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ABSTRACT
Model checking is a method to check the correctness of a model

of a system. It is important that a model representing a real-

world system is verified in a meaningful way, only considering

behaviour the real system can exhibit. In probabilistic timed au-

tomata, time divergence should always occur, an example of this

not happening is infinitely many actions being taken in a finite

amount of time, which does not correspond to any real-world sys-

tem. Digital clocks are often used for model checking but a check

for time divergence is required for their result to be meaningful.

We show how existing algorithms can be adapted to check for

this using a digital clocks approach for model checking. After this,

we show the performance impact of this new implementation in

terms of runtime. Finally, we show the result of this check on

existing benchmark models.

KEYWORDS
Probabilistic timed automata, digital clocks, time divergence, prob-

abilistic model checking

1 INTRODUCTION
Model checking is the automatic verification of a model of a sys-

tem, a way to check the correctness of a modelled system. This

can be a model of a real-world system, automotive control sys-

tems or communication protocols for example, whose verification

is of interest and where the results should be highly reliable. Dis-

crepancies between the model, the automatic verification, and

the real-world system can affect the verification results [6]. One

such discrepancy is the behaviour of allowing infinitely many

actions to be taken in a finite amount of time, an example of non-

divergence. This behaviour is not possible in the real world, but

can be modelled in probabilistic timed automata (PTA) [18]. Such
behaviour is not meaningful and should be disregarded during

model checking [19, 20].

An example of such a communication protocol that can be

modelled using PTA is Wireless LAN [11]. Then we can check for

properties such as the probability of a station’s backoff counter

reaching some value, a so called reachability property. When

checking these properties, the minimum probability of reaching

this state is expected to be larger than 0 for certain configurations.

But when the model is not time divergent, we can consider a

strategy that does allow time to proceed beyond a certain point,

never reaching this state. Then our minimum probability is 0,

which is not ameaningful result because timewill always progress

in the real world.

41𝑡ℎ Twente Student Conference on IT, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

When modelling using PTA, it is often useful to abstract them

to Markov decision processes (MDP). For this, both a dense time

model and an integral model, digital clocks [13], can be used.

Digital clocks are a reduction that can be applied to a large class

of systems and can provide a meaningful improvement in perfor-

mance [17] compared to forward reachability [19] and backwards
reachability [18]. It is one of the approaches implemented in the

Modest Toolset [10], which this research aims to extend. The

toolset does not, however, check for divergence when using digi-

tal clocks for model checking.

An algorithm for checking for probabilistic divergence in PTA

has been proposed by Sproston [21]. We show this algorithm can

be adapted to the digital clocks approach for model checking.

To achieve this, we design and implement a prototype into the

Modest Toolset’s model checker mcsta [7]. We test it with PTA

models from the Quantitative Verifification Benchmark Set (QVBS)
[12] and our own developed examples to verify the correctness

of the implementation. The prototype implementation will be

discussed in section 6.

We also analyse the performance impact of this new implemen-

tation in terms of runtime. We use the same benchmark models

from the QVBS to determine the effect of executing the model

checker with and without the check for non-divergence. Further-

more, we also show the result of the non-divergence check on

these models to see which of these exhibit this behaviour. The per-

formance analysis and result of the check will also be discussed

in section 6.

In the next section, relevant topics that are used throughout

this paper are summarized. Then in section 3 we will discuss the

contributions and research questions. After that, in section 4, we

discuss relatedwork. In section 5, wewill discuss themethodology

used for solving our questions. We will continue with the results

in section 6 and finally, in section 7, we will discuss conclusions

from this research and future work.

2 BACKGROUND
This section will provide some background information on the

concepts used in this research. Throughout this paper we use N
to denote the set of natural number and 𝐴𝑃 to denote a set of

atomic propositions. The set of discrete probability distributions

over a set 𝑆 is denoted by 𝜇 (𝑆). Each 𝑝 ∈ 𝜇 (𝑆) is thus a function
𝑝 : 𝑆 → [0, 1] such that

∑
𝑠∈𝑆 𝑝 (𝑠) = 1.

