
Evaluating Security and Performance of CoAP Protocol on Raspberry Pi 4
for IoT Applications

SHIVA BIERSTEKER, University of Twente, The Netherlands

The CoAP (Constrained Application Protocol) protocol is increasingly uti-

lized in IoT applications due to its lightweight and RESTful communication

model. This research project aims to assess the security and performance of

the CoAP protocol on the Raspberry Pi 4, which is widely deployed as IoT

endpoints. The study employs rigorous performance metrics including CPU

utilization, memory usage, and latency, coupled with a thorough security

assessment focusing on network-level vulnerabilities. Findings are attained

through theoretical and practical means. The research outcomes will provide

insights into the suitability of CoAP for IoT deployments on the Raspberry Pi

4 and o�er recommendations for enhancing both security and performance.

CCS Concepts: • Security and privacy → Security protocols.

Additional Key Words and Phrases: CoAP, IoT, Internet of Things, Security

Protocols, Evaluation, Raspberry Pi, Performance.

1 INTRODUCTION

The Internet of Things (IoT) is ever-growing. Many households

and companies are adding IoT devices to their network [2]. It is

important to hold these devices to a high-security standard, as they

are a common target of attacks. There are several protocols for IoT

applications for constrained devices, but not all of them are well-

documented concerning their security features and performance.

One of these protocols with lackluster documentation is the CoAP

protocol.

The Constrained Application Protocol (CoAP) is a specialized web

transfer protocol for use with constrained nodes and constrained

networks [7], and the main focus of this research paper. This means

it has to function under energy constraints, memory limitations,

limited processing capability, high latency, unreliable networks with

high packet loss, and being left unattended. CoAP is thus designed

for devices typically found as IoT endpoints, whose main intercom-

munication is sending and receiving sensor data. CoAP also allows

for seamless integration with HTTP, enabling easy connection with

the internet and external, full-size devices like a server. Naturally,

this HTTP communication takes a larger toll on resources, so an

endpoint device is used, like a Raspberry Pi. This way, all the small

sensor devices can communicate with the much more powerful

Raspberry Pi, and the Raspberry Pi can then process this data or

send it o� using CoAP to HTTP communication. Although there

have been papers in the past about the CoAP protocol and it’s secu-

rity features, none of them have speci�cally touched upon the CoAP

protocol when implemented on the Raspberry Pi 4. Analyzing a pro-

tocol when con�gured on a speci�c piece of hardware will provide

more accurate data for that hardware for real world applications,

compared to what a virtual environment can provide. The same

argument is even more applicable to performance benchmarks, as

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

measuring things like resource utilization, message transmission

e�ciency, scalability on Raspberry Pi hardware and power con-

sumption can only truly be analyzed by testing the protocol on the

hardware itself. This brings this proposal to the following research

questions:

(1) What are security strengths and vulnerabilities associated

with the implementation of CoAP on the Raspberry Pi 4 in

an IoT context?

(2) What are the performance metrics of the CoAP protocol on

the Raspberry Pi 4 in an IoT context?

(3) How do existing studies evaluate the performance character-

istics of CoAP protocol implementations on the Raspberry Pi

4?

This research project will speci�cally evaluate the security features

of the CoAP protocol such as authentications, access control, and

message integrity when implemented on the Raspberry Pi 4. Ana-

lyzing this on physical hardware comes with a higher accuracy than

when it is done through a virtual environment, which contributes

to any data that is already out there. Furthermore, the project will

analyze the performance of the CoAP protocol on the Raspberry

Pi 4 by measuring the message transmission e�ciency, resource

utilization, and scalability of this speci�c hardware. Since both the

Raspberry Pi 4 and the CoAP protocol are commonly found in IoT

applications, an analysis of the performance of this combination

is important when making decisions about the design of an IoT

network.

The rest of this paper is organized as follows: Section 2 will

present what is done in the literature regarding the implementation

of CoAP in Raspberry PI and how that impact the performance and

security of the protocol. In section 3, the methodology to answer

the research questions is discussed, along with the hardware and

software setup to create the testbed for performance and security

analysis. This section will also discuss the way everything is set

up. Section 4 will perform a security analysis of CoAP. Section 5

will perform a performance analysis of CoAP on the Raspberry Pi 4.

Finally, section 6 will discuss these �ndings and reach a conclusion.

2 RELATED WORK

Due to the common nature of CoAP, naturally there has been re-

search done on it in the past. One of these is a performance analysis

on CoAP done by Azeez and Abdullah [1]. This paper focused on

communication between MQTT, CoAP and HTTP and looked at

metrics such as error rate, message throughput and elapsed time.

