
Investigating batch execution of random forests using TL2cgen
Alexander Fourie

University of Twente

Abstract—Random forests are one of the most widely

used machine learning methods that allow for high

interoperability and explainability. They make up for

where the standard decision tree falls short, namely in the

cases of over fitting, poor generalization, and better

handling of outliers and noise. In addition, they are

powerful tools that can be used to solve a variety of non-

linear classification and regression problems. Their

applications extend to the domains of healthcare, finance,

marketing, and data mining. In an effort to enable C++

applications to store and exchange tree based models,

researchers developed Treelite and its sub-module

TL2cgen. These libraries allow for minimal code

duplication and for models to be stored in a platform

independent format. In this project the focus has been

placed on investigating and analysing the runtime for

generating predictions for random forests using TL2cgen

and Treelite, with an emphasis on the former. The results

show that the thread pool implementation of Treelite is not

the governing factor in its superior runtime to TL2cgen.

1. INTRODUCTION

TL2cgen (Treelite 2 C GENerator) is a model compiler

for decision tree models. Using this software, developers are

equipped with the ability to convert any decision tree model

such as random forests and gradient boosting models into an

optimized and platform independent if-else tree in C which

can be distributed as a native binary [2]. TL2cgen integrates

a submodule called Treelite, which is a lightweight library

that enables C++ applications to exchange and store decision

tree forests either on the disk or on a network. It supports

conversion from tree models built in the following libraries,

XGBoost, Scikit-learn, and LightGBM to a common

specification that can be exchanged and used by C++

applications [2]. It may be the case that these applications

wish to exchange trees or share them with a central server that

performs read and write operations on these trees. Such a

server using Treelite or TL2cgen, can take the tree models

built in applications using any one of the above tree model

libraries into a common specification that it can use to

perform operations such as making predictions and making

modifications. In addition, since no external libraries are used

in the compiled C code generated by TL2cgen, devices with

memory constraints can execute raw C code thus not needing

to install any of the tree model libraries. To make predictions

for a given batch of inputs, Treelite uses custom thread pools

where parallelism is utilized to feed these inputs into a tree

ensemble [1]. TL2cgen however uses OpenMP instead of

custom thread pools to parallelize the prediction process. The

justification for using OpenMP comes from a claim from the

original developer stating that thread pools are hard to

maintain and might add unwanted complexity for future

developers. This research provides an extensive analysis on

the impact of the aforementioned parallelization techniques

on Treelite and TL2cgen .

2. PROBLEM STATEMENT

A GitHub issue [1] shows that TL2cgen is slower than

Treelite. It was found that Treelite spawns more threads and

utilizes a greater percentage of the CPUs logical processors as

opposed to TL2cgen which uses about a factor of two less.

The conversation on the GitHub issue asserted that the

runtime of TL2cgen might be due to its parallelization

scheme. This paper investigates this issue with a more

detailed analysis to determine whether TL2cgen is indeed

slower than Treelite.

2.1. Research Questions

The problem defined above leads to the following

research question: Given a pre-trained random forest, to what

extent do custom thread pools influence batch execution of if-

else trees generated by TL2cgen? Which can be answered by

answering the following sub questions:

1) How does the execution efficiency of custom thread pools

in Treelite compare to that of OpenMP in TL2cgen?

2) How does the implementation of custom thread pools affect

the runtime and CPU usage of TL2cgen?

3. BACKGROUND

3.1. Decision Trees and Random Forests

It is important to recognize that machine learning

extends beyond the space of deep learning. While deep

learning models provide solutions to speech recognition,

object detection, natural language processing, and fraud

detection [4], their architectures tend to be large and complex,

making them hard to explain and interpret [9]. Another type

of machine learning model is the decision tree, which

addresses some of the pit falls of deep learning. Specifically,

decision trees can accept categorical and continuous data as

an input, are less computationally intensive, require less data

for training, and typically do not require data normalization

such as one-hot encoding or feature scaling [13]. Despite

these advantages, decision trees suffer from over-fitting

causing the model to generalize poorly [13]. To counter over-

fitting, random forests were developed to capture the

underlying patterns in the data, rather than memorizing it [12].

