].
As such, a method using UML class diagrams for the information
component and a modified version of BPMN, called DPMN, for
the events and event rules. BPMN is a business-oriented process
modelling language. DPMN is more explicit than BPMN, and as
such is complete enough to be simulated. However, DPMN is no
longer supported, so it will not be used in this paper [12]. However,
the use of a combination of UML and DPMN does demonstrate the
requirements of an ontological simulation model: it needs to model
both information and processes. These requirements are important
for the solution proposed later in this paper.

4 PROPOSED SOLUTION
ArchiMate, as it is normally used, is intended to create clear and eas-
ily readable diagrams, which can be understood by people without
technical background knowledge[2]. As such, they do not include
enough detailed information to be simulated. To mitigate this, the
solution as proposed here sets requirements for ArchiMate diagrams
used as its input. Some of these, like the “Likelihood" element, are
taken straight out of RSO, whereas some, like the “Initial" element,
are newfound but defined in a similar fashion. These additional
specifications were created with the intention of maintaining the
readability of input diagrams. There are two examples of complete,
runnable models in the appendix: Figure 3, depicting a bank account
with regular transactions, and Figure 4, depicting an investment
portfolio during a tumultuous time in the market.

4.1 Used Tools
To create the ArchiMate diagrams used in this paper, “Archi"1 was
used. As a reference for the proposed mapping, the JavaScript imple-
mentation of OES, “OESjs"2, was used, as explained in subsection 2.2.
For the implementation of the prototype, “ANTLR"3, a language

1https://www.archimatetool.com/
2https://github.com/gwagner57/oes
3https://www.antlr.org/

2



An Object-Event Simulation Approach to Simulation of ArchiMate Models TScIT 41, July 5, 2024, Enschede, The Netherlands

recognition tool for Java, is used to parse the ArchiMate input dia-
grams, and “OESjs" is again used, to run the generated simulation
models.

4.2 Requirements
4.2.1 Ontological Model. The capability for simulation of an Archi-
Mate model is important, but it is not the model’s only requirement.
An input model should not only contain all the required information
for a simulation, but also be able to hold additional information that
may be relevant to a reader. This would entail information that
either cannot be mapped to OES or is not relevant to OES. Besides
that, the information that is used in the simulated component of the
model should be readable to people without technical knowledge.
The technical information shown in the model should therefore also
be kept to a minimum.

4.2.2 Simulation Model. As explained in subsection 2.2, an OES
model consists of the union of three sets, in addition to some simu-
lation settings: a set of objects, one of events, and one of event rules.
Elements of an ontological model should then be mapped to one
of these three components, and these three components need to be
appropriately represented in an ontological model.

4.3 Method for Creation of Proposed Solution
The mapping is based on three components: objects, events, and
relations. Objects represent the information modelling component
of the model have associated attributes that can be modified to
change the state of the simulation. For example, a bank account may
be an object and its balance can be a property. Objects can easily be
modelled using UML class diagram.
Events are the processing component of the model. They are

mapped to event classes in OES, and serve as a way to affect objects
and trigger other events through event rules.
Relations are used in two ways. First is to associate elements

with each other, for example to associate an object with an attribute.
Second is to represent the event rule component of OES models, in
the form of event triggering and object manipulation.
Because ArchiMate models normally do not contain enough in-

formation to be simulated[5], some additional information has to
be added. This comes in the form of the purple elements, as seen in
the example diagrams. These elements add important simulation
information, but may also show information that could be useful to
a reader.
Certain ArchiMate elements were mapped to represent either

object or event classes in OES. These elements were selected based
on the ArchiMate 3.2 specification[2]. The selection was made based
on whether or not the element in question could reasonably be
interpreted as either a kind of object or a kind of event. Thiswas done
to allow for flexibility in the creation of input diagrams, compared
to a stricter approach of, for example, only interpreting ArchiMate
“Event" elements as OES events.

4.4 Object Modelling
Objects in OES represent anything that is affected by events. There-
fore, there are many ArchiMate elements that can be treated as
objects. The full list is the following:

Fig. 1. ArchiMate diagram showing some arbitrary object with one associ-
ated attribute. The range specified is optional.

• Resource
• Business Object
• Contract
• Product
• Data Object
• Node
• Device

• System Software
• Communication Net-
work

• Equipment
• Facility
• Distribution Network

OES objects have a number of attributes, each with an initial value
and optionally a restricted range. This is modelled in ArchiMate in
the following way: an object has at least one associated property,
represented as an ArchiMate value element. Each value has one or
two associated constraints. The first is stereotyped with “Initial",
and denotes the initial value of the property. The optional second
is stereotyped with “Range", followed by some condition that must
hold for the property. Figure 1 depicts a diagram in ArchiMate of
some object.