2.1 Markov decision processes
A Markov decision process (MDP) is a tuple (𝑆,→, 𝑙𝑎𝑏) [17, 18]
where 𝑆 is the set of states,→⊆ 𝑆 × 𝜇 (𝑆) is the transition relation,

and 𝑙𝑎𝑏 is the labelling function 𝑙𝑎𝑏 : 𝑆 → 2
𝐴𝑃

. The state space

is traversed from current state 𝑠 by a nondeterministic selection

of (𝑠, 𝑝) ∈→, then a probabilistic choice made using 𝑝 , with the

probability of transitioning to 𝑠′ ∈ 𝑆 being 𝑝 (𝑠′).
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2.2 Probabilistic timed automata
We define probabilistic timed automata (PTA) here using digital
clocks [17], with our time domain being N, the natural numbers.

Given a set of clocks X which take values from this time domain,

we have the set 𝐶𝐶 (X) of clock constraints of the form 𝑥 ∼ 𝑐

where 𝑥 ∈ X, 𝑐 ∈ N and ∼∈ {≤,=, ≥}. Then we define a PTA as a

tuple (𝐿, 𝑙0,X, 𝑖𝑛𝑣, 𝑝𝑟𝑜𝑏,L) [18, 21] where:

• 𝐿 is a finite set of locations

• 𝑙0 ∈ 𝐿 is the initial location

• X is a finite set of clocks

• 𝑖𝑛𝑣 is a function 𝑖𝑛𝑣 : 𝐿 → 𝐶𝐶 (X) that assigns an invariant
to each location

• 𝑝𝑟𝑜𝑏 is a finite set 𝑝𝑟𝑜𝑏 ⊆ 𝐿 × 𝐶𝐶 (X) × 𝜇 (2X × 𝐿) of
probabilistic edges such that for each 𝑙 ∈ 𝐿 there exists a

probabilistic edge (𝑙, 𝑔, 𝑝) ∈ 𝑝𝑟𝑜𝑏 where 𝑔 is a clock con-

straint, and 𝑝 is a probability distribution

• L is a labelling function L : 𝐿 → 2
𝐴𝑃

In this automaton, time can advance in a location as long as

the invariant holds, and a probabilistic edge can be taken so long

as its clock constraint, in the context of a probabilistic edge called

a guard, is satisfied by the clocks.

2.3 Reachability properties
The main measure for PTA we are interested in is probabilistic
reachability, where we make a distinction between the minimal

and maximal probability of reaching, from the initial state 𝑙0, a set

of target states 𝑇 ⊆ 𝐿. To reason about this, we use the notion of

an adversary, which is a resolution of all nondeterministic choices

in the model. The minimum reachability is then the probability

of reaching 𝑇 under the least favourable adversary, and the maxi-

mum reachability is the probability of reaching 𝑇 under the most

favourable adversary. [17]

2.4 Maximal end components
We start by defining sub-MDPs, which, given an MDP (𝑆,→, 𝑙𝑎𝑏),
is a pair (𝐶, 𝐷) where 𝐶 ⊆ 𝑆 and 𝐷 ⊆→. We also define edge
relations: there is an edge (𝑠𝐶 , 𝑠𝑆 ) from 𝑠𝐶 ∈ 𝐶 to 𝑠𝑆 ∈ 𝑆 if it is

possible to go from 𝑠𝐶 to 𝑠𝑆 in one step with positive probability.

Then we define the edge relation 𝜌 , where 𝜌 (𝐶,𝐷 ) is the set of
tuples (𝑠𝐶 , 𝑠𝑆 ) for which there exists 𝑡 ∈ 𝐷 (𝑠𝐶 ) such that 𝑝 (𝑠𝑆 ) >
0, where 𝑝 is the set of discrete probability distributions over 𝑆

such that (𝑠𝐶 , 𝑝) ∈ 𝐷 . A sub-MDP (𝐶, 𝐷) is also an end component
(EC) if:

• For every successor 𝑠′ of 𝑠 ∈ 𝐶 , using transition 𝑡 ∈ 𝐷 ,

𝑠′ ∈ 𝐶
• The graph (𝐶, 𝜌 (𝐶,𝐷 ) ) is strongly connected

Intuitively, this means that an adversary can choose to stay in

the end component indefinitely by selecting the right transitions.