In essence, a random forest is a collection of decision trees

that were built from the original data set [12] .

3.2. Treelite and TL2cgen Implementations

The problem statement and following research

questions ponder the influence of thread pools on the runtime

of TL2cgen. This paper will present an algorithm to

potentially improve the runtime of TL2cgen and possibly

even Treelite. The nature of the algorithm relies on how the

Treelite thread pool implementation works, therefore when

presenting the algorithm, an understanding of Treelite is

required. The OpenMP implementation for TL2cgen is a

central part of this research and since it is compared to

Treelite, its only logical to explain how it works, what it is

and what it looks like in code. Understanding both these

implementations will aid in explaining the resulting runtimes

and CPU usages. TL2cgen uses OpenMP which is an

application programming interface (API) that supports shared

memory multiprocessing programming by specifying

compiler directives that will spawn threads before the target

code block executes. Treelite makes use of a custom thread

pool implementation where a fixed number of threads are

spawned and execute tasks whenever they become available.

3.2.1. TL2cgen OpenMP Implementation

Before doing any parallel inference, TL2cgen first

determines how many threads need to be spawned. This

number is the minimum between the number of rows in the

input for which predictions need to be made and the number

of logical processors that the host device has. So twenty

logical processors and one-hundred and fifty rows will result

in twenty threads being spawned, and any number of rows less

than twenty will result in that many threads being spawned.

Once this number is determined, TL2cgen splits the input data

into batches of at most equal size and assigns each thread a

start and end index for which it will make predictions. Listing

1 shows how TL2cgen calls the ParallelFor function which

will parallelise the lambda function containing the prediction

function.

 Listing 1: Code snippet for ParallelFor function call

Listing 2 shows a snippet from the ParallelFor function that

parallelises the lambda function above. It supports static,

dynamic, guided, and auto scheduling, but static is the default.

If a chunk size is not specified then each thread will be

assigned one iteration to execute of the for loop, otherwise

each thread will execute several iterations equal to the

specified chunk [10] .

Listing 2: OpenMP usage with static scheduling

3.2.2. Treelite thread pool implementation

As mentioned before, Treelite implements a custom

thread pool to make parallelised predictions. This requires an

understanding of the nature of thread pools themselves. A

thread pool is a group of pre-spawned threads that are

continuously waiting for tasks to arrive through some data

structure, typically a queue [15]. The main idea behind thread

pools is that instead of incurring overhead by creating and

destroying a thread every time a task comes in, a fixed number

of threads are spawned and are only destroyed when all the

tasks are completed [15]. Treelite defines a vector of threads

each executing its own lambda function. Unlike TL2cgen

who uses OpenMP to spawn threads whenever the prediction

function is called (through the C++ API) in a Python program,

Treelite creates the threads when the predictor object is

instantiated. This means that whenever a Python program

calls the predict function, it will always use the same threads

created by the predictor object. According to the original

developer of Treelite and TL2cgen, this reduces the potential

overhead of creating and destroying threads [1].

The lambda function contains a loop that will continue trying

to pop a task from a local single producer-single-consumer

(SPSC) queue. Once the main thread submits a task to the

queue, the waiting thread will pop the task, execute it, and

push the result to another SPSC queue that stores the output

of the task. Once the main thread has submitted all the tasks

it will start trying to pop results off from the output queue that

get used later in the program. The synchronisation between

the pushing and popping from queues is not trivial, and for

more efficiency, is made to be lock free and atomic. While

locks are generally straightforward to use and understand,

they introduce overhead due to the CPU needing to allocate

memory for storing the lock, manage the creation and

destruction of locks, and handle the acquisition and release

processes [11]. What makes atomic operations complicated is

the notion of program order. When executing an arbitrary

program, it is expected that statements and operations happen

in the order they are written. However, each line is susceptible

to the compiler reordering it for improved program execution

efficiency while still ensuring the program has the intended

output [15]. Furthermore, there may be several orderings that

still give the same output, for instance Listing 3 and Listing 4

both give the same output despite their program order being

different.

