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Fig. 1. 80ms of data captured from the RF probe

RF probes produce a large amount of data due to the high sampling rate
required to accurately read the data produced by the probe and small IoT
devices may not have enough bandwidth available to transmit all that data.
Compression algorithms can be used to reduce the size of the data before
it is sent to the server. This paper explores using AZTEC and Sprintz to
compress the RF probe data and analyses their effectiveness on real data by
using metrics line the compression ratio, speed, and lossiness.

Additional Key Words and Phrases: IoT, embedded, RF probe, compression,
sensors, bandwidth

1 INTRODUCTION

Electromagnetic Interference (EMI) is often a result of power elec-
tronics [6], wireless devices like wireless access points or mobile
phones, and natural sources [15]. EMI can pose a serious problem
to electronic devices, which is especially problematic in critical en-
vironments like hospitals where radio waves coming from within or
outside the hospital [11] can cause medical devices to malfunction
[24] which can put human lives at risk.

To combat the potential negative effects of EMI on sensitive equip-
ment, small RF probes can be deployed across a facility to measure
the strength of the radio signals present. Areas with high signal
levels can then be further investigated to find the source of those
signals and determine how much effect those sources have on the
equipment around them.

These RF probes deployed can be standalone devices built only
for this purpose or can also be a part of some other device like a
power quality meter [10] with the probe connected to it externally
to be able to correlate the power quality with EML

1.192v

“’LuhLFMIJ"‘"“'L"”Wh"'\"lJt"-*"*’“”-‘|

“1'rlllwlﬂ\'”1-ltk';L I J"l'l'ﬂ‘ﬂ,[ﬁ“ﬁ
s =

Fig. 2. An example of a single pulse captured from the RF probe

2 PROBLEM STATEMENT

RF probes output a DC voltage which needs to be digitised before
it can be sent to the server. Most modern microcontrollers have
analog-to-digital converters (ADCs) integrated into them for this
purpose. Because of how short electromagnetic pulses can be, the
ADC needs to sample the output of the RF probe very often.

Take a look at the 160 us wide pulse in fig. 2. If we were sampling
the signal at let’s say 1kHz, it would have been possible for us to
completely miss the peak if we have only took samples at =500 pus
and at 500 ps . Let’s say we want to capture 80 samples inside the
pulse in fig. 2 to have an idea of how long the pulse is, we would
need a sampling rate of 500 kHz:

—— =500 kHz. 1
160 us / 80 “ W

As aresult of the high sampling rate required for this application,
a large amount of data needs to be sent to the server or stored
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in the probe’s internal storage if the connection to the server is
unavailable.

Not a lot of bandwidth may be available between the sensor and
the server, which will limit the amount of data that can be sent
between them.

The bandwidth limitations are also apparent on the server side
when multiple probes are sending data to it simultaneously. At the
sampling rate of 500 kHz assuming that ADC readings are 16 bits
each, 125 sensors can fully saturate a 1 Gbit s~ 1 link:

1Gbits™!

—— =125 8 2
500 kHz X 16 bit Sensors @

and this is without considering any overhead induced by the trans-
mission protocol or retransmitting lost packets.

Data compression can be used to reduce the size of the data sent
to the server to overcome the bandwidth limitations. This paper will
analyse the feasibility and performance of compression methods.

3 RESEARCH QUESTIONS

In this paper the following research questions are going to be dis-
cussed:

RQ1: Which methods can be used to reduce the size of the data
obtained from the RF probe before it is transmitted?

RQ2: To what extent can lossy compression methods be used to
compress the RF probe data while keeping it usable?

4 RELATED WORK

Not a lot of research has been done specifically on compressing RF
probe data, so this paper leverages methods from other fields in
addition to sensor-agnostic approaches for compressing time series
data.

4.1 General-Purpose Compression Algorithms

LZ4 [5] and Snappy [8] are some of the fastest general-purpose
compression algorithms according to [17].