However, this study did not look at a CoAP implementation on the

Raspberry Pi. Naik [5] did a comparative analysis between MQTT,

CoAP, AMQP and HTTP. This paper provides an abstract com-

parison between these protocols and compares their strengths and

weaknesses, but there are no concrete numbers regarding the perfor-

mance of the CoAP protocol on the Raspberry Pi. Guaman et al. [3]

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Shiva Biersteker

conducted a comparative performance analysis between MQTT and

CoAP protocols for IoT applications using Raspberry Pi 3 devices

in IEEE 802.11 environments. While their study compared the two

protocols, it did not comprehensively evaluate the security aspects

of CoAP nor provide insights into its scalability on Raspberry Pi

hardware. Rahman and Shah [6] focused on the security analysis

of IoT protocols, with a particular emphasis on CoAP. While their

study addressed security vulnerabilities and proposed solutions for

CoAP, it did not extensively evaluate the protocol’s performance

or scalability on the Raspberry Pi 4. Kruger and Hancke [4] did a

performance analysis of the CoAP protocol on some single-board

computers, including the Raspberry Pi 3. The di�erence between

the Raspberry Pi 3 and 4 is large enough that a performance analysis

on the Pi 4 adds value. Furthermore, this research has not done a

security analysis on Raspberry Pi hardware.

3 PROPOSED SOLUTION

In this section, the methodology to answer the research questions

will be discussed. This involves the used hardware, software and

the setup.

3.1 Hardware

For this study, the Raspberry Pi 4 Model B Rev 1.5 was the primary

hardware platform, but other hardware components were used as

well. These are described in table 1.

Table 1. Hardware Components

RPi Processor Broadcom BCM2711, Quad core Cortex-

A72 (ARM v8) 64-bit SoC @ 1.8GHz

RPi Memory 4GB LPDDR4-3200 SDRAM

RPi Storage Kingston Canvas Select Plus microS-

DHC 32GB (Class 10)

RPi Ethernet Gigabit Ethernet

RPi Wireless 2.4 GHz and 5.0 GHz IEEE 802.11ac wire-

less, Bluetooth 5.0, BLE

RPi Connectivity 2x USB 3.0 ports, 2x USB 2.0 ports, 40-

pin GPIO header

RPi Power Supply 5.1V, 3.0A DC via USB-C connector

Power Measurement Tool AVHzY C3

3.2 So�ware

Various software was also employed for this research paper to con-

duct the security and performance analysis for the CoAP protocol

on the Raspberry Pi. The details of this software can be seen in table

2.

Fig. 1. Test setup

Table 2. So�ware Components

Operating System Raspberry Pi OS (formerly Raspbian),

Debian 11.5

Kernel Version Linux 5.15.61-v8+

CoAP Library aiocoap-0.4.7, installed via pip

Python Version Python 3.7

Power measuring Shizuku ToolBox V1.00.20

Wireshark Version 3.4.10 (Git v3.4.10 packaged as

3.4.10-0+deb11u1)

3.3 Setup

The Raspberry Pi was controlled via an SSH connection through a

laptop. A smartphone was used to host a hotspot for the laptop and

RPi to connect to. An aiocoap server and client were made, along

with a DoS client and a client which times its message delay and

exports it to a CSV �le to plot the data. A shell script was made to

monitor CPU and memory usage over time, to be exported to a CSV

�le. All the CoAP programs are running on the RPi on localhost.

The AVHzY C3 is connected between the RPi power supply and the

RPi power port. It also has a connection to the laptop via a USB type

A to USB type C cable. The setup can be seen in Figure 1.

4 SECURITY ANALYSIS

The �rst research question was: What are security strengths and

vulnerabilities associated with the implementation of CoAP on the

Raspberry Pi 4 in an IoT context? In order to answer this research

question, threat modeling needs to be done on the CoAP protocol.

2



Evaluating Security and Performance of CoAP Protocol on Raspberry Pi 4 for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

The most important threats then need to be tested in a real life

scenario in order to see their impact on the CoAP protocol on the

RPi 4.

4.1 Threat Modeling

The CIA Triad will be used to de�ne the security requirements of

the CoAP protocol on the Raspberry Pi 4 for IoT applications.