The state-action set of a sub-MDP (𝐶, 𝐷) is denoted by 𝑠𝑎(𝐶, 𝐷) =
{(𝑠, 𝑡) | 𝑠 ∈ 𝐶 ∧ 𝑡 ∈ 𝐷 (𝑠)}. An end component (𝐶, 𝐷) is maximal
in an MDP (𝑆,→, 𝑙𝑎𝑏) if there is no other end component (𝐶′, 𝐷′)
such that 𝑠𝑎(𝐶, 𝐷) ⊂ 𝑠𝑎(𝐶′, 𝐷′) ⊆ (𝐶, 𝐷). These so-called maxi-
mal end components (MECs) are crucial for our approach to check

for divergence, which we will discuss further in section 5.

The maximal end component decomposition (MEC decomposi-

tion) of an MDP consists of all the MECs of the MDP, and all the

states that do not belong to any MEC. This partitions 𝐶 , with no

state belonging to more than one MEC, because when for ECs

(𝐶, 𝐷) and (𝐶′, 𝐷′), some𝐶 ∩𝐶′ ≠ {}, then their union is also an

Figure 1: Reachability under strict and probabilistic diver-
gence. [21]

EC. Following from the definition of MECs, this means that any

state in some MEC, must not be part of any other MEC. [1, 5]

2.5 Probabilistic and strict divergence
In the context of PTA, often a notion of probabilistic time di-

vergence is used, that is, time diverges with probability 1 for all

strategies of the model. This is often sufficient for model checking

purposes. However, a stricter notion of time divergence can also

be used, as was proposed by Sproston [21]. This notion is called

strict divergence, and requires that all behaviours of an adversary

should be time divergent, not just probability 1 of the behaviours.

The relevance of this distinction can be seen in Figure 1. There

exist adversaries that continuously select the probabilistic transi-

tion from 𝑠0, preventing time from proceeding beyond a certain

point. Following the notion of probabilistic divergence, the maxi-

mum probability of reaching 𝑠2 is 1, as the adversary will always

eventually result in reaching 𝑠2. However, there is no adversary

under strict divergence that will always eventually reach 𝑠2, thus

the maximum probability will always be less than 1.

In this research, we focus on checking for probabilistic diver-

gence. When referring to time divergence from now on, it can be

assumed we are referring to probabilistic divergence.

3 PROBLEM STATEMENT
PTA can be model checked using the Modest Toolset [4], but

this toolset only checks for divergence when using the back-

wards reachability algorithm [19]. This algorithm is quite slow

in practise, which is why the digital clocks [17] approach is used

by default for checking PTA in the Modest Toolset. However,

this algorithm does not check for divergence. Identifying non-

divergence has been shown to be possible [21] and this research

shows how this can be adapted to a digital clocks approach in the

Modest Toolset. Subsequently, we will also show the performance

impact of adding this check by analysing existing benchmark

models.

• Goal 1: Identify PTA that exhibit non-divergence behaviour

and produce incorrect results in the Modest Toolset.

• Goal 2: Include the identification of non-divergence in

PTA using an adaptation of the algorithm by Sproston [21],

tailored to digital clocks, in the statistical model checker

of the Modest Toolset [4].

• Goal 3: Analyze the performance impact in terms of run-

time of checking for divergence in the Modest Toolset

using this new implementation.

3.1 Research questions
The following research questions are used as the basis of our

research:
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• RQ 1: How can existing algorithms be adapted and opti-

mized for detecting non-divergence in probabilistic timed

automata during model checking using digital clocks?