Listing 3: Program order example 1

Listing 4: Program order example 2

When dealing with multiple threads who are each running

their own process, the goal is to ensure that the orderings of a

program executed by one thread does not invalidate the output

of another process. For example “flag” and “message” being

swapped in thread 1 wont effect the output, however it will

influence the output of thread 2 who will either see “ ”

(assumed initial value of “message”) or “Hello world”

depending on where ”flag” is in the program execution.

 Listing 5: Code fragment for thread 1

Listing 6: Code fragment for thread 2

With regards to how this relates to the implementation of

Treelite, there are two central functions that allow for

synchronised popping and pushing, namely “enqueue” and

“pop”. Before discussing these functions its important to note

that pushing happens at the tail of the queue, and popping

happens at the head. When an item is pushed, the tail is

incremented and points to the next available slot, the same

happens for the head. The queue implementation is not

specific to Treelite and may be used in other applications.

Therefore, for purpose of correct implementation, it may

happen that a many pop or enqueue operations are executed,

and since the size of the buffer is finite, the head may catch

up to the tail (or vice versa). When the head and tail indices

are equal, then the queue is said to be empty. If the next tail

index (modulo the size) is equal to the head index, then the

queue is said to be full.

Listing 7: SPSC Queue enqueue function

Starting with the enqueue function, its clear that this function

pushes an item to the queue. When an item is pushed, the

function first needs to obtain the current tail. When dealing

with shared atomic variables, the notion of memory order as

mentioned before, becomes important. There are four main

memory tags available, relaxed, acquire, release, and

sequential consistency (default) [6]. The relaxed tag implies

that the operation is simply atomic, there is no

synchronisation between threads [6]. In the case where the

main thread pushes and a worker thread pops, then the main

thread uses the relaxed tag to get the tail since no other thread

is modifying it, hence no synchronisation is needed. The same

can be said for the case where a worker thread is pushing, and

the main thread is popping.

The memory orders acquire, and release are used in pairs,

where acquire is used on loads and release on stores. So, when

one thread performs a store and another thread performs a

load on the same variable, the compiler will ensure that the

store happens before the load [6]. Hence using these together

provides thread synchronisation. In addition, release ensures

that all operations before are guaranteed to happen before,

preventing the compiler from reordering the code. The same

can be said for acquire except everything after is guaranteed

to happen after [6]. It should thus be clear that the acquire

when loading the head is done so that when another thread is

done popping (modifying the head), then the load will receive

the latest value. The same is true for the release when storing

the tail. It ensures that a thread that wants to load the tail in

the pop function will see the latest store performed in the

enqueue function.

Listing 8: SPSC Queue pop function

When entering the pop function, the thread will enter a for

loop, which simulates a spinlock, to prevent it from going to

sleep, since waking up a thread may incur overhead. The idea

behind is spinlock is busy-waiting, where a thread will check

if the lock is available or not instead of going to sleep and

waiting for a notify. In this case, the thread will repeatedly

check if there are any pending tasks to complete. If there is a

task, the thread will atomically decrement the task count and

wait for a kill signal or continue with popping if the number

of pending tasks is zero or has gone up due to a push

operation. The thread will first check if it should terminate, if

not then it will proceed with the popping operation where it

increments the head only if the current head index is less than

the current tail index.

4. METHOD

The approach to answering the presented research

questions will involve several systematic steps. First the

problem statement will be verified, followed by defining test

cases for assessing performance and providing an overview

of the tools used.

4.1. Replicating GitHub Issue

Before collecting any data, it is important to verify the

problem and reaffirm that it indeed is a problem to be

explored and not a result of the hardware the initial test case

was run on.

Table 1: Replicated issue and original issue runtimes

Repl.TL2cgen TL2cgen Repl.Treelite Treelite

0.152 0.021 0.024 0.012

While the initial GitHub issue shows that Treelite is about

twice as fast as TL2cgen, the replicated issue shows that

Treelite is about six times as fast as TL2cgen. Its evident that

this is not enough to conclude that Treelite is faster than

TL2cgen in all cases. From this small sample alone, it is

impossible to know whether Treelite is superior to TL2cgen

in all circumstances, and it will be shown that this is indeed

not the case.