While being great for data like text files, they offer a lower com-
pression ratio for time-series data when compared to other lossless
compression algorithms like Sprintz found in section 4.3.1.

4.2 Audio Compression Algorithms

FLAC [23] is a lossless compression algorithm that uses Linear Pre-
dictive Coding (LPC) which predicts the value of the current sample
based on the values of previous samples and it could potentially
work for compressing the RF probe data, but it also does not offer a
great compression ratio.

Lossy audio compression algorithms such as MP3 [12] or AAC
[13] rely on a psychoacoustic model [4] to compress audio. They cut
off frequencies outside the range of human hearing in the process
of compressing audio, which is not something that is desirable for
compressing RF probe data.

4.3 Algorithms Chosen For This Paper

4.3.1 Sprintz. The lossless compression algorithms that stands out
for this application is Sprintz [3], which offers a way to compress
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data with a higher compression ratio than general-purpose com-
pression algorithms like LZ4 and Snappy, while also offering great
efficiency which makes is possible to run it on embedded devices.
The high compression ratio is achieved through the use of tech-
niques like delta coding and bit packing.
Compressing data using Sprintz comes down to the following
sequence of steps:

(1) Forecasting using Delta Coding

(2) ZigZag Encoding

(3) Bit Packing

(4) Run-length Encoding

Delta coding works by only storing the differences (deltas) be-
tween current and the previous value instead of storing full values.
Equivalently, it can also be said that delta coding predicts the next
sample to be equivalent to the current sample and then stores the
error between the predicted and the actual value. This can greatly
reduce the amount of bits used to store a stream of values if those
values do not change very often.

Since deltas are signed values, in order to efficiently bitpack them
we need to convert them to a representation which will keep the
leading zeros for small values as if the values were unsigned. One
such technique is known as ZigZag encoding [16]. It works by repre-
senting positive integers as even numbers and negative integers as
odd numbers which preserves the leading zeros for small numbers
and allows us to use bit packing to reduce their size.

Bit packing involves packing each value as close as possible based
on the amount of bits that is required to represent the highest
number 4 in a sequence of values.

The number of bits (nbits) in such a sequence can be expressed

by:

In(h+1)

In(2) ®)

nbits = [

For example if we have the following 8-bit values that we want to
bitpack 00011000 and 00001101, we could represent each value in:

In(24 +1)
{ In(2)
since the largest value in the sequence is 00011000 (24).

We can then store these values right next to each other by truncat-
ing both values to 5 bits and by adding a header to tell the decoder
that each value is 5 bits: 101 01101 11000 which allows us to save
some space.

Sprintz uses run-length encoding to save space when an entire
block of values consists of errors which are equal to 0. It works by
only writing the number of blocks full of zeroes instead of writing
those blocks as usual.

} =5 bits (4)

4.3.2 AZTEC. This is a lossy compression technique originally
proposed in [7] for compressing ECG data. It represents data by a
sequence of lines and slopes.

Aline is formed when there is a sequence of data points where the
difference between the maximum and the minimum value does not
exceed a certain threshold T. Let’s say that we have set the threshold
T to 7. In fig. 3 we can see that points 0-8 fit under that threshold
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Fig. 3. AZTEC line segment

—— AZTEC Lines
—— AZTEC Slopes

Fig. 4. AZTEC slopes

because 16 — 10 <= 7, but point 9 will set the new minimum value
to 4 and 16 — 4 > 7 so a new line will be formed starting from point
9 and points 0-8 will be saved as a line with the duration of 9 and
the value of 13.

In case there is a fast-changing signal, the data will be represented
by a ladder formed by horizontal lines because T is exceeded on
almost every sample. This is not very efficient because we will
have to store each individual line. This is where the slopes are
used. If there is a sequence of lines where the length of each line is
lower than a certain threshold L and there is no change in direction
between the lines, it means that these lines can be represented by a
slope.

With threshold L set to 3, fig. 4 shows that two slopes have been
formed by lines whose length is < 3. The line in the middle is
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not included because it is longer than 3 samples in length and the
last line is not included because the line is going into the opposite
direction from the slope.