4.1.1 Confidentiality. Con�dentiality refers to protecting informa-

tion from unauthorized access. IoT systems are often located in

places where sensitive data is prevalent, and users would typically

like to keep this information private. The main threats to con�den-

tiality include:

Sni�ng: Unauthorized interception of data as it is transmitted

over a network. This can expose sensitive information, such as

credentials or personal data. A system is vulnerable to this attack if it

lacks encryption for data in transit, uses unsecured communication

channels or has inadequate network segmentation. Sni�ng may

be prevented by implementing strong encryption protocols, using

secure network con�gurations or proper network segmentation

and isolation of sensitive data. By default, CoAP transmits data in

plaintext, making it vulnerable to interception by attackers. Without

encryption mechanisms, any data sent over CoAP can be easily

captured and read by eavesdroppers.

Spoo�ng: An attacker impersonates another device or user to gain

unauthorized access to information. A lack of authentication mecha-

nisms and weak or hardcoded credentials make a system susceptible

to spoo�ng attacks. The implementation of certi�cate-based authen-

tication and strong authentication mechanisms alongside unique

credentials, can mitigate the threat of a spoo�ng attack. CoAP does

not implement these mitigation tactics by default, and the use of

default credentials is a common fault in setting up devices to be

used in IoT systems.

Phishing: Deceptive attempts to acquire sensitive information by

masquerading as a trustworthy entity. Phishing may compromise

user credentials and access sensitive information. While phishing is

a common attack on networks with a lot of human interaction, an

IoT network is mainly machine-to-machine communication, making

CoAP not very susceptible to phishing attacks.

4.2 Integrity

Integrity means data are trustworthy, complete, and have not been

accidentally altered or modi�ed by an unauthorized user. Common

attack vectors include:

Data Tampering: is the deliberate or accidental alteration, dele-

tion, or insertion of data without authorization or proper validation.

This can lead to corrupted data, which leads to incorrect or mislead-

ing information. Without DTLS, CoAP o�ers no protection against

data being altered in transit.

Replay Attacks: This type of attack involves reusing data that has

already been transmitted to gain unauthorized access to a system.

This may allow the attacker to alter the contents of the data or to

re-transmit the data at a later time. Again, insecure communication

protocols can leave a network vulnerable to this attack, which is

not always a given with CoAP. Implementing session identi�ers or

timestamps, along with DTLS may provide CoAP with protection

against replay attacks.

Message Forgery: Creating fake messages to deceive the recip-

ient. An attacker could manipulate data to achieve unauthorized

outcomes. Weak or no message authentication mechanisms and

insecure key practices make a system vulnerable to this attack. Base

CoAP does not employ cryptographic keys, which leaves it vulnera-

ble to these attacks.

4.3 Availability

Availability means data are accessible when you need them.

Denial of Service (DoS) Attacks: Overloading a system with re-

quests to make it unavailable to legitimate users. This disrupts the

service and inability to access necessary resources. Not limiting a

client’s communication with the server in any way leaves the server

vulnerable to DoS attacks. Implementing rate limiters goes a long

way.

Relay Attacks: Forwarding of data to another system without

authorization. This may cause disruption and misuse of resources.

This vulnerability is again related to a lack of authentication. Imple-

menting DTLS on CoAP should make the system far more resistant

to these kinds of attacks. Implementing DTLS and OSCORE on

CoAP is and very good idea if the network should be secure. Since

DTLS and OSCORE are frequently paired with CoAP, there should

be plenty of documentation available online to turn CoAP into a

secure, lightweight protocol.

4.4 Practical Testing

The setup for the attack consists primarily of the Raspberry Pi. The

RPi hosts the server to which the client connects via localhost. This

requires the attacks to be run locally on the RPi as well, but the

methodologies and results are the same as if the attacker would at-

tack an online server. When the client is connected to the server, the

attacks are initiated. The �rst attack is a sni�ng attack. This type

of attack is very powerful, as it gives the attacker access to every

bit of data that is sent between the client and the server, completely

eliminating all con�dentiality. For this attack a client sends a secret

message to the server via a PUT command, while the attacker uses

Wireshark to intercept this packet. Because CoAP doesn’t use any

encryption, the attacker can freely read the payload data, as seen

in �gure 2. At the top of the �gure, the inspected packet can be

seen. This is the PUT packet sent from the client. The bottom of the

�gure shows the payload data. It is easy to see that the client sent

"Super secret message" to the server, as the data is not encrypted.