4.2. Data Collection

Assessing the influence of thread pools on the runtime of

TL2cgen and evaluating its current performance using

OpenMP requires several test cases to be defined. A test case

is defined as a 3-tuple (𝐶, 𝐷, 𝑇) where 𝐶 is a configuration

from either TL2cgen or Treelite, and 𝐷 is a set of datasets for

which the configuration must perform task 𝑇. Table 2 shows

the breakdown of these test cases.

For each data set 𝐷𝑖 from 𝐷 in (𝐶, 𝐷, 𝑇), configuration 𝐶

will be executed for each of the random forest sizes taken

from the following set:

{1, 20, 40, 60, 80, 100, 200, 500, 1000, 1200, 1500, 2000}

Where the depth of each decision tree in the random forest is

capped at five. For each tree size, the program will make 700

predictions instead of just one. The reason for this is because

the time for a single prediction is shown as zero but is some

value of the order 10e-5. Values this small would make

comparison between Treelite and TL2cgen more difficult.

Note that the GitHub issue did the same except with 1000

predictions. But since this research works with much larger

test cases, a reduced number of iterations was chosen.

Table 3: Dataset properties, C = Classification,

R = Regression

Dataset Task #Samples #Classes #Attributes

Iris C 150 3 4

Digits C 1797 10 64

Wine C 178 3 13

Cl.Custom1 C 750 10 100

Cl.Custom2 C 1500 10 100

Cl.Custom3 C 3000 10 100

Cl.Custom4 C 6000 10 100

Diabetes R 442 - 10

California

Housing

R 20640 - 8

Re.Custom1 R 750 - 100

Re.Custom2 R 1500 - 100

Re.Custom3 R 3000 - 100

Re.Custom4 R 6000 - 100

4.3. Tools

This project will require several pieces of hardware and

software. Below is a detailed deconstruction of the necessary

components.

4.3.1. Versions

 Given that the versions of TL2cgen and Treelite in the

original GitHub issue were 0.3.1 and 3.9.0 respectively, the

same will be used for this project. For loading data sets scikit-

learn 1.4.2 will be used. The data sets to be loaded are Iris,

Wine, Diabetes, Digits, California Housing, four custom

classification tasks, and four custom regression tasks. The

custom tasks will be made using sklearn.datasets for building

the custom dataset and sklearn.ensemble to build a

RandomForestClassifier and a RandomForestRegressor.

4.3.2. Hardware

 All the testing and programming will be done on an

13th Gen Intel i7 with 16GB of RAM and with 14 cores and

20 logical processors. This means that there can be 20

threads running concurrently.

Table 2: Test case breakdown, C = Classification, R =

Regression

𝐶 𝐷 𝑇

TL2cgen

OpenMP

{Iris, Wine, Digits, Cl.Custom1,

Cl.Custom2, Cl.Custom3,

Cl.Custom4}

C

{Diabetes, California Housing,

Re.Custom1, Re.Custom2,

Re.Custom3, Re.Custom4}

R

Treelite

thread pool

{Iris, Wine, Digits, Cl.Custom1,

Cl.Custom2, Cl.Custom3,

Cl.Custom4}

C

{Diabetes, California Housing,

Re.Custom1, Re.Custom2,

Re.Custom3, Re.Custom4}

R

TL2cgen

copied

thread pool

{Iris, Wine, Digits, Cl.Custom1,

Cl.Custom2, Cl.Custom3,

Cl.Custom4}

C

{Diabetes, California Housing,

Re.Custom1, Re.Custom2,

Re.Custom3, Re.Custom4}

R

Treelite

copied

OpenMP

{Iris, Wine, Digits, Cl.Custom1,

Cl.Custom2, Cl.Custom3,

Cl.Custom4}

C

{Diabetes, California Housing,

Re.Custom1, Re.Custom2,

Re.Custom3, Re.Custom4}

R

4.3.3. Software

 On top of using Treelite and TL2cgen, the Microsoft

Visual Studio Integrated Development Environment (IDE)

version 17.9.6 will be used for all the programming related

tasks. For collecting CPU usage data, the built in Microsoft

Visual Studio Diagnostic Tool will be used. This tool can

monitor the CPU usage, memory usage and provide a

detailed function call stack overview.