• RQ 2: What is the performance impact in terms of runtime

of including the check from Goal 2 in the Modest Toolset?

4 RELATEDWORK
In this section we will discuss work related to time divergence in

model checking using digital clocks.

In their 2002 paper Kwiatkowska et al [18] propose the forward

reachability algorithm for the verification op PTA. This is based

on a symbolic forwards exploration, and can be implemented

efficiently with certain data structures such as difference-bound

matrices [15]. However, for PTA specifically, it only yields an

upper bound on the maximum reachability probabilities.

Another approach for model checking PTA is the backwards

reachability algorithm [19], which involves state-space explo-

ration from the target states to the initial states. Unlike the for-

ward reachability approach, this algorithm does yield exact min-

imum and maximum reachability probabilities. However, the

operations are expensive which limits its capabilities.

The stochastic games approach by Kwiatkowska et al in their

2009 paper [15] for the analysis of PTA guarantees time divergent

behaviour. However, stochastic games are not implemented in

Modest. They also show that, compared to other approaches of

verifying PTA including digital clocks, this approach has superior

performance and scalability.

The PRISM model checker [16] is a tool for model checking

PTA, among other purposes, which has considerable overlap with

parts of the Modest Toolset including the mcsta tool. In PRISM

digital clocks can also be used for model checking, but the default

is the stochastic games approach. As shown in the paper above,

on stochastic games, it guarantees time divergent behaviour.

Another tool for model checking PTA is the UPPAAL tool [2],

which is also able to compute reachability properties. A continu-

ous time model is used, not the digital clocks approach. A tool

to convert a Modest timed automata model to a UPPAAL model,

mctau [3], is available.

5 METHODOLOGIES
To solve our first research question we determined how proba-

bilistic non-divergence behaviour can be identified during model

checking using digital clocks, then we created a prototype of this

in the Modest Toolset. We then analysed the performance impact

of this implementation to answer our second research question.

Finally, we reviewed existing benchmark models for PTA and

executed our prototype on these to determine the presence of

probabilistic divergence.

5.1 Theoretical background
The first step in our check is to transform the PTA into an MDP,

which is a common approach for model checking PTA. Further

analysis can then be done on this resulting model. During this

transformation, the concept of time is lost, which we do need

in our check. The passing of time in a PTA is represented in the

resulting MDP (𝑆,→, 𝑙𝑎𝑏) by a transition (𝑠, 𝑝) ∈→, for which

𝑝 (𝑠′) = 1 for some state 𝑠 ∈ 𝑆 . This is no different from how a

probabilistic transition with a single target state in the original

PTA is represented in the MDP. Thus we have to make a modifi-

cation here to keep track of this information, before continuing.

As discussed in section 2.4, for any EC an adversary can be

given that will always select a transition 𝑡 ∈→ for which the

target state 𝑠′ ∈ 𝑆 is in the same EC with probability 1 while

taking each state-transition pair infinitely often [1]. Because the

MEC decomposition partitions 𝑆 , and there is no possibility to

reach the same MEC again with probability 1 after transitioning

out of it, we know that if a strategy exists that is divergent, it

has to eventually be contained to a MEC in which time diverges.

This is a key insight, based on the work by Sproston [21] and

Alfaro [1], that we will use to check for non-divergence. We can

compute the MEC decomposition in multiple ways, for example

the algorithm by Chatterjee et al [5].

The final step in our check is to put these pieces together. Using

the transformed MDP, the knowledge of which transition 𝑡 ∈→
corresponds with the passing of time and theMEC decomposition,

we have all the information needed to identify this behaviour. For

each MEC (𝐶, 𝐷), we identify if there is any transition 𝑡 ∈ 𝐷 that

is a transition corresponding with the passing of time. Because

when there is such a transition, it will be taken infinitely by an

adversary that is eventually confined to the MEC, meaning that

time must divergence [1]. Then the result of our check is simply

the presence of a MEC that does not have such a transition, and

thus is not divergent. If all MECs are divergent, the original PTA

is divergent.