The data sent from the server to the client during a GET request

is also easily readable this way. A good mitigation for this attack

would be to implement Datagram Transport Layer Security (DTLS)

with CoAP. DTLS employs cryptographic keys which encrypt the

messages between the client and the server. This should make it

computationally unfeasible for an attacker to decrypt an intercepted

message. It is however important to note that since CoAP is most

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Shiva Biersteker

Fig. 2. Sni�ing a�ack intercepted packet

frequently deployed on resource constrained systems, these crypto-

graphic keys might be unsafe if not implemented properly. This is

because the keys are generated using pseudo random functions. The

outcome of these functions may be predicted if the generator does

not have enough entropy, which is often the case for constrained

devices. Using the right software for random number generation

on constrained devices could be a cost-e�ective option, but this

should be assessed on a case-by-case basis. The second attack is

a Denial of Service (DoS) attack. Here 4 clients would spam GET

and PUT commands to the server in an attempt to overload it. This

caused the server to run at maximum capacity, and a legitimate

client had a larger latency for their communication with the server.

The exact performance rami�cations will be discussed in the next

section. It can thus be seen that CoAP is vulnerable to DoS attacks.

Implementing rate limiting for clients would reduce the damage

any one client can do. Furthermore, it would be a good idea to �nd

a way to distinguish the device a client comes from, as otherwise it

would be easy for an attacker to run multiple clients on one device,

essentially bypassing the measures taken by using rate limiting.

5 PERFORMANCE ANALYSIS

In this section the performance of the CoAP protocol on the RPi4 will

be discussed. The performance was analyzed using various metrics.

These metrics are: power consumption of the RPi, message latency,

CPU usage as a package total and per core, and memory usage.

Since IoT devices are often restricted in resources, it is important

to measure the resource usage of the RPi while running the CoAP

protocol in order to get an idea of the weight of this protocol. The

CPU measurements will show how much load the protocol will put

on the RPi, along with how this load is spread over the multiple

cores that are available on the RPi. The memory usage will show the

memory e�ciency of CoAP. Excessive memory usage signi�cantly

compromises the Raspberry Pi’s performance, leading to consistent

spikes in latency. Since the RPi has limited memory, this is more

likely to happen compared to full-size servers. IoT devices may

be battery powered, thus making it important that the protocol

Fig. 3. RPi Power Draw

they are running is energy e�cient. For this, power consumption

is measured. Latency shows how responsive the system is during

various loads. Timely communication is important in certain IoT

applications, thus seeing how the latency changes with various loads

is good to see. Aiocoap is a Python library and Python does not play

nice with multiple cores by default. The tests have been done using

base aiocoap for consistency. As per the aiocoap documentation,

there are ways to scale the server to multiple cores.

Each of the metrics have been tested in �ve scenarios. Each sce-

nario consists of one server and a varying amount of clients. The

requests from the clients are GET requests, asking the server what

the current date and time is. During a DoS attack (DoS), 1 client

sending 10 requests per second (1-10), 10 client sending 10 requests

per second (10-10), 1 client sending 100 requests per second (1-100),

10 client sending 100 requests per second (10-100). It is important

to note that the Raspberry Pi runs on Raspberry Pi OS. As with any

OS, there are things going on in the background which causes every

metric to have a baseline above 0. All the graphs are measurements

over a 30 second time frame. Figure 3 shows the power consumption

during the various scenarios. It can be seen that there is only a very

small increase in power consumption between 1-10 and 1-100 or

10-10, only about 0.1-0.2 watts. 10-10 is consistently a bit higher

than 1-100, potentially indicating that CoAP runs more e�ciently

with fewer clients. Implementing DTLS will likely further this gap,

as this adds per-client overhead. DoS and 10-100 are very similar to

each other. This is likely due to these scenarios hitting a limit on

the computational power of the RPi. CoAP thus cannot support a

thousand requests per second, and should be limited to the order of

a hundred requests per second.

Figure 4 shows the round-trip time (RTT) latency of the various

scenarios. This is the computational RTT only, as both client and

server were hosted on the same device. This means that there were

no network delays, like propagation delay, (re)transmission delay or

queueing delay. During all these scenarios, three large latency peaks

occurred. DoS had a peak at 130ms, 1-100 had a peak at 54ms and

10-100 had a peak at 314ms. These peaks have been omitted from

the graph for readability. These peaks indicate that under speci�c

conditions, the system can experience sudden spikes in latency.

Furthermore, it can be seen that the latency typically sits between

4



Evaluating Security and Performance of CoAP Protocol on Raspberry Pi 4 for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 4. RPi Latency

Fig. 5. RPi Memory Usage

0 and 10 ms, averaging out at 5 ms. When the server is throttled

by too many messages, this latency increases to about 20ms, and

becomes signi�cantly less stable.

