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The Rust programming language deals with errors in a different way
than many popular languages. For example, languages such as Java have
an exception system which interrupts the regular execution flow within
programs. In this system, errors thrown by called functions are propagated
by default, unless explicitly caught and handled.

In contrast, Rust wraps errors using its robust type system. This simpli-
fies the error system as it does not interrupt regular program execution,
which might make it easier to reason about. Furthermore, it requires
developers to explicitly handle errors that might come up. The type used
to wrap errors is a regular enumeration, Result, which has two possible
values: Result::Ok; and Result::Err. The former wraps the resulting
value in case of successful execution, whereas the latter wraps the error
value otherwise. Developers can then interact with this type using Rust’s
many features such as pattern matching, or explicitly propagate error
values using the try operator, ’?’.

Moreover, Rust has a way to signal unrecoverable errors with the panic
system. When used, this system unwinds the stack and halts execution.
Because this system does break execution flow, it should be used sparingly
by developers. It can be invoked both directly using the macro panic!,
or by built-in functions such as Result::unwrap. This specific function
either returns the value wrapped in Result::Ok or panics if the value was
of type Result::Err.

We feel this approach to errors might lead to better error-handling
practices among developers. However, no research has been done on how
developers use these error systems. In this paper, we present a newly
developed static analysis tool that can show the error propagation within
Rust programs. Furthermore, we use our tool to conduct a small case
study to explore how the error system is used in two open-source Rust
programs. Here, we show that our tool is helpful in quickly identifying
where and how the error system is used, as well as potential issues in its
usage. We hope this tool enables further research into the ways the error
system of the Rust language is used in practice.

Additional Key Words and Phrases: Rust, Static Analysis, Error Propaga-
tion

1 INTRODUCTION
Over the past 8 years, Rust has steadily ranked as the most
loved/admired programming language on Stack Overflow’s De-
veloper Surveys [8, 9]. Its focus on safety, performance, and con-
currency makes it ideal for use in critical systems. Comparing
its performance to that of C, Zhang et al [11] found in their 2022
study that Rust is on average 1.77x slower. They found that this
performance discrepancy was mainly caused by various runtime
checks Rust implements. These runtime checks protect against
problems such as accessing arrays out of bounds, integer overflow,
and division by zero.

Along with such features, Rust also uses a relatively simple er-
ror system, which deviates from many popular languages. Rather
than using a throw-catch system, it instead uses its robust type
system to wrap errors. A function whose execution might be un-
successful returns the Result enumeration. This is a regular type
which follows all regular execution rules. This error system, or
rather the lack thereof, simplifies execution flow.
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We feel this approach to errors might lead to better error-
handling practices among developers. However, no research has
been done on how developers use these error systems. As such,
we pose the following research question:

In what ways are errors created, handled, and propagated
in the Rust programming language?
To help answer this question, we have created a static analy-

sis tool to extract data on the propagation of errors within Rust
programs. This tool creates a graph of the propagation of errors
between functions within a program, and extracts specific met-
rics from there. The error propagation graph helps developers
and researchers in quickly identifying where and how the error
system is used. Furthermore, the metrics are useful for identifying
some issues in the error handling strategy, such as errors that get
propagated too many times before being handled.

In this paper, we present our tool, as well as our findings from
using said tool on two open-source Rust programs. We first give
background information on how Rust works in general, how
it and other languages deal with errors, as well as how Rust is
compiled in section 2. Next, we go over related work such as static
analysis tools made for other programming languages in section
3. We then cover the definitions we used when creating our tool
as well as how the tool is used in section 4. Next, we detail the
implementation of our tool in section 5. We go on to use our tool
for a case study, investigating two open-source Rust programs in
section 6. Finally, we go over our conclusions in section 7, as well
as future work suggestions in section 8.

2 BACKGROUND
In this section, we explore some basic Rust concepts, how excep-
tions work in most languages, as well as how Rust’s errors work.
Finally, we give an overview of the Rust compiler’s steps.

2.1 Rust
Rust is a statically-typed, compiled language leading to high per-
formance compared to interpreted languages. Furthermore, it is a
memory-safe language without a garbage collector, which leads
to low overhead compared to languages with a garbage collector.
In this subsection we explore the basics of its type-inference and
ownership model.