5. RESULTS

5.1. Runtime Data

Table 4: Runtime table for Iris dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.069 0.016 0.134 0.091

20 0.07 0.023 0.07 0.086

40 0.072 0.023 0.141 0.106

60 0.061 0.025 0.137 0.119

80 0.058 0.022 0.151 0.096

100 0.067 0.029 0.151 0.093

200 0.068 0.035 0.148 0.108

500 0.083 0.061 0.178 0.111

1000 0.161 0.123 0.238 0.171

1200 0.197 0.168 0.265 0.237

1500 0.287 0.212 0.311 0.284

2000 0.385 0.330 0.419 0.394

Table 5: Runtime table for Wine dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.058 0.016 0.143 0.096

20 0.066 0.021 0.152 0.098

40 0.07 0.02 0.145 0.100

60 0.065 0.022 0.146 0.107

80 0.070 0.026 0.145 0.103

100 0.072 0.033 0.151 0.103

200 0.077 0.045 0.179 0.112

500 0.133 0.118 0.226 0.213

1000 0.355 0.284 0.496 0.409

1200 0.418 0.370 0.498 0.472

1500 0.558 0.493 0.562 0.566

2000 0.677 0.790 0.733 0.823

Table 6: Runtime table for Diabetes dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.068 0.016 0.140 0.099

20 0.073 0.022 0.147 0.108

40 0.072 0.031 0.151 0.110

60 0.094 0.053 0.172 0.121

80 0.109 0.076 0.202 0.145

100 0.116 0.087 0.216 0.166

200 0.285 0.229 0.345 0.319

500 0.715 0.733 0.770 0.768

1000 1.670 1.927 1.441 2.004

1200 2.139 2.529 1.967 2.593

1500 2.884 3.473 2.509 3.489

2000 4.043 4.736 3.318 4.745

Table 7: Runtime table for Digits dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.193 0.050 0.254 0.192

20 0.225 0.098 0.29 0.251

40 0.273 0.182 0.455 0.355

60 0.448 0.335 0.548 0.459

80 0.511 0.431 0.659 0.579

100 0.572 0.520 0.629 0.695

200 1.132 1.128 1.270 1.219

500 3.799 3.836 3.015 4.07

1000 8.273 11.367 7.84 11.117

1200 11.088 13.924 10.052 13.689

1500 12.358 15.189 12.091 12.542

2000 16.413 16.914 15.533 17.224

Table 8: Runtime table for Housing dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.232 0.081 0.356 0.288

20 0.414 0.277 0.559 0.485

40 0.625 0.513 0.779 0.706

60 0.835 0.818 1.154 1.014

80 1.155 1.111 1.408 1.35

100 1.423 1.497 1.675 1.751

200 3.764 3.697 3.796 4.012

500 12.486 12.316 12.089 12.254

1000 33.282 31.293 29.668 30.704

1200 46.338 41.868 39.969 40.405

1500 63.663 61.475 59.969 58.911

2000 98.518 92.948 89.769 90.154

Table 9: Runtime table for Re.Custom3 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.315 0.089 0.324 0.343

20 0.395 0.134 0.397 0.412

40 0.443 0.226 0.455 0.518

60 0.650 0.354 0.629 0.673

80 0.754 0.484 0.663 0.804

100 0.774 0.664 0.870 0.965

200 1.615 1.504 1.619 1.846

500 4.064 4.714 4.182 4.448

1000 8.866 9.580 8.510 8.766

1200 13.257 12.782 11.504 11.839

1500 15.911 16.565 15.021 15.294

2000 21.13 22.998 20.39 20.483

Table 10: Runtime table for Re.Custom4 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.456 0.156 0.485 0.567

20 0.612 0.248 0.611 0.697

40 0.740 0.445 0.768 0.875

60 0.987 0.780 0.913 1.189

80 1.250 1.026 1.194 1.485

100 1.546 1.367 1.469 1.793

200 2.989 2.953 2.998 3.605

500 7.755 8.430 7.624 8.061

1000 19.720 19.466 20.617 19.243

1200 24.690 25.406 24.411 25.466

1500 31.439 32.259 32.261 30.856

2000 42.024 42.925 42.470 42.996

Table 11: Runtime table for Re.Custom2 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.259 0.061 0.280 0.222