5.2 Constructing a prototype
To construct a prototype of this algorithm, we used the theoretical

background and combined this with the existing functionality in

the Modest Toolset. For the conversion of PTA to MDP, we used

the existing functionality in the mcsta, with only a minor modifi-

cation needed to keep track of which transitions in the resulting

MDP correspond with the passing of time in the original PTA. We

did not implement the computation of the MEC decomposition

in our prototype, as the present calculation for MECs in Modest

was deemed sufficient for our purposes.

Then we modelled examples of PTA that exhibit this behaviour,

and their correct counterparts. A very basic example of a PTA

that includes this behaviour, and does in some cases cause mcsta
to provide an incorrect

1
probability, is shown in Figure 2. We

highlighted the rightmost transition 𝑡1 using a dashed line, as

the addition of this transition makes the PTA probabilistically

non-divergent. Namely, we can formalize a strategy that upon

reaching 𝑠1 will always transition to 𝑠2, and then immediately

back to 𝑠1. The minimum probability of ever reaching 𝑠3 is thus

0, if we consider this as a valid strategy. This type of behaviour

is what we want to exclude from our model checking as it does

not represent real-world behaviour.

Shown in Figure 3 is a model of this behaviour written in the

Modest language [8]. Here we use a variable state which corre-

sponds with the state numbers in Figure 2. Again we highlight the

added transition 𝑡1 that causes the model to be probabilistically

non-divergent. THis is done by removing the transition which

updates state to 3, and replacing it with a deterministic choice

between updating state to 3 or 1. The strategy we reasoned about

earlier would then be to always update state to 1, and thus never

reach 𝑠3.

These examples are very simplistic and not too interesting in

themselves, so we also gathered models from the QVBS [12] to

1
It can be considered that correct models already exclude this behaviour, and that

the output is not in fact incorrect but rather expected, given the incorrect input.
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Figure 2: An example of probabilistic (non)-divergence.

int state = 0;
clock c;

property P_Reached_s3 = Pmin(<> (state == 3));

do {
alt {

:: when(state == 0) constrain (c <= 1) palt {
:50: {= state = 1 =}
:50: {= state = 2 =}

}
:: when(state == 1) constrain (c <= 1)

{= state = 2 =}
:: when(state == 2) constrain (c <= 1)

- {= state = 3 =}
+ alt {
+ :: {= state = 3 =}
+ :: {= state = 1 =}
+ }

:: when(state == 3) {= c = 0 =}
}

}

Figure 3: AModest model of probabilistic (non)-divergence.

complement our own examples. The set contains diverse proba-

bilistic models that can be used to benchmark the performance

of tools for model checking.

Finally we implemented a prototype of this algorithm, this

implementation will be discussed in section 5. Using the examples

we built and collected we confirmed that the prototype works as

expected.

5.3 Analysing the performance impact
For the performance analysis, we used benchmark models from

the QVBS [12]. The selection we used, the parameters provided

and the resulting amount of states in the MDP are shown in

Table 1. The parameters are interesting for reproduction mostly,

whereas the resulting state count is useful to get a grasp of how

complex these models are relative to each other, with especially

the firewire-pta and wlan-large models resulting in large MDPs.

Table 1: Model parameters used for the analysis

Model Parameters States

brp-pta N = 16, MAX = 2, TD = 1,

TIME_BOUND = 64

3959

firewire-pta delay = 30, T = 2500 4432272

firewire_abst-pta delay = 30, T = 5000 6020

wlan-large K = 2 3283371

zeroconf-pta T = 150 498

Our selection consists of PTA models supported by mcsta only2,
as this is the tool the prototype was built for.

We came to these parameters by checking the documentation

of the QVBS and selecting of the examples, where available. We

don’t consider the selection of the exact parameters to be of

importance for this research, as we are interested in the relative

performance change of the tool in terms of runtime. For every

model, we initiate property checking for every property in the

model. As a consequence, the results are influenced by the number

of properties in the model. We consider this to not be a problem,

as the property definition itself also has an impact on the runtime,

as well as the model. We then compiled the Modest Toolset with

our prototype implementation, and a version without this check,

being completely identical otherwise.