During decompression the value of a line is repeated for the
amount of times equal to the duration of the line and linear interpo-
lation is used in order to turn the starting and ending point of a slope
as well as its duration into the amount of data points equivalent to
the duration of the slope.

While AZTEC did not achieve acceptable fidelity for ECG signals
[14], it could potentially achieve a great compression ratio without
losing important information like the amplitude or the duration
of each peak. This is because of how the RF probe data is made
up of plateaus and slopes which is exactly what this compression
technique uses to describe the data.

5 PROPOSED METHODOLOGY

Sprintz and AZTEC compression algorithms from section 4 will be
implemented on a microcontroller with an RF probe connected to
one of the ADC channels.

The effectiveness of each compression algorithm will then be
analysed based on how much data is sent by the sensor before and
after compression and how much compression affects the original
signal.

5.1 Modified AZTEC

A slightly modified version of the AZTEC compression algorithm
is proposed and will be implemented as well. This modification
is based on the fact that we do not necessarily need to know the
exact time down to a sample of when an electromagnetic event has
occurred. Even only having an approximate time can still allow the
engineer looking at the data to know what kind of equipment has
been used at that time to cause that pulse. Making this assumption
allows us to compress the data even further by only keeping the
sections which are above the noise floor.

This way some temporal resolution will be lost because the unique
time when a specific peak starts and ends within a chunk can no
longer be determined, but we can still determine the point in time
at which the peak has occurred within:

1
— X 4096 = 20.48 ms (5)
200 kHz

if we use a sampling frequency of 200 kHz and compress mea-
surements in chunks of 4096 samples.

5.2 Hardware Details

The probe used is based on an AD8313 [1] logarithmic amplifier
connected to a monopole antenna. This RF probe produces a DC
voltage (V) based on the input amplitude (dBm).

Modern IoT device range from having small microcontrollers such
as ATmega328P running at 16MHz and with 2KB of RAM to single
board computers like Raspberry Pi [21] which has a 2.4GHz quad-
core Cortex-A76 CPU with 4-8GB of RAM [22]. In the process of
writing this paper the author chose to use ESP32 which is powered
by a dual-core Xtensa CPU running at 240MHz and has 520KB of
RAM [9] as a point of reference for the performance of common IoT
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Fig. 5. Experimental Setup

devices because it has been used in many commercially successful
IoT devices from companies like Shelly, Xiaomi, and Sonoff [18].

The ADC in the ESP32 is capable of sampling rates of up to 2 MHz
[9] which should be more than enough based on the observations
made in section 2.

In fig. 5 you can see the RF probe connected to the ESP32. The
probe is powered by 5V and its output is connected to GPIO32 on
the ESP32 which corresponds to channel ADC1 channel 4.

The wires on the left were used for the purpose of measuring
how long it takes for the compression algorithm to run. A pin is
toggled high before the compression starts and then toggled low
right after the data has been compressed. Toggling a pin is really
fast because it is done in a single CPU instruction. The width of the
pulse was then measured by an oscilloscope.

6 EXPECTED RESULTS

It is expected that the compressed data will be smaller than the
original data, reducing the bandwidth required to send it to the
server. It is also expected that the lossy compression methods will
have minimal impact on the usability of the signal.

7 IMPLEMENTATION DETAILS
7.1 Sprintz

The implementation of the Sprintz compression algorithm used is
based on the code published by one of the authors of the original
paper in a GitHub repository [2].

In order to make the code compile for the Xtensa architecture, the
logic related to decompression has been removed because it relies
on AVX instructions which are not present on microcontrollers.

Additionally, emulation for the _1zcnt_u32 and _pext_u64 x86
intrinsics was implemented and can be found in appendix A in order
to make the compression code work on an ESP32. The 1zcnt_u32
instruction counts the number of leading zero bits. The pext_u64
instruction takes a value and the corresponding mask and extracts
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1-sl
Description 0 -sli(;pe ¢ Len(samples) | ADC MSB | ADC LSB
Bits 7 6-0 7-0 7-0
Byte 1 2 3
Table 1. The Layout Of One AZTEC Packet
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Fig. 6. Comparison of the losslessly compressed data to the data compressed
by AZTEC

the bits that are set in the mask from the value and places them in
the lower bits of the destination register.