20 0.308 0.092 0.296 0.265

40 0.282 0.154 0.328 0.325

60 0.436 0.226 0.408 0.403

80 0.438 0.321 0.608 0.504

100 0.572 0.386 0.584 0.571

200 1.038 0.821 1.200 1.034

500 2.268 2.448 3.081 2.509

1000 5.703 6.846 6.307 8.160

1200 7.190 8.860 8.202 9.444

1500 12.309 12.370 10.068 13.602

2000 11.731 13.397 13.509 18.841

Table 12: Runtime table for Re.Custom1 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.175 0.041 0.265 0.386

20 0.200 0.063 0.264 0.168

40 0.250 0.086 0.297 0.212

60 0.285 0.128 0.352 0.242

80 0.320 0.160 0.343 0.273

100 0.396 0.208 0.408 0.332

200 0.567 0.426 0.639 0.561

500 1.320 1.278 1.496 1.414

1000 2.789 2.942 3.097 3.178

1200 3.381 3.531 4.050 4.079

1500 4.305 4.677 5.002 5.324

2000 7.044 6.542 7.163 8.535

Table 13: Runtime table for Cl.Custom1 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.187 0.041 0.224 0.164

20 0.206 0.063 0.232 0.195

40 0.279 0.086 0.280 0.269

60 0.324 0.128 0.408 0.347

80 0.410 0.160 0.384 0.411

100 0.344 0.208 0.464 0.416

200 0.623 0.426 0.744 0.676

500 1.391 1.278 1.616 1.716

1000 3.636 2.942 4.698 4.992

1200 4.665 3.531 5.858 6.515

1500 5.622 4.677 7.402 8.456

2000 7.813 6.542 10.140 11.423

Table 14: Runtime table for Cl.Custom2 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.266 0.071 0.304 0.240

20 0.338 0.120 0.400 0.296

40 0.450 0.209 0.520 0.420

60 0.397 0.334 0.616 0.512

80 0.498 0.396 0.616 0.622

100 0.595 0.501 0.840 0.651

200 1.053 1.049 1.248 1.212

500 2.820 3.362 3.553 3.670

1000 7.313 8.838 9.836 10.252

1200 8.815 11.453 11.685 13.050

1500 11.325 14.161 14.861 16.031

2000 15.787 17.583 20.129 22.632

Table 15: Runtime table for Cl.Custom3 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.329 0.107 0.432 0.393

20 0.431 0.263 0.632 0.506

40 0.606 0.436 0.744 0.798

60 1.017 0.636 1.024 0.953

80 0.958 0.839 1.176 1.178

100 1.100 1.045 1.296 1.380

200 2.236 1.994 2.352 2.470

500 5.593 7.151 6.970 8.082

1000 15.202 19.050 20.662 21.790

1200 18.629 23.644 24.332 27.084

1500 23.509 30.063 30.802 31.308

2000 33.063 41.571 43.488 45.564

Table 16: Runtime table for Cl.Custom4 dataset

#Trees TL2cgen

OpenMP

Treelite

thread

pool

TL2cgen

copied

thread

pool

Treelite

copied

OpenMP

1 0.521 0.169 0.656 0.659

20 0.717 0.368 0.944 0.946

40 1.148 0.752 1.488 1.307

60 1.563 1.104 2.072 1.795

80 1.706 1.472 2.160 2.170

100 2.004 1.701 2.456 2.510

200 3.546 3.778 4.233 4.579

500 10.976 11.984 11.819 14.357

1000 30.589 36.659 31.367 32.658

1200 36.011 42.658 37.786 37.784

1500 46.250 51.924 51.314 48.086

2000 64.884 71.037 72.738 68.085

5.2. CPU Usage Data

Table 17: CPU usage table for Iris dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