2.1.1 Type Inference. Since Rust is statically-typed, the types of
variables are always known at compile-time [7]. Usually, variable
types can be inferred based on their value and how they are
used. In some cases however, explicit type information has to be
given for the compiler to know what type a variable has. Type
inference makes it easier to work with the language as a developer,
however it complicates the compiler and static analysis where
types are important. The following snippet shows two variables
being instantiated. The type of the first variable can be inferred
from its value, while the other needs to be explicitly given as the
compiler needs to know what to parse the value into:

let value = "42";
let parsed: u32 = value.parse().unwrap();
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2.1.2 Ownership. Rust achieves memory-safety without garbage
collection through its unique ownership system [7]. The owner-
ship system takes some getting used to, but its benefits outweigh
its drawbacks. Essentially, each value within a Rust program has
a single owner, the variable it belongs to. When this owner goes
out of scope, the value is dropped. Ownership can be transferred,
after which the original owner can no longer access the value.
The following example shows the general concept:
fn main() {

let s = String::from("hello");
// We own s

use_string_ref(&s);
// We still own s as we only passed a reference

use_string(s);
// We can not use s as we transferred ownership
}

fn use_string_ref(s: &str) {
// We only have a reference of s
}

fn use_string(s: String) {
// We now own s
}

2.2 Exceptions
In many languages exception handling follows concepts as pro-
posed in a 1975 paper by Goodenough [6]. Here an exception
refers to an abnormal state in execution. Whenever such a state
occurs, an exception is raised. An exception handler can be defined
to handle specific exceptions. An exception is handled when an
exception handler finishes execution.

For example, in Java a method which might run into an excep-
tion signifies this in its signature as follows:
void exception() throws Exception

When using this method from another method, the call has to
either be enclosed in a try block:
void catch_exception() {

try {
exception();

} catch (Exception e) {
// Handle e

}
}

Or the method should also throw the same exception, in which
case the exception is implicitly propagated:
void prop_exception() throws Exception {

exception();
}

This automatic exception propagation might lead to cases where
developers forget to handle certain exceptions where they meant
to, erroneously propagating them.
So how does Rust deal with errors?

2.3 Rust’s Errors
Rust does not follow these concepts. Instead of exceptions, it
works with Results for recoverable errors. The Result type is a
regular enumeration type, with 2 generic type arguments and 2
possible values. The first generic argument refers to the success

type, values of which are wrapped in the first possible value
Result::Ok. The second generic argument refers to the error
type, values of which are wrapped in the second possible value
Result::Err.

For example, consider the case where on successful execution
a function would return a value of type i32, but on erroneous
execution it would return an error simply called Error. Then the
return type would be Result<i32, Error>. When returning the
value upon successful execution, we need to wrap the integer in
Result::Ok. Likewise, when returning an error value, we need
to wrap the error in Result::Err. The complete function would
look as follows:
fn result(successful: bool) -> Result<i32, Error> {

if successful {
return Ok(1);

} else {
return Err(Error);

}
}

When we want to access the result of the function, we need
to explicitly check whether execution was successful or an error
was returned. This can be done using Rust’s pattern matching
features, for example:
let res: Result<i32, Error> = result(false);
match res {

Ok(val) => {
// Do something with val

}
Err(e) => {

// Handle error
}

}

Rust also provides an easy way to propagate such errors from
a function, using the post-fix try operator: ?. This essentially
desugars into a match statement, where Ok has its value extracted,
and Err has the error value propagated. When the propagated
error type does not match the return type of the function, Rust
tries to convert the type using the From trait, if it is implemented.
For example:
fn propagate() -> Result<(), OtherError> {

match result(false) {
Ok(val) => {

let res: i32 = val;
return Ok(());

}
Err(e) => {

return Err(OtherError::from(e));
}

}
}

Can be implemented instead as:
fn propagate() -> Result<(), OtherError> {

let res: i32 = result(false)?;
return Ok(());

}

Because of the lack of error-handling code blocks, error han-
dling happens among non-error-handling code. It can be dealt
with in any way the developer wants. This further complicates
static analysis of errors within Rust programs.
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Since these errors are regular types, they do not break execution
flow in any way. However, what if an unrecoverable error occurs
and a developer does want to halt the program’s execution?

2.4 The Panic System
Rust has a system to signal unrecoverable errors, called the panic
system. This system is invoked using the macro panic!(). When
invoked, the panic system halts execution of the current thread
and unwinds its stack. As such, it should be used only for truly
unrecoverable errors, such as violated invariants.