Figure 5 shows the memory usage of the RPi under the di�erent

scenarios. Here the memory usage seems to predominantly scale

with client count. This is likely due to the fact that every client needs

its own terminal instance to run. The memory usage is also very

consistent, showing that the CoAP protocol doesn’t really �uctuate

in memory usage over sustained loads.

Figure 6 shows the package total CPU usage of the RPi under

the di�erent scenarios. This again shows that CoAP predominantly

scales with the total request frequency, and not really with the

number of clients. The small discrepancy can be explained by the

RPi having to handle multiple terminals for the clients.

Figures 7, 8, 9, 10 and 11 show individual core load under each

of the scenarios. Due to the implementation choice of aiocoap, the

server may only run on one physical core at a time. Figure 7 clearly

shows the server is running on CPU 3, and is capped out at 100% the

whole time. Figure 11 shows the server swapping what physical core

it is running on, with one core always standing above the rest at

100% usage. Since the clients are running in their own terminal, the

operating system can distribute these loads evenly over the physical

cores. This can be seen by all the cores running at essentially the

Fig. 6. RPi CPU Package Total

Fig. 7. RPi CPU During DoS A�ack

Fig. 8. RPi CPU with 1 client sending 10 requests per second

same speed, with the exception for the server’s core. CoAP may be

further optimized by using di�erent implementations of the protocol,

such as Californium.

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Shiva Biersteker

Fig. 9. RPi CPU with 1 client sending 100 requests per second

Fig. 10. RPi CPU with 10 clients sending 10 requests per second

Fig. 11. RPi CPU with 10 clients sending 100 requests per second

6 CONCLUSION

The Internet of Things (IoT) is characterized by a multitude of con-

nected devices that communicate data regularly. These devices are

often constrained in terms of computational power and memory,

operating within limited network environments. This makes provid-

ing these devices with su�cient security and performance a di�cult

task. In order to succeed at this, research into how CoAP performs

at a baseline is necessary. To gain a deeper understanding of these

challenges, this study conducted a performance and security anal-

ysis of CoAP on the RPi 4, an essential component in many IoT

systems.

The security analysis highlighted several vulnerabilities in CoAP

when implemented on the RPi 4 and suggested mitigations. By

default, CoAP transmits data in plaintext, exposing it to eavesdrop-

ping attacks. The adoption of Datagram Transport Layer Security

(DTLS) is essential to encrypt CoAP communications and ensure

data con�dentiality. CoAP does not employ authentication mech-

anisms, making it susceptible to spoo�ng attacks. Implementing

robust authentication methods, such as certi�cate-based authen-

tication, can signi�cantly mitigate this risk. CoAP’s lightweight

nature makes it vulnerable to DoS attacks, where the system can

be overwhelmed by a �ood of requests. Strategies like rate limiting

and tra�c di�erentiation are crucial to protect against such attacks.

Practical tests using Wireshark and custom scripts underscored

these vulnerabilities, emphasizing the importance of integrating

DTLS and implementing rate limiting to enhance CoAP security

on the RPi 4. Integrating DTLS into CoAP deployments is essential

for addressing con�dentiality and integrity issues. DTLS provides

encryption and message integrity, protecting against many attacks,

e.g. sni�ng and tampering. CoAP is often implemented with DTLS

and OSCORE. This common combination should make it relatively

easy to aid CoAP into being a secure, lightweight protocol. Utiliz-

ing stronger authentication mechanisms, such as certi�cate-based

authentication, can signi�cantly reduce the risk of spoo�ng attacks.

Ensuring that only authenticated devices can communicate within

the IoT network is crucial for maintaining security. To combat DoS

attacks, implementing rate limiting can help manage the �ow of

requests and protect the system from being overwhelmed. CoAP

has many ways to improve its security, while leaving the option to

avoid the security overhead for applications which don’t need it.

The performance analysis looked at power consumption, CPU uti-

lization, memory usage and latency during various scenarios. CoAP

maintained low latency and high e�ciency under moderate load

conditions, which is suitable for many IoT applications. However, la-

tency increased with larger payload sizes and higher message rates,

potentially impacting real-time applications. The RPi 4, equipped

with a quad-core processor and 4GB of RAM, e�ectively handled

a load in the order of hundreds or requests per second. By having

the RPi run the server only, and enabling multi core support for aio-

coap, the amount of tra�c it can handle should increase drastically,

likely quadrupling. This will be su�cient for most IoT applications

where one would deploy a RPi as an endpoint. Deploying Raspberry

Pi 4 devices as CoAP servers in sensor networks allows for e�-

cient and responsive data collection. Low latency under moderate

loads ensures timely transmission of sensor data, which is crucial

for monitoring environmental conditions, industrial processes, or

smart agriculture.