4.5 Event Modelling
Events in OES are composed of event types and event rules. Event
types are modelled in ArchiMate as any of the following elements:

• Any process
• Any function
• Any interaction

• Any event
• Any service

Event rules are of two types; those that affect objects, and thus
change the state of the simulation, and those that trigger objects,
adding to the future events list. Figure 2 depicts a small diagram
with two events, demonstrating how different event rules may be
modelled.

4.5.1 Affecting Objects. Events can affect objects by changing their
attributes. An event that is modelled as having an “association"
relationship with an object in ArchiMate is treated as affecting
that object. Changing a property of that object is modelled with

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Author

Fig. 2. ArchiMate diagram showing some arbitrary event. The “Application
Process" is mapped as an OES event class, with the event rule that it changes
the “Value" attribute of the blue “Object" by adding 3 to it. Additionally, it
has a 50% chance to trigger the “Business Event", which will subsequently
recur every 5 simulation turns if it is triggered.

an “influences" relationship between the event and the object’s
property, represented as a “value" element. This relationship should
be labelled with the mathematical operation to be performed when
the event occurs. An example of this can be seen in Figure 2.

4.5.2 Triggering Events. An event being triggered means it being
added to the future events list. Events can be triggered in three ways.
First, they can be a start event of a simulation. Events that are not
triggered by other events are considered to be start events, and are
put on to the future events list at the start of the simulation.

The second way is by being triggered by other events, represent-
ing causal relationships. This is modelled by having a “triggering"
relationship from one event to another. When the causing event
occurs, the event on the receiving end of the relationship is put
on to the future events list. Optionally, an “assessment" element,
stereotyped with “Likelihood" followed by some percentage, can be
associated with the relationship. This represents the chance of the
triggering relationship happening.
An event can be modelled to trigger one of multiple events. For

this purpose, an “or junction" is used. This junction has an incoming
triggering relation from the causing event, and outgoing triggering
relations to caused events. Each outgoing trigger should have a
an associated likelihood (see random chance). If the sum of the
likelihoods is less than 100%, the remaining chance is the chance of
no new event being triggered.
Thirdly, events can be triggered exogenously, that is by causes

from outside the simulation, through recurrence. This is modelled by
associating the event with an assessment element, stereotyped with
“Recurrence", followed by either one or two numbers. If there is just
one number, the event will reoccur once in that many simulation
turns. If there are two numbers, then the time between recurrence
will be picked randomly between the two numbers. Note that for
an event to start recurring, it must first occur, either through being
a start event or through being triggered a first time.

4.6 Time Limit
OES models with recurrent events should have a time limit, since
otherwise the simulation will go on infinitely. This time limit is not
modelled in the ArchiMate model, in order to keep it more readable.
Therefore, an implementation of this mapping should acquire a time

limit in some other way, for example by asking the user when the
simulation is ran.

4.7 Non-Simulation Modelling
As ArchiMate is an enterprise modelling language[2], diagrams
made in it should be understandable for those without technical
knowledge. To help with this, the proposed solution in this paper
tries tominimise the technical detail in its diagrams. For example, the
type of an attribute is not explicitly stated, but rather inferred from
the initial value. Additionally, diagrams that can be simulated
should be able to model more than just the simulation. As such,
elements that are not in the mapping or that are not “correctly"
used, such that they can be simulated, should be ignored for the
simulation. In this way, diagrams can serve multiple purposes; as a
visual representation of some business, and as a simulation of that
business.

5 PROOF OF CONCEPT
In an attempt to show the viability of the proposed solution, a proof
of concept has been created [8]. This fairly straightforward imple-
mentation generates a full OESjs model from an ArchiMate diagram
in the form of a CSV file. Note that this is a simple prototype only
intended to show the viability of the created mapping. Therefore, it
does not implement all features, such as ignoring modelling com-
ponents irrelevant to the simulation, or the use of restricted ranges
for attributes.
Given a syntactically correct input diagram, the model can gen-

erate an appropriate, executable, and correct OES model. Though
input diagrams still require some fairly specific syntax for the sake
of completeness, this may be easier for those without programming
knowledge, compared to programming an OES in JavaScript. The
prototype is not capable of ignoring irrelevant ArchiMate elements
in its input diagram. The ArchiMate diagrams shown in the ap-
pendix are both fully capable of being automatically converted to
functioning OESjs models.