Some of Rust’s built-in functions invoke the panic system. An
example of this is Result::unwrap(). What this method does is
return the value wrapped in Ok, or panic in case of Err. Essentially,
it lets developers treat the Result’s error as unrecoverable.
let result: Result<i32, Error> = "1".parse();
let ok: i32 = result.unwrap();

Similarly, Result::expect() does the same, but it allows devel-
opers to specify a message the panic system should be invoked
with, e.g. why they expected the result to not be an error.
let result: Result<i32, Error> = Ok(1);
let ok: i32 = result.expect("Some reason...");

These methods are useful but easy to abuse, as many errors are
recoverable in someway. Using patternmatching to extract values
instead is usually the preferred method.

How does this system work in a concurrent context? Consider
the case where we spawn a thread which will return some value,
e.g. of type i32.
let handle = std::thread::spawn(|| {return 1;});

To access this value, we call JoinHandle::join, which returns
the type Result<i32, Box<dyn Any + Send + 'static>>.
let res = handle.join();

This blocks the current thread until a returned value is avail-
able. During non-erroneous execution, join returns Ok, with its
wrapped value being the returned value. However, in case the
spawned thread panicked, join returns Err, with its wrapped
value being the argument given to the panic invocation. This
makes it possible to handle panics of other threads.
It is possible to catch panics within the current thread using

std::panic::catch_unwind, which takes in a closure to be exe-
cuted. If a panic occurs while executing said closure, this function
returns Result::Err, just like for JoinHandle::join. Catching
panics this way is generally not recommended, as developers
should use Results for recoverable errors instead.

2.5 The Rust Compiler
Many of Rust’s safety features are enforced at compile-time. Be-
cause of this, the Rust compiler, Rustc, has to do a lot of work.
Compilation is separated into discrete steps which have different
associated intermediate representations (IRs), each optimized for
a specific purpose. We will consider the function of each IR.
The first steps Rustc undertakes are similar to other compil-

ers, which are lexing and parsing, which results in an Abstract
Syntax Tree (AST). The compiler lowers this AST into different
IRs through several stages. First, the AST is lowered to the High-
level IR (HIR). The HIR is used to do type inference, trait solving,
and type checking. With this information, it is lowered to the
Typed High-level IR (THIR), which is used for pattern and ex-
haustiveness checking. The THIR is fully typed and slightly more
desugared than the HIR. This THIR is lowered to the Mid-level

IR (MIR). The MIR functions like a Control-Flow Graph (CFG)
and shows the basic blocks of the program, along with how the
control flow can go between them. It is used for borrow checking,
data-flow based checks, as well as for many optimizations. Finally,
the MIR is lowered to an LLVM-IR, which can be passed onto
LLVM for code generation [4].

3 RELATED WORK
A lot of research has been done in the field of exception handling.
This ranges from conceptual work forming the basis of modern
exception handling, to field studies on how well exceptions are
handled in practice. We will give an overview of such related
work, including similar static analysis tools made for Java, an
analysis of an embedded system written in C, an analysis of C++
exception handling constructs, and finally an analysis of Swift
error handling.

3.1 Java Exception Flow Analysis
In their 2003 paper, Robillard and Murphy [10] detail a model for
static analysis of exception flow in object-oriented programming
languages. This model consists of three separate functions:

• encounters(s)→ E
• catches(g, c)→ E
• uncaught(g)→ E

These refer to the exceptions encountered within a scope, the
exceptions caught within a guarded scope, and the exceptions
not caught within a guarded scope respectively. Together, these
functions can model the exception flow within a Java program.

Furthermore, the paper details Jex, a static analysis tool using
the model. This tool served as the main inspiration for our own
tool. It takes in a Java program and maps out the exception prop-
agation paths within it. Through visualizations, the tool helps
developers understand what happens to exceptions, helping them
identify potential issues.

3.2 Java Exception Handling Analysis
Likewise, in a 2007 paper, C. Fu and B.G. Ryder [5] detail their
static analysis tool, also made for Java programs. It analyzes both
exception flow within the program, as well as the exception han-
dling code. It has a focus on analyzing highly layered programs
such as servers, and how exceptions flow between said layers.
With this, they can detect things such as catch-clauses that re-
throw exceptions or ignore the exception altogether. It serves as
a reminder that, even if explicitly caught, this does not mean an
exception is handled properly.