The original code had a memory leak where it allocated memory
for a buffer but didn’t free it, which is especially critical on a micro-
controller because the heap will quickly fill up. This has been fixed
in [20].

7.2 AZTEC

The AZTEC compression was implemented from scratch and the
implementation can be found here: [19]. The first byte was used to
indicate whether or not the current section is a line or a slope as
well as to indicate its length. The next two bytes were used to store
the value read from the ADC in big-endian order. The exact packet
layout can be found in table 1.

In order to select an appropriate threshold, we can look at peak-
to-peak value of the noise floor, which appears to be around 100. By
setting the AZTEC threshold to 100, we make sure that the noise
floor is compressed to a line that is as long as possible and any peaks
above the noise floor will still be preserved.

In fig. 6 you can see the same data being compressed by AZTEC
as well as Sprintz.

7.3 Modified AZTEC

The compression algorithm could easily be modified to discard the
lines and slopes with values which are less than a certain threshold.
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Fig. 7. Modified AZTEC algorithm

Algorithm Mean | Std. Dev. | Min | Max | RMSE
Sprintz 2.15 0.07 1.85 2.41 0.00
AZTEC 11.66 3.88 3.72 | 33.99 86.54

Modified AZTEC | 21.62 15.00 419 | 37237 | N/A

Table 2. Table showing the compression ratio results for each algorithm

This threshold is based on the current level of the noise floor. See
section 5.1 for the motivation behind this.

In fig. 7 you can see the same data being compressed by the
regular and modified version of AZTEC with the discard threshold
set to 1300. This discards all lines and slopes with values lower or
equal to 1300. You can see that the noise floor has been removed
which makes the data even smaller.

8 RESULTS

The comparison between algorithms was performed by measuring
their compression ratio, speed and lossines. These values were ob-
tained from recording 4 min 21 sec of data at a 12 bit resolution, with
12 dB attenuation, and the sampling rate of 200 kHz using an RF
probe connected to one of the ADC channels on the ESP32 and then
using each of the compression algorithms to compress the same
data in chunks of 4096 samples.

8.1 Compression Ratio

Compression ratio is defined by:

Uncompressed Size

(©)

Compression Ratio = —— X .
Compressed Size

The higher the compression ratio, the better the compression
algorithm is able to compress the data. The compression ratio results
can be found in table 2 and will be further summarised and discussed
below.
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Fig. 8. Variation of the compression ratio with each chunk

W sprozHstogram
W AZTEC Hstogram

—  sprintz Norma Distribution Ft
10 — AZTEC Normal Distribution Fit

Fig. 9. Compression ratio distribution (normalised)

Out of the compression methods tested in this paper, AZTEC
managed to achieve the mean compression ratio of 11.66 followed
by Sprintz at 2.15.

Using the modified version of AZTEC gave the compression ratio
of 21.62.

In fig. 8 we can see how the compression ratio varies over each
chunk. AZTEC has a large standard deviation of 3.88, but the com-
pression ratio never drops below 3.72. Sprintz on the other hand
shows very consistent compression ratio with a standard deviation
of 0.07.

The compression ratio of Sprintz did not have a lot of varia-
tion. Sprintz uses run-length encoding in order to store consecutive
blocks full of zero errors which would significantly increase the
compression ratio if there were a lot of these blocks. See section 4.3.1
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AZTEC
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Fig. 11. The chunk which resulted in the lowest compression ratio for AZTEC

for more information. RF probe data has a lot of noise and therefore
it is really difficult to get a packet full of errors equal to 0. Because
of this Sprintz has to store each individual packet which results in a
pretty consistent compression ratio without any significant peaks
of increased compression ratio.