5.1 Example Execution
To illustrate the process by which ArchiMate diagrams may be
converted to OES models, here is an example of how that works
for the bank account diagram depicted in Figure 3 in the prototype
implementation created for this paper. A JavaScript OES model
consists of a number of object and event classes, as well as a class
to setup the simulation.
The “Bank Account" element, as a business object, converted

to an object class, with an attribute “Balance" which is set to 0 in
the class constructor. The three business event elements, “Salary",
“Rent", and “Go To The Pub", are each converted to an event class.
Becuase they are each associated with the “Bank Account" object,
they each receive that object in their constructor. With this, the set
of objects and set of events have been programmed. As explained
in subsection 2.2, all that is then left is the set of event rules, as well
as an initial state for the simulation.
Each event class has an “onEvent()" method that is called when

the event is triggered. This method contains the code to execute the
event rules associated with the event in question. The “influences"

4



An Object-Event Simulation Approach to Simulation of ArchiMate Models TScIT 41, July 5, 2024, Enschede, The Netherlands

relations in the diagram (arrows with dotted line) are converted to
event rules that affect the state of an object, in this case the balance
of the bank account. The implementation of this is rather simple,
as, for example, the “Rent" event class simply subtracts 80 from the
“Balance" attribute of the “Bank Account" object it was passed when
the event class was constructed.
The “onEvent()" method, in addition to containing code, also

returns a list of events triggered by the event the method is in. In
this case, that would be “Rent" triggered by “Salary". In the case of
an associated “Likelihood", this only happens by a certain chance, in
this case 20%. Events that are recurrent have a “createNextEvent()"
method in OESjs, which is called when the event has occurred
to put the next occurrence of this event on the future event list,
with a certain delay. In this case, only “Salary" is recurrent, and
so whenever it occurs another instance of it gets put on the future
events list with a delay of 5. Additionally, because it does not have
any incoming triggering relations, it is also interpreted as a start
event, meaning that when the simulation starts it is put on the future
events list. This happens in a separate script that also initialises the
simulation’s objects.

6 DISCUSSION

6.1 Results
The proposed mapping, as described above, is complete enough to
allow for the creation of basic simulation scenarios in ArchiMate.
The simulation features it implements are all contained in OES
core 0Wagner [14], which is the most basic OES implementation.
Input diagrams require less detailing and specification compared
to xArchiMate[5], whilst not hiding any information from the user.
The input specification also does not require any new ArchiMate
elements or modification to the ArchiMate language, because it
reuses standard ArchiMate elements. An unexpected outcome of
the requirements is that the technical information that is contained
in input diagrams, is all in the “Motivation Layer" (purple elements).
As a result, all these motivation layer elements can be hidden to
create a “Cleaner", more readable diagram, albeit one that shows
less detail.

6.2 Limitations of Proposed Solution
The mapping proposed in this paper provides a basic set of fea-
tures, but is still quite limited in its uses on three aspects. First, not
every element in ArchiMate is mapped to OES. This means that
when a diagram containing unmapped elements is simulated, it
is not simulated in its entirety, which may have implications for
the outcome one might expect. Second, not every simulation me-
chanic a user may require is mapped to. This ranges from fairly
straightforward features such as conditional triggering relations,
to more complex ones such as agent based simulation[14]. Finally,
is a problem inherent with creating ontological models that are
both complete and readable. OES models require precise simulation
data, whereas ArchiMate diagrams are preferably made to be quite
generic, with the specification of the ArchiMate language being as
small as possible[5]. As a result, any mapping has to compromise on
both ends: some features in OES are not mapped to in order to keep
the input diagrams simpler, but on the other hand input diagrams

require some quite specific syntax in order to be complete enough
to be simulated, which increases their complexity.

6.3 Future Research
This research has demonstrated the possibility of automatic simu-
lation of ArchiMate diagrams, however, it is not complete enough
for practical use. It may be commercially interesting to do more re-
search, as automatic simulation of commonly used diagrams might
be useful to businesses.
Future work could expand on the mapping proposed in this so-

lution, in order to allow for more detailed creation of simulation
models. The challenge lies in extracting a as much information as
possible out of diagrams that are as easy to read and “clean" as
possible.
Allowing for more flexibility and requiring less strict syntax for

input diagrams would be beneficial to users, as it would allow them
to tailor diagrams they create to their own needs rather than to the
automatic simulation mapping. Research could be done in to the
use of AI for interpreting these more diverse models, given that said
AI is well trained on interpreting the intention behind user made
diagrams. An implementation of this could make for a commercially
viable product, although extensive testing and research would have
to be done on the correctness of an AI model made for this purpose.