3.3 C Error Analysis
In their 2006 paper, M. Bruntink, A. van Deursen, and T. Tourwé
[2] analyze an embedded system, written in C and developed by
ASML, for faults in its error handling. The program was written
in C, a language without a specific error handling system, similar
to Rust, but without conventions for defining and signaling errors,
unlike Rust. Because of this, the developers had to define their own
exception representation, complicating its analysis. The authors
of the paper created a tool to analyze the system for faults in error
handling. For this, they had to define both how errors are handled,
and what kinds of faults could exist in the system. It is possible
their definitions lead to both false positives (the tool flags some
code as a fault, when it is not) and false negatives (the tool misses
a fault).
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3.4 C++ Exception Handling Constructs
Furthermore, a 2015 paper [1] examines exception handling con-
structs in C++ using both static analysis as well as a developer
survey. The paper gives insight into how such constructs are
used, as well as how developers think about using them. It reveals
that, among other reasons, respondents to the survey avoid using
exception handling constructs due to a lack of expertise to design
an exception handling strategy. As such, it might be reasonable
to a assume that a simpler error system would lead to developers
more easily defining error handling strategies.

3.5 Swift Error Handling
Like Rust, Swift allows developers to use enumerations as errors
and lets them use some pattern matching features when han-
dling errors. However, unlike Rust, Swift error handling uses a
try-catch system, and uses inheritance to define error types. A
2018 paper [3] examines how developers use Swift error handling
in practice. Here, the authors found that developers are hesitant
to define their own error types, and often use generic catch han-
dlers. Furthermore, only 24.70% of developers use enumeration
error types. Often-cited reasons for difficulties in using Swift’s
error handling features are confusion for novice developers, and
technical limitations for experienced developers. This seems to
corroborate that a simple but powerful error handling system
might yield a better developer experience.

4 ANALYSIS DEFINITIONS & APPROACH
With the previously gathered information, we can start to define
our own model for Rust error propagation. This section will cover
the definitions needed to extract the error propagation from a
program. We start by defining what an error is, go on to the ways
these errors can be created and propagated, and end with what
constitutes error handling. These concepts can then be used to
implement our tool.

4.1 Error Definition & Creation
First of all, what are errors within Rust programs? As mentioned
in section 2, errors are wrapped in the Result type. As such, we
define an error as any type used as the second argument of a Result.
Furthermore, the creation of an error happens whenever instanti-
ating a Result::Err value. Note that this means a type can be
used both as an error, and as a regular type. For example, in the
following snippet, MyError constitutes an error when returned
by error_function, because it is wrapped in a Result. It does
not constitute an error when returned by other_function.
struct MyError;

fn error_function() -> Result<(), MyError> {
return Err(MyError);

}
fn other_function() -> MyError {

return MyError;
}

4.2 Propagation
Next, what does it mean to propagate an error? To cover the
obvious case, an error is propagated by directly returning a Result,
such as in the following example:
fn return_error() -> Result<(), MyError> {

return error_function();

}

Additionally, as explained in section 2, another way to propagate
errors is using the try operator, such as in the following example:
fn try_error() -> Result<(), MyError> {

error_function()?;

return Ok(());
}

As such, we define error propagation as returning a Result, or
using the try operator on a Result.

4.3 Handling
Finally, what constitutes the handling of an error? In the context
of propagation chains, the handling of an error happens at the
end of such a chain. In other words, the handling of an error
happens wherever an error is not propagated any further, such
as in handle_error() in the following example:
fn handle_error() {

let res = error_function().unwrap();
}

As such, we can define the handling of an error as the point where
an error is not propagated any further.

4.4 Tool Usage
We have used these definitions to implement our tool, as detailed
in the next section. This tool can be invoked using the bundled
batch file static-result-analyzer.bat. This batch file ensures
the needed dependencies are installed, and then configures and
runs the tool. The tool can output either a call graph or an error
propagation chain graph of the program it is run on.