As to why the compression ratio of AZTEC varies so much, let us
look at the chunks with the highest and with the lowest compression
ratios.

As expected, the chunk with the highest compression ratio shown
in fig. 10 is almost entirely made up of the noise floor which can
be represented as a series of very long lines and can therefore be
compressed very well.

The chunk with the lowest compression ratio seen in fig. 11 has
peaks with large variation on the top. This variation is higher than
the threshold which causes a lot of extra lines and slopes to be
created which decreases the compression ratio.

8.2 Speed

The performance of each compression algorithm is very important
for this application because the data needs to be compressed before
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the next batch of samples arrives from the ADC. AZTEC ran the
fastest, taking only 2.95 ms on average to compress 4096 samples
on the ESP32, while Sprintz took 18.26 ms to compress the same
amount of samples.

8.3 Lossiness

As shown in fig. 6, the RF probe data is still usable (magnitude
and duration can be determined) after being compressed and then
decompressed by the AZTEC compression algorithm. Compressing
the data with AZTEC resulted in an average Root Mean Square
Error (RMSE) of 86.54 which is less than the threshold of 100 that
we set to be used by the compression algorithm. The amplitude
and the start and stop times of the areas above the noise floor are
well-preserved. RMSE is not applicable for the modified version of
AZTEC because the amount of samples on the output are not equal
to the amount of samples on the input.

Data compressed by Sprintz is inherently as usable as the original
data. It has a RMSE of 0 because it is a lossless compression algorithm
which means that the data can be decompressed from its compressed
state to exactly the same data that was initially compressed.

9 FUTURE IMPROVEMENTS

Instead of using a fixed threshold to discard the noise floor in the
modified AZTEC compression algorithm, a noise floor estimation
technique could be employed to determine the noise floor for each
chunk individually in case it changes based on environmental fac-
tors.

The probe used in this paper has 3 channels for X, Y, and Z,
but only one of them was used to capture and compress the data.
Reading and compressing more than one channel of the probe can
implemented in the future.

This paper has only evaluated two promising compression algo-
rithms. In the future more compression algorithms can be tested to
get a better idea of which ones work for this purpose and which
ones do not.

10 CONCLUSION

Both Sprintz and AZTEC were able to run on the ESP32 to compress
the RF probe data data sampled at 200 kHz in real time and have
achieved respectable compression ratios of 2.15 and 11.66 respec-
tively. Taking a more lossy approach allowed us to almost double
the compression ratio of AZTEC to 21.62 by discarding the noise
floor.

AZTEC took 2.95ms and Sprintz took 18.26 ms to compress 4096
samples of data on the ESP32. This gives the per sample compres-
sion times of: 0.72 us and 4.46 us which allows for compressing
the data at the maximum sampling rates of 1.39 MHz for AZTEC
and 224.32 kHz for Sprintz. This puts AZTEC at an advantage for
compressing data captured at higher sampling rates.

The lossy compression method tested (AZTEC) did not have a
significant impact on the usability of the RF probe data because the
original data closely resembled the data that went through com-
pression which is shown by a RMSE of 86.54. Lossy compression
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methods are preferred for this kind of data due to their high com-
pression ratio to the extent where the peaks and their durations are
preserved, which is the case when using AZTEC.
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A IMPLEMENTATION OF THE X86 INTRINSICS

A1 _lzent_u32

uint32_t _lzcnt_u32(uint32_t val) {

int temp = 31;

uint32_t res = 0;

while (temp >=

0 &% ((val >> temp) & 1) == 0) {

temp = temp - 1;

res = res

}

return res;

3

A2 _pext_u64

+1;

uint64_t _pext_u64(uint64_t val, uint64_t mask) {
uint64_t res = 0;

int m = 0;
int k = 0;

while (m < 64) {
if (((mask >>m) & 1) == 1) {

res =

|

k =k

}

m=m+1;
3

return res;

(res & (~(1 << k)))
(((val >> m) & 1) << Kk);

+1;
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