7 CONCLUSION
Themapping proposed in this paper is grounded in the requirements
of OES models, whilst attempting to let ArchiMate diagrams that
can be simulated to be used as clear visual models. The proposed
mapping does not use all elements of ArchiMate, nor does it map
to every possible feature of OES. Further expansion could be the
subject of future research. While the mapping is not as extensive as
it could be, it still allows for the creation of simulation models that
may be found useful in enterprise management. Therefore, it can
be considered as a valid answer to the first sub research question.
The proof of concept created for this paper has shown that an

implementation of this mapping is both possible and usable, even
given its limited scope. The prototype does, however, also highlight
the limits of the proposed mapping, as there are many components
of ArchiMate that are not mapped to OES, and, conversely, there
are simulation scenarios that one may want to create, but cannot
be created with this mapping. The answer to the second research
question, then, is that the proposed mapping is effective in the
limited features it does implement, but there are many ways in
which it could be improved in future research.

The answers to these sub research questions leads to a straight-
forward answer to the main research question: automated support
for Object-Event Simulation of ArchiMate models can be created
by designing and implementing a mapping of ArchiMate to OES.
It would be possible to create a complete implementation of the
mapping proposed in this paper, however we would recommend
further research into expanding the mapping before committing to
development of a complete product.

REFERENCES
[1] [n. d.]. GitHub - gwagner57/oes: Various simulators for Object Event Simulation

(OES), which is a Discrete Event Simulation paradigm combining object-oriented

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Author

modeling with the simulation approach of event scheduling. https://github.com/
gwagner57/oes?tab=readme-ov-file

[2] [n. d.]. The Open FAIR™ Body of Knowledge | www.opengroup.org. https:
//www.opengroup.org/open-fair

[3] Gudmund Grov, Federico Mancini, and Elsie Margrethe Staff Mestl. 2019. Chal-
lenges for risk and security modelling in enterprise architecture. Lecture Notes in
Business Information Processing 369 (2019), 215–225. https://doi.org/10.1007/978-
3-030-35151-9{_}14/FIGURES/3

[4] Giancarlo Guizzardi and Gerd Wagner. [n. d.]. DISPOSITIONS AND CAUSAL
LAWS AS THE ONTOLOGICAL FOUNDATION OF TRANSITION RULES IN
SIMULATION MODELS. ([n. d.]).

[5] Laura Manzur, Jorge Mario Ulloa, Mario Sánchez, and Jorge Villalobos. 2015.
xArchiMate: Enterprise Architecture simulation, experimentation and analysis.
SIMULATION 91, 3 (2015), 276–301. https://doi.org/10.1177/0037549715575188/
FORMAT/EPUB

[6] Renan Moritz Varnier, Rodrigues Almeida, Rogério Pires Santos, Wagner Coelho,
Albuquerque Pereira, | Renan, and Moritz Varnier. 2022. Discrete-event mod-
els for the simulation of computed tomography sectors according to hospital
structural/organizational changes and expected patient arrival rates. The In-
ternational Journal of Health Planning and Management 37, 1 (1 2022), 536–542.
https://doi.org/10.1002/HPM.3335

[7] Ítalo Oliveira, Tiago Prince Sales, João A Paulo Almeida, Riccardo Baratella, Mattia
Fumagalli, Giancarlo Guizzardi, Kurt Sandkuhl, Balbir Barn, Tony Clark, Souvik B
Barat Ítalo Oliveira, and Giancarlo Guizzardi gguizzardi. [n. d.]. Software and
Systems Modeling Ontology-based security modeling in ArchiMate. ([n. d.]).
https://doi.org/10.1007/s10270-024-01149-1

[8] Melle Ploeg. 2024. OES-in-ArchiMate. https://github.com/Melle-Ploeg/OES-in-
ArchiMate

[9] Francesca Sala, Gianluca D’Urso, and Claudio Giardini. 2023. Discrete-event
simulation study of a COVID-19 mass vaccination centre. International journal of
medical informatics 170 (2 2023). https://doi.org/10.1016/J.IJMEDINF.2022.104940