Let us consider the following program:
fn main() {

let x = propagate().unwrap();
}
fn propagate() -> Result<i32, MyError> {

let x = result1()?;
let y = result2().unwrap();
return result3();

}
fn result1() -> Result<i32, MyError> {

Ok(1)
}
fn result2() -> Result<i32, MyError> {

Err(MyError)
}
fn result3() -> Result<i32, MyError> {

Ok(3)
}
#[derive(Debug)]
struct MyError;

We used our tool to produce a call graph, as can be seen in
figure 1, and a error propagation chain graph, as can be seen in
figure 2.
The call graph shows that the function main calls the func-

tions propagate and Result::unwrap. Then, propagate calls
result1, result2, result3, and Try::branch (due to the try
operator). Finally, result1 and result3 call Ok, while result2
calls Err and the constructor of MyError.
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Fig. 1. Example Call Graph

Fig. 2. Example Propagation Chain Graph

The edges are labeled with the return types of the called func-
tions. Furthermore, they are colored according to our propaga-
tion and error definitions. Blue edges mean propagation of the
returned value occurs (e.g. it is returned or used with a try op-
erator), and red edges mean the return type is a Result. Having
these properties together makes an edge purple. Having neither
property makes an edge dotted, as they are of no real significance
to the error propagation within the program.
The error propagation chain graph shows us how errors flow

within the program. There are 2 separate chains, as errors are
handled in 2 places: main and propagate. The error handler in
main handles the errors originating from result1 and result3,
which then flow through propagate, and end up in main. The
error handler in propagate handles the error originating from
result2, which does not flow through any other functions. All
errors are of type MyError.
Finally, our tool extracted some metrics from the program,

namely:

• the number of chains: 2;
• the size of the largest chain: 6;
• the depth of the longest chain: 3;
• the average chain size: 4.

These metrics are useful for quickly identifying issues within a
program, such as error paths that are too long.

4.5 Limitations
Our model comes with some limitations. For example, our defi-
nition of an error being handled is flawed. It assumes that if an
error is not propagated any further, it is handled. This means that
when an error is ignored altogether, our model still flags it as
handled.

Now, let us consider the details of our implementation.

5 IMPLEMENTATION DETAILS
In this section, we cover some details of how we implemented
our static analysis tool. We start by explaining how we use the
Rust compiler to access its intermediate representations, then we
describe how we create a call graph from the IRs, how we convert
the call graph to distinct error propagation chains, and finally
what specific metrics we extract from the propagation chains.

5.1 Compiler Invocation
The Rust compiler can be invoked programmatically, allowing
developers to define callbacks to be called at specific points during
compilation. However, this invocation needs to be configured
properly, for example to link dependencies. We approached this
by first running cargo build -vwhich builds the entire program,
including its dependencies. The flag -vmakes the output verbose,
which makes it output the command used to compile the final
program. From this invocation, we extract the arguments used,
and use them for our own invocation.

Next, we use the after_crate_root_parsing callback which,
as the name suggests, is called after parsing the crate root. From
here, we have access to the intermediate representations, and can
use them to analyze the program.

5.2 Call Graph
Now that we can access different IRs, we have to consider which
one to use. We decided to use the High-level IR to create the call
graph, as this IR is relatively close to the source while containing
some useful extra information. Here, we start by finding the pro-
gram entry point. From there, we walk the IR’s tree, extracting all
function and method calls. We store these calls in a graph, where
functions are nodes, and function calls are edges.
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We add extra information to this call graph such as whether
a function call’s return value is propagated (e.g. it appears in a
return statement or with a try operator). Furthermore, we store
return type information for each edge. We extract these types
from the Mid-level IR when available, as this IR is fully typed.
Otherwise, we use the HIR.

5.3 Propagation Chains
From this call graph, we can extract error propagation chains.
These chains should show all paths an error can take up until
the place it is handled. As such, we look for the function calls
that can return an error, but do not propagate said error. For each
of these edges, we create a chain in a new graph. Note that this
means a propagation chain can contain multiple separate error
paths. From there we compile all function calls from the called
node which can return errors that are propagated. This graph is
the default output of our tool.

5.4 Limitations
Our analysis tool does come with some limitations. For example,
due to our method of extracting the compiler arguments, the tool
only works on Rust programs that can be built using cargo build.
Furthermore, our method of extracting type information of

function calls is imperfect, as the MIR is not always available and
type information can not always be extracted. In such cases, we
use the type information available in the HIR, which might still
contain generic types (e.g. the type E for calls to std::prelude
::v1::Err).

Also, the call graph is not complete, as it is impossible to create
a call graph for used libraries. This means that function calls
to a program from within a used library (such as when using a
callback) will not appear in the call graph, and will thus not be
considered for error propagation analysis.
With that, we can use our tool to analyze some open-source

Rust programs.