First, for eachmodel, we prepared two benchmarking instances,

one using the version with our prototype, and one using the

unmodified version. We wrote a benchmarking script to repeat

each benchmarking instance 25 times, and time the duration of

each run. We did not complete property checking entirely, but

aborted each run after executing the non-divergence check, or in

the case of the unmodified version, at the point where the check

would be executed. This is done because there is no influence on

the runtime after the check is done, thus the absolute runtime

difference would be unchanged, and aborting execution allows

us to also measure the impact on larger models.

After this, we also prepared two other benchmarking instances

for both the brp-pta and zeroconf-pta model, this time not abort-

ing property checking at any point but fully completing execution

to determine the relative performance difference. We repeated

these instances 50 times each.

We also analysed the relationship between the number of states

in the MDP and the runtime of the non-divergence check. For this

we used the brp-pta model [9] and varied the input parameters

to control the state count. The properties being checked were

kept identical, and the same benchmarking tool was used again to

obtain the difference in execution time. As we again are looking

for the absolute difference, execution is aborted after the check is

done. In this case, we used five iterations for each parameter set.

We kept the maximum number of retransmissions per frameMAX

and TIME_BOUND parameters constant at 2 and 64 respectively,

and varied the number of frames per file N and the transmission

delay TD.

6 RESULTS
In this section we will show the results of our research, start-

ing with the prototype implementation and then a performance

analysis of our prototype to learn about the effect on runtime.

2
We also include the wlan-large model, which is a stochastic timed automaton, but

is converted to a PTA by mcsta before we execute our check [7].
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Figure 4: Performance change of the prototype implemen-
tation

We will also show the result of our non-divergence check on the

benchmark models, to see which of these exhibit this behaviour.

6.1 Prototype
Based on the work outlined in section 5, we constructed a proto-

type implementation of the algorithm to check for non-divergence.

The pseudocode for this algorithm is shown in Algorithm 1.

There are some simplifications related to optimisation that are

not shown in the pseudocode, for presentation purposes, namely

early breaks when further checking of a state, transition or branch

is not necessary. When we refer to a state 𝑠 , transition 𝑡 or branch

𝑏 in the pseudocode, we refer to 𝑠 ∈ 𝑆 , 𝑡 = (𝑠, 𝑝) ∈→ for some 𝑠

and 𝑏 ∈ {𝑠′ ∈ 𝑆 | 𝑝 (𝑠′) > 0} for some 𝑡 respectively.

Here we check for branches to determine if a transition results

in a target state within the same MEC with probability 1. We also

check for transitions that do not correspond with the passing

of time, this is done to differentiate between MECs, and states

that are not part of any MEC. After all, these are included in our

MEC decomposition, but cannot result in non-divergence. This

differentiation relies on the fact that a state that does not have

any transition leading back to, a state in the same MEC, or more

correctly itself, cannot be part of a MEC, as any adversary would

leave upon taking any transition.

The prototype was implemented in the Modest Toolset’s model

checker mcsta, and reuses the existing functionality for the con-

version of PTA to MDP as well as the computation MEC decom-

position. Determining which MECs are time-divergent is done by

checking bottom-up, starting with the set of states 𝑆 and checking

the transitions origination from it to find which correspond with

the passing of time and thus make the MEC non-divergent.

We tested this prototype on the examples we built and col-

lected, including those shown in Figures 1 and 2, which we dis-

cussed in subsections 2.5 and 5.2 respectively. We also tested it

on the benchmark models, adding additional transitions to create

non-divergent counterparts for those that were divergent. The

results were as expected, with the prototype working correctly.

6.2 Performance
We were able to gather data for various models from QVBS, the

results being the mean over 25 repetition for each instance, cor-

responding to a specific model and version of mcsta. Each model

was benchmarked with and without the check for non-divergence

subsequently.