[10] Gregory A. Silver, Kushel Rai Bellipady, John A. Miller, Krys J. Kochut, and
William York. 2009. Supporting interoperability using the discrete-event modeling
ontology (DeMO). Proceedings - Winter Simulation Conference (2009), 1399–1410.
https://doi.org/10.1109/WSC.2009.5429288

[11] Bondarenko Svitlana, Bodenchuk Liliya, Krynytska Oksana, and
Gayvoronska Inna. 2019. Modelling Instruments in Risk Manage-
ment. International Journal of Civil Engineering and Technology 10,
01 (2019), 1561–1568. http://www.iaeme.com/IJCIET/index.asp1561http:
//www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=01http:
//www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=01

[12] Gerd Wagner. [n. d.]. BUSINESS PROCESS MODELING AND SIMULATION
WITH DPMN: PROCESSING ACTIVITIES. ([n. d.]).

[13] Gerd Wagner. 2022. Object Event Modeling for DES and IS Engineering. [Aachen,
Germany]. https://ceur-ws.org/Vol-3211/CR_099.pdf

[14] Gerd Wagner. 2024. OESjs. https://github.com/gwagner57/oes
[15] Gerd Wagner, G Wagner@b, and Tu De. 2018. Information and Process Modeling

for Simulation – Part I. Journal of Simulation Engineering 1 (2018), 1–1. https:
//doi.org/10.5281/ZENODO.11110129

A DIAGRAMS
Figure 3 and Figure 4 show full ArchiMate diagrams that can be
simulated with the use of the mapping proposed in this paper.

B SUMMARY OF PROPOSAL
Table 1 shows a summary of the mapping of ArchiMate elements
to OES. Elements not described in the table are not included in the
mapping.

6

https://github.com/gwagner57/oes?tab=readme-ov-file
https://github.com/gwagner57/oes?tab=readme-ov-file
https://www.opengroup.org/open-fair
https://www.opengroup.org/open-fair
https://doi.org/10.1007/978-3-030-35151-9{_}14/FIGURES/3
https://doi.org/10.1007/978-3-030-35151-9{_}14/FIGURES/3
https://doi.org/10.1177/0037549715575188/FORMAT/EPUB
https://doi.org/10.1177/0037549715575188/FORMAT/EPUB
https://doi.org/10.1002/HPM.3335
https://doi.org/10.1007/s10270-024-01149-1
https://github.com/Melle-Ploeg/OES-in-ArchiMate
https://github.com/Melle-Ploeg/OES-in-ArchiMate
https://doi.org/10.1016/J.IJMEDINF.2022.104940
https://doi.org/10.1109/WSC.2009.5429288
http://www.iaeme.com/IJCIET/index.asp1561http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=01http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=01
http://www.iaeme.com/IJCIET/index.asp1561http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=01http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=01
http://www.iaeme.com/IJCIET/index.asp1561http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=01http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=01
https://ceur-ws.org/Vol-3211/CR_099.pdf
https://github.com/gwagner57/oes
https://doi.org/10.5281/ZENODO.11110129
https://doi.org/10.5281/ZENODO.11110129


An Object-Event Simulation Approach to Simulation of ArchiMate Models TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 3. ArchiMate diagram showing a simulation model where a salary gets added, followed by rent subtracted, and a potential of going to the pub.

Fig. 4. ArchiMate diagram showing a simulation model where a company makes an investment, which either does or does not pay off. This then affects an
investor’s portfolio.

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Author

Table 1. Mapping of ArchiMate to OES

ArchiMate element OES equivalent
Any from ArchiMate Object List 4.4 OES object classes
Any from ArchiMate Event List 4.5 OES event classes

Triggering relationships Causal event rules
Influences relationships State-changing event rules

Value elements Object attributes
Initial stereotyped constraints Attribute initial values

Recurrence stereotyped assessments Event recurrences
Likelihood stereotyped assessments Likelihoods of triggering relations

8


	Abstract
	1 Introduction
	1.1 Research Questions

	2 Background
	2.1 ArchiMate
	2.2 Object Event Simulation

	3 Related Work
	4 Proposed Solution
	4.1 Used Tools
	4.2 Requirements
	4.3 Method for Creation of Proposed Solution
	4.4 Object Modelling
	4.5 Event Modelling
	4.6 Time Limit
	4.7 Non-Simulation Modelling

	5 Proof of Concept
	5.1 Example Execution

	6 Discussion
	6.1 Results
	6.2 Limitations of Proposed Solution
	6.3 Future Research

	7 Conclusion
	References
	A Diagrams
	B Summary of Proposal