6 CASE STUDY
In this section, we conduct a short case study on two Rust pro-
grams, Bottom1 and Ferium2. Bottom is a customizable cross-
platform graphical process/system monitor for the terminal, and
Ferium is a fast and feature rich CLI program for downloading and
updating Minecraft mods. These programs were chosen because
they are open-source, actively maintained, and relatively popular
(both have 1000+ stars on GitHub). Furthermore, they are of a
sufficient size to potentially provide interesting insights into how
Rust developers use errors within their programs. Specifically,
Bottom consists of 25,515 lines of code, while Ferium consists of
2,578 lines. In this case study, we aim to answer the following
question:

• RQ1:What are the error handling strategies employed
in the Rust programs Bottom and Ferium?

To support our answer to this question, we also seek to answer
the following questions:

• RQ1.1: What is the average size of error propagation
chains within Bottom and Ferium?

• RQ1.2: What are the largest error propagation chains
within Bottom and Ferium?

1https://github.com/ClementTsang/bottom/
2https://github.com/gorilla-devs/ferium

To answer these questions, we will use our tool to analyze
the programs. Its output will be used to get an overview of the
propagation chains within the program. Using this as a guide,
we manually analyze the program’s source code to find out what
error handling strategies are used.

6.1 Results
We have compiled the metrics extracted by our analysis tool in
table 1. We go over the results in some detail for each program
individually.

6.1.1 Bottom. Our tool tells us there are 32 separate places where
errors are handled within Bottom. In the propagation chain graph
we see these places are:

• options::colours::ConfigColours::is_empty
• options::get_use_battery (2x)
• data_collection::disks::windows::get_disk_usage
(3x)

• data_collection::disks::windows::bindings
::volume_name_from_mount

• data_collection::disks::windows::bindings
::all_volume_io (6x)

• data_collection::disks::windows::bindings
::volume_io (2x)

• data_collection::disks::windows::bindings
::close_find_handle

• data_collection::DataCollector::init (2x)
• panic_hook (7x)
• main (3x)
• canvas::components::data_table::DataTable
::increment_position (2x)

• widgets::process_table::ProcWidgetState
::update_query

• event::handle_key_event_or_break

Of these, the largest propagation chain consists of 73 func-
tion calls, which ends up in update_query. This suggests this
propagation chain has very complex behavior. Indeed, it deals
with parsing queries, which have a complex rule set, including
RegEx support. This complex rule set means many opportunities
for parsing a query to fail, resulting in an error. Examining the
propagation chain, we find that there are only 3 different error
types that can occur here:

• utils::error::BottomError
• regex::Error
• humantime::DurationError

Here, utils::error::BottomError is a self-defined enumer-
ation type with different specific errors. It is extensively used
within the program for most errors. This indicates the develop-
ers are familiar with Rust’s error features and make good use of
them. The handling of this error occurs with the use of pattern
matching, where the error message is made ready to be viewed
by the end-user within the program.

The longest path an error can take within the program before
it is handled is 6 chained function calls. Additionally, the average
propagation chain consists of 3.75 function calls. This means
errors are handled soon after they come into existence, and tells
us that most error handling code handles specific errors.

Finally, we run cargo check on the program. This would alert
us of ignored Results as the type is flagged with #[must_use].
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Program Number of Chains Largest Chain Size Longest Chain Depth Average Chain Size
Bottom 32 73 6 3.75
Ferium 11 17 3 2.64

Table 1. Metrics Extracted from Bottom and Ferium

We find no such ignored Results, and as such we can conclude
no errors are ignored within the program.

6.1.2 Ferium. Using our tool to analyze Ferium, we find there
are 11 different places errors are handled within the program.
These places are:

• actual_main (3x)
• subcommands::modpack::upgrade::upgrade
• download::clean
• download::download
• subcommands::profile::create::create
• subcommands::upgrade
::get_platform_downloadables (2x)

• main (2x)
The largest propagation chain consists of 17 function calls. It

is shown in figure 3. This indicates that the end of this chain,
actual_main, can have many different error types flowing to it.
Examining this chain closely, we find that the following error
types can flow here before being converted to the final type,
anyhow::Error:

• anyhow::Error
• fs_extra::error::Error
• std::io::Error
• dialoger::Error
• libium::modpack::add::Error

As such, this error handling code can deal with many different
errors. Analyzing the program’s source code, we see that this
propagation chain deals with executing a sub-command to add a
modpack to the users current selection of mods. This is a complex
feature where many things might go wrong, explaining the many
error types. Furthermore, we find that these errors are treated as
unrecoverable by exiting the program with an error code. The
program is designed to be invoked with a sub-command from the
command-line, where executing said sub-command is the only
task of the program. As such, it makes sense to halt execution if
the program fails to execute part of this sub-command.