 1 9.62 10.75 36.28 7.54

20 10.39 14.24 40.11 8.70

40 9.44 23.81 40.97 9.36

60 9.79 22.47 34.00 7.91

80 9.93 21.56 36.36 8.16

100 10.08 19.09 41.04 7.82

200 10.72 20.21 35.38 7.26

500 13.06 19.80 36.52 8.57

1000 17.43 24.76 37.81 10.73

1200 17.28 24.73 44.04 13.79

1500 18.04 28.04 41.01 14.62

2000 20.80 29.95 44.67 17.28

Table 18: CPU usage table for Wine dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 9.19 24.43 41.61 9.59

20 10.76 21.33 37.29 7.60

40 10.28 24.40 37.55 7.22

60 9.74 27.72 43.23 10.62

80 9.73 23.45 40.11 8.05

100 11.00 24.38 40.09 7.82

200 12.76 18.16 51.54 5.90

500 13.47 31.75 37.22 13.14

1000 25.21 36.28 49.18 15.98

1200 26.31 36.95 44.49 21.24

1500 26.90 35.17 46.16 23.39

2000 28.48 39.51 46.80 22.11

Table 19: CPU usage table for Diabetes dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 9.11 22.75 42.43 9.37

20 10.82 29.29 41.00 7.50

40 8.41 37.38 41.68 10.51

60 12.07 28.08 49.35 10.94

80 15.33 30.05 53.84 7.72

100 12.38 31.45 43.23 10.34

200 22.12 34.54 45.49 20.61

500 31.14 39.36 44.25 26.36

1000 36.96 38.78 41.08 30.13

1200 37.63 41.55 44.95 29.60

1500 33.24 49.67 48.47 29.13

2000 43.28 52.29 62.13 19.73

Table 20: CPU usage table for Digits dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 20.50 17.19 41.98 15.84

20 21.15 25.76 50.62 19.96

40 28.02 31.43 45.24 22.23

60 27.57 35.06 51.85 23.60

80 29.38 34.10 51.05 24.53

100 31.93 34.86 48.20 26.55

200 36.11 39.40 47.95 29.69

500 36.83 46.88 46.51 34.12

1000 49.00 33.19 48.51 38.39

1200 40.48 43.32 46.39 34.34

1500 43.78 47.38 47.50 39.74

2000 55.06 33.14 53.65 33.68

Table 21: CPU usage table for California Housing dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 27.91 21.12 54.36 19.65

20 29.85 29.28 46.09 26.26

40 31.00 34.79 45.58 24.94

60 30.45 36.59 42.94 27.56

80 31.43 36.72 41.58 27.15

100 31.18 38.49 44.34 29.13

200 33.67 42.34 50.20 28.04

500 34.31 45.82 49.33 31.78

1000 41.03 42.56 49.42 34.61

1200 41.51 45.14 56.26 31.34

1500 57.88 24.88 66.52 25.27

2000 54.96 29.75 60.86 29.75

Table 22: CPU usage table for Re.Cusomt4 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 41.17 20.05 43.70 28.13

20 30.28 18.05 38.79 25.32

40 25.84 21.34 36.97 20.56

60 28.64 25.93 37.34 21.26

80 24.09 23.37 34.40 22.01

100 24.32 24.75 32.50 20.63

200 24.28 26.03 33.95 22.55

500

1000

1200

1500

2000

Table 23: CPU usage table for Re.Cusomt3 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 34.91 10.70 46.07 23.66

20 27.03 14.56 39.65 20.26

40 22.48 16.70 38.83 19.03

60 25.27 21.96 37.29 19.29

80 25.51 26.40 34.83 20.86

100 24.71 27.06 33.04 19.81

200 25.45 30.07 34.68 22.10

500 27.14 35.34 35.04 22.97

1000

1200

1500

2000

Table 24: CPU usage table for Re.Cusomt2 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 28.80 21.61 48.00 19.31

20 21.25 22.28 38.19 20.06

40 19.67 23.21 36.13 19.36

60 21.65 24.53 35.19 16.69

80 22.78 24.59 37.37 20.29

100 22.46 27.24 35.97 19.44

200 24.56 30.92 37.31 20.87

500 26.63 35.28 35.00 24.59

1000 30.46 38.49 43.57 22.81

1200 31.15 38.87 39.46 28.61

1500 29.86 42.51 40.89 25.74

2000

Table 25: CPU usage table for Re.Cusomt1 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 17.11 22.78 40.33 13.61