Algorithm 1 Checking of MECs for divergence

𝑆 ← set of states

𝑇𝑠 ← set of transitions of s

𝐵𝑡 ← set of branches of t

𝑀 ← set of MECs

𝐷 ← {} ⊲ Set of divergent MECs

for all 𝑠 ∈ 𝑆 do
ℎ𝑎𝑠𝑇𝑖𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

ℎ𝑎𝑠𝑁𝑜𝑛𝑇𝑖𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑓 𝑎𝑙𝑠𝑒

for all 𝑡 ∈ 𝑇𝑠 do
ℎ𝑎𝑠𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐵𝑟𝑎𝑛𝑐ℎ ← 𝑓 𝑎𝑙𝑠𝑒

for all 𝑏 ∈ 𝐵𝑡 do
if IsExternalBranch(𝑏) then

ℎ𝑎𝑠𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐵𝑟𝑎𝑛𝑐ℎ ← 𝑡𝑟𝑢𝑒

end if
end for
if hasExternalBranch then

continue
end if
if IsTickTransition(𝑡 ) then

ℎ𝑎𝑠𝑇𝑖𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒

else
ℎ𝑎𝑠𝑁𝑜𝑛𝑇𝑖𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒

end if
end for
if hasTickTransition or not hasNonTickTransition then

𝐷 ← 𝐷 ∪ {FindMEC(𝑠)}
end if

end for
return |𝐷 | = |𝑀 | ⊲ If equal, all MECs are divergent

The absolute performance results of the prototype implemen-

tation for each model is shown in Figure 4. Shown are the mean

differences in runtime for each model. It should be noted that

these results are also affected by the amount of properties checked,

as the non-divergence check is performed once for each prop-

erty. We kept this consistent between the two versions of the

tool within the same model. We see significant differences in per-

formance between the models, note the logarithmic scale. This

is expected for our implementation, as the time complexity is

dependent on the size of the MDP as shown by Sproston [21]. In-

tuitively, this also makes sense from the implemented algorithm

we presented in the previous subsection, which is based on the

states, transitions and branches of the state space.

The relation between the number of states resulting from the

MDP conversion and the increase in runtime in shown in Figure

5. Again we use logarithmic scales, to align with the measure-

ments we gathered. A promising observation here is that the

time complexity of both version appears similar, with both go-

ing through state-space exploration. Thus the time complexity

does not appear to explode when adding the non-divergence

check. The difference in execution time is also shown, here we

see similar results. The data was gathered for the brp-pta model,

as discussed in the methodology section. Interesting to note here

is that the amount of states, transitions and branches in the MDP

grow proportionally to each other. Thus we see the same rela-

tionship regardless, in this case we show the number of states.

The properties that were used for each benchmarking instance,

the resulting number of states and associated runtime are shown
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Figure 5: Runtime of check by number of states
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Figure 6: Total runtime comparison for brp-pta

Table 3, included in appendix A. Here we can also see the exact

differences between the instances in seconds.

Finally, we also compared the total runtime of the brp-pta and

zeroconf-pta to see what the relative performance difference is

across the entire model checking process. The results are shown

in Figure 6 and Figure 7, where each point corresponds to a set

of benchmarking runs, with the result of the instance without

the check on the x-axis and the result of the instance with the

check on the y-axis. We see a clear deviation from the black line

𝑦 = 𝑥 , with most points showing a higher runtime, 𝑦 > 𝑥 , for the

instance with the check, as should be expected. There are also

multiple significant outliers, for which we do not know the exact

cause. The benchmarking instances should behave deterministi-

cally, thus we expect the source of these outliers to be related to

computer on which we benchmarked. It is likely that the bench-

marking tool simply got less CPU time from the operation system

in these cases, thus they are not particularly interesting.