Moving on, the longest single chain consists of only 3 chained
function calls. This means there are no errors that take long paths
within the program before they get handled, indicating a good
error-handling strategy.

The average chain size is 2.64, which indicates that most error
handling code is specialized for a single error, as there is not much
room for error conversions in short propagation paths.
Finally, we run cargo check again. This does not warn us of

any ignored Results, so we conclude there are no errors which
are ignored.

6.2 Conclusions
With these results, we can answer our posed research questions:

6.2.1 RQ1.1: What is the average size of error propagation chains
within Bottom and Ferium? We found that the average size of error
propagation chains within Bottom was 3.75, while in Ferium it

was 2.64. As discussed, this indicates most of both programs’
error handlers handle specific errors. Furthermore, it indicates
most errors are handled swiftly after they come into existence.

6.2.2 RQ1.2: What are the largest error propagation chains within
Bottom and Ferium? For Bottom, we found that the largest error
propagation chain ended in the function update_query, consist-
ing of 73 function calls. This large propagation chain deals with
parsing a query, with many rules that might be violated, causing
errors.
We found that the largest error propagation chain in Ferium

was one that ended in the function actual_main. It consists of 17
function calls. It was this sizable because it belongs to a complex
feature, adding a modpack, whose errors are treated as unrecov-
erable.

6.2.3 RQ1: What are the error handling strategies employed in
the Rust programs Bottom and Ferium? Bottom handles errors
in a way where end-users get feedback about what went wrong
within the program, without halting it. As a graphical program
with many different components, it prioritizes up-time of the
overall system. Furthermore, it makes great use of self-defined
error types.

Ferium, as a CLI program made to execute a specific task each
time it is ran, treats many errors as unrecoverable. This fits its
use-case, as an error while executing that task means it cannot
proceed, and should halt execution.

7 CONCLUSIONS
In this paper, we have looked at how Rust allows developers to
deal with errors in their programs. Furthermore, we have done a
case study on what strategies developers use within two open-
source programs. With the knowledge obtained, we can begin to
form an answer on our research question:

7.1 In what ways are errors created, handled, and
propagated with the Rust programming language?

We found that errors are created by instantiating a Result, specif-
ically Result::Err. This wraps the actual error value, allowing
developers to use any type as an error. For example, developers
might define their own enumeration type with many specific
error values to indicate errors within their program.
Furthermore, errors can be handled in any way the developer

likes. Rust provides many pattern-matching features to support
this. They can be treated as unrecoverable errors by leveraging
the panic system, for example by using Result::expect().

Finally, errors from called function can be propagated by either
returning them from the function, or by using the try operator.
The try operator might convert error types using the From trait.

7.2 Case Study
In our case study, we used our tool to analyze the usage of Rust’s
error system within two open-source programs. We showed how
to interpret the extracted metrics, as well as the viability of using
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Fig. 3. The Largest Propagation Chain in Ferium

our tool for such a use-case. As such, we feel our tool provides a
great stepping stone for further research on Rust’s error system.

8 FUTURE WORK SUGGESTIONS
The aim of this paper is to serve as a first step towards under-
standing Rust’s error system, and how it is used in practice. As
such, there are many potential steps still to be taken and topics
yet to be covered.
For example, while our tool can be very useful in its current

state, its usefulness can be improved. One of the features that
did not get implemented is showing where the panic system
is used within a program. Since usage of this system relates to
unrecoverable errors, this information would be very useful to
developers. We left this feature out due to time constraints and
because there already exist separate tools to do this.

Furthermore, the way our tool invokes the Rust compiler might
be altered to allow for usage on more complex programs. Our
current method restricts usage to programs that can be built with
just the command cargo build. Improving this might allow for
insights into the ways developers use and handle errors within
more complex programs.

Additionally, the tool could extract more metrics from the prop-
agation graph, extending its usefulness to developers. For example,
it could count the number of different error types within each
chain.
Finally, we suggest our tool be used on more and larger pro-

grams. Our case study of two programs was limited in its scope
due to time constraints. A larger study would lead to better in-
sights into how developers use and handle errors within Rust
programs.
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