6.1 Limitations

This paper only tackles the bare-bones implementation of CoAP on

the Raspberry Pi 4. This means there are no results for either security

6



Evaluating Security and Performance of CoAP Protocol on Raspberry Pi 4 for IoT Applications TScIT 41, July 5, 2024, Enschede, The Netherlands

or performance when CoAP is combined with a wide variety of

security measures and performance optimizations. The bare-bones

setup did not allow for communication over a network, whichmeans

no analysis was done regarding the various network environments

the CoAP protocol may be found in.

6.2 Future Work

Future research should focus on analyzing the CoAP protocol with

the most common security measures in place, in order to �nd any

more potential weaknesses. These added security measures will

also a�ect the performance of the CoAP protocol, thus giving new

insight. Westphall et al. [8] provides a great start to this, as it already

compares the impact of di�erent implementations of DTLS with

CoAP on performance on the Raspberry Pi 3. Additionally, further

research could try to run two Raspberry Pi’s simultaneously, con-

nected via a short Ethernet cable. This would allow for an individual

analysis of client and server performance, while not deviating too

much from the environment achieved by running one Raspberry Pi

device.

In conclusion, CoAP o�ers a robust framework for IoT commu-

nications on the RPi 4. However, enhancements in security and

performance are necessary to fully leverage its potential. Imple-

menting the recommendations outlined in this study will pave the

way for more secure and e�cient IoT networks, making CoAP a

more viable solution for diverse IoT applications.

6.3 Use of AI

During the preparation of this work the author used ChatGPT for

general aid, predominantly pointers to get started on research and

text structure. After using this tool/service, the author(s) reviewed

and edited the content as needed and take(s) full responsibility for

the content of the work.

REFERENCES
[1] Hadeel Hussein Azeez and Mahmood Zaki Abdullah. 2023. Performance analysis

of constrained application protocol (CoAP). AIP Conference Proceedings 2591, 1
(March 2023), 030074. https://doi.org/10.1063/5.0119584

[2] Mohammed El-hajj, Ahmad Fadlallah, Maroun Chamoun, and Ahmed Serhrouchni.
2019. A Survey of Internet of Things (IoT) Authentication Schemes. Sensors
19, 5 (Jan. 2019), 1141. https://doi.org/10.3390/s19051141 Number: 5 Publisher:
Multidisciplinary Digital Publishing Institute.

[3] Y. Guaman, G. Ninahualpa, G. Salazar, and T. Guarda. 2020. Comparative Perfor-
mance Analysis between MQTT and CoAP Protocols for IoT with Raspberry PI 3
in IEEE 802.11 Environments, Vol. 2020-June. https://doi.org/10.23919/CISTI49556.
2020.9140905 ISSN: 2166-0727.

[4] C. P. Kruger and G. P. Hancke. 2014. Benchmarking Internet of things devices. In
2014 12th IEEE International Conference on Industrial Informatics (INDIN). 611–616.
https://doi.org/10.1109/INDIN.2014.6945583 ISSN: 2378-363X.

[5] N. Naik. 2017. Choice of e�ective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. https://doi.org/10.1109/SysEng.2017.8088251

[6] R.A. Rahman and B. Shah. 2016. Security analysis of IoT protocols: A focus in
CoAP. 172–178. https://doi.org/10.1109/ICBDSC.2016.7460363

[7] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The Constrained Application
Protocol (CoAP). Request for Comments RFC 7252. Internet Engineering Task Force.
https://doi.org/10.17487/RFC7252 Num Pages: 112.

[8] JohannWestphall, Leandro Lo�, CarlaMerkleWestphall, and Jean EversonMartina.
2020. CoAP + DTLS: A Comprehensive Overview of Cryptographic Performance
on an IOT Scenario. In 2020 IEEE Sensors Applications Symposium (SAS). 1–6. https:
//doi.org/10.1109/SAS48726.2020.9220033

7


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Hardware
	3.2 Software
	3.3 Setup

	4 Security Analysis
	4.1 Threat Modeling
	4.2 Integrity
	4.3 Availability
	4.4 Practical Testing

	5 Performance Analysis
	6 Conclusion
	6.1 Limitations
	6.2 Future Work
	6.3 Use of AI

	References