Overall, we see a 3.86% mean increase in total runtime for the

brp-pta model, and a 2.46% mean increase for the zeroconf-pta

model. This looks promising, with the performance impact being

relatively low.
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Figure 7: Total runtime comparison for zeroconf-pta

Table 2: Result of the non-divergence check on benchmark
models

Model Probabilistically divergent

brp-pta yes

firewire-pta yes

firewire_abst-pta yes

wlan-large yes

zeroconf-pta no

6.3 Non-divergence in benchmark models
We ran the prototype implementation on the benchmark models

from the QVBS to see what the result of the non-divergence

check would be. The results are shown in Table 2. We consider

the model to be probabilistically divergent if for all properties

defined, our check considers the model divergent
3
. As can be

seen, only one of the models, zeroconf-pta [14], does not pass

our check for probabilistic divergence. The result means that for

all properties defined in the model, we do not find probabilistic

non-divergence.

In the case of zeroconf-pta, we find that the check fails for both

the deadline and incorrect properties, with no property passing

the check. Manual observation of both cases reveals that the MDP

resulting from this model indeed has multiple single-state MECs

that have a non-tick self loop, thus not satisfying probabilistic

time divergence.

7 CONCLUSION
In this research we have shown that it is possible to check for

probabilistic time divergence during model checking of PTA us-

ing digital clocks. We have provided a prototype implementation

of this in the Modest Toolset, and analysed the performance im-

pact of this implementation. We have also shown which existing

models from the QVBS exhibit this behaviour.

To answer our first research question, we adapted the algo-

rithm by Sproston to the digital clocks approach used in the

Modest Toolset. We then implemented this as a prototype in the

mcsta tool. We tested this implementation on our own examples

3
If one defines a property that does not require model checking of certain parts of

the model in which non-divergence can occur, our check concludes that the model

is probabilistically divergent for that specific property, though one might define

another property which is then not divergent
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and models from the QVBS to verify the correctness of the pro-

totype. This approach can be used to identify non-divergence in

PTA when model checking using digital clocks.

For our second research question, we analysed the performance

impact of our prototype implementation. We used benchmark

models from the QVBS to determine the increase in execution

time of the model checker. We have shown that although signif-

icant, the increase in runtime is manageable. Furthermore, we

have compared the runtime of the brp-pta model with varying

parameters to show the impact of the size of the state space on

execution time. Here we observed that the inclusion of our check

does not appear to have significantly altered the time complexity,

with our check yielding results even on large models. We have

also shown that for the brp-pta and zeroconf-pta benchmark

models, the increase in runtime is only a few percent.

7.1 Future work
In future work, one could consider the implementation of the

strict divergence check as well. This would require a more com-

plex algorithm, which we were not able to implement in the scope

of this research. As we discussed in section 2, the difference be-

tween probabilistic and strict divergence is useful, and such a

check could be beneficial.

Another interesting avenue for future research is automati-

cally excluding non-divergent behaviour from the model. One

approach could be to alter the properties of the model to correct

for this behaviour. We would then calculate the probability of a

property, excluding the non-divergent behaviour.
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A PARAMETERS AND RESULTS
STATE-RUNTIME BENCHMARK

We include the parameters and results used for the runtime by

state count benchmark on the brp-pta in Table 3.

Table 3: Difference in runtime depending on number of
states

Parameters States With

check

Mean (s) Increase (s)

N = 32, TD = 4 44967 no 0.731 0.135

yes 0.596

N = 64, TD = 4 90119 no 0.985 0.184

yes 0.801

N = 32, TD = 8 141037 no 1.235 0.250

yes 0.985

N = 64, TD = 8 282893 no 1.937 0.487

yes 1.450

N = 32, TD = 16 493161 no 3.021 0.822

yes 2.199

N = 64, TD = 16 989705 no 5.460 1.545

yes 3.915

N = 32, TD = 32 1837345 no 10.216 2.738

yes 7.479

N = 64, TD = 32 3688385 no 20.446 5.986

yes 14.461

N = 32, TD = 64 7085457 no 43.125 11.426

yes 31.699

N = 64, TD = 64 14225969 no 88.765 25.203

yes 63.562
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