20 18.30 18.74 38.37 15.39

40 15.06 24.63 38.81 14.40

60 17.40 13.19 43.25 11.97

80 15.70 24.37 36.82 16.32

100 16.74 25.28 40.27 19.39

200 21.58 27.97 37.20 21.18

500 24.68 33.26 36.27 24.18

1000 27.82 37.92 40.02 25.07

1200 28.43 39.15 39.07 27.18

1500 29.38 39.37 35.67 27.42

2000 29.02 39.92 40.61 27.56

Table 26: CPU usage table for Cl.Cusomt1 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 44.46 22.10 49.97 25.44

20 38.62 28.77 46.23 29.41

40 35.76 37.83 46.72 29.53

60 36.64 35.91 45.29 29.86

80 37.25 38.72 44.29 31.44

100 36.64 40.08 47.61 30.28

200 37.11 42.25 47.58 32.45

500 37.54 47.50 55.93 29.70

1000 37.70 50.92 58.62 28.80

1200 36.80 53.34 54.80 33.54

1500 42.79 47.35 60.92 29.19

2000 40.68 49.50 55.01 34.98

Table 27: CPU usage table for Cl.Cusomt2 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 30.32 16.85 53.91 19.57

20 32.90 20.35 47.52 24.67

40 34.36 28.58 52.47 25.78

60 33.71 32.56 52.78 26.78

80 34.85 38.93 47.66 28.95

100 34.51 38.90 47.96 29.02

200 34.62 44.20 46.13 31.47

500 38.16 46.52 48.23 33.10

1000 37.49 51.31 48.37 35.86

1200 37.69 51.66 49.62 37.14

1500 38.35 50.27 60.68 27.38

2000 39.90 49.72

Table 28: CPU usage table for Cl.Cusomt3 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 19.64 13.43 36.82 13.01

20 17.63 25.35 36.23 13.91

40 22.25 23.49 37.24 16.49

60 24.06 31.91 42.75 16.69

80 27.51 32.37 42.61 21.33

100 25.15 31.13 42.88 23.05

200 29.73 35.30 44.81 24.81

500 33.42 43.69 45.10 28.51

1000 35.35 49.06 47.64 31.21

1200 36.16 47.83 47.65 31.71

1500 38.48 47.49 42.70 35.17

2000 38.42 48.42 44.02 34.22

Table 29: CPU usage table for Cl.Cusom4 dataset

#Trees TL2cgen

OpenMP

Treelite

Thread

Pool

TL2cgen

Copied

Thread Pool

Treelite

Copied

OpenMP

1 24.57 13.08 43.63 16.43

20 23.51 25.49 40.52 19.95

40 23.97 33.29 45.76 20.65

60 26.27 37.13 44.35 25.72

80 30.45 31.98 39.54 25.71

100 29.17 37.20 48.53 23.62

200 32.61 39.35 47.19 27.44

500 35.06 45.91 47.11 30.83

1000 36.37 48.21 48.57 31.86

1200 38.65 48.69 48.75 30.75

1500 37.59 49.85 50.72 31.06

2000 35.36 53.40 55.06 29.58

6. DISCUSSION

6.1. Runtimes

Considering the performance of the test cases with

regards to the Iris dataset shown in Table 4, the thread pool

implementation of Treelite had the best runtime for all entries.

While the initial GitHub issue showed that Treelite was twice

as fast as TL2cgen, it is evident that this relationship is

inconsistent with the data. With a random forest with only one

decision tree, Treelite showed to be about 4.31 times faster

than TL2cgen. However, as the number of decision trees starts

to increase, the performance difference begins to blur,

showing that Treelite and TL2cgen do not vary much. When

looking at whether the thread pool from Treelite improves the

performance of TL2cgen, it appears that it performs

marginally worse. It is expected that more decision trees will

once again cause this performance difference to become

negligible. On the flip side, Treelite with the OpenMP

implementation also performs slightly worse but still better

than TL2cgen with a thread pool. Table 5 shows that all

configurations are once again similar in runtime for the largest

number of decision trees, and that Treelite is a few times faster

than the rest for a small number of decision trees (< 200).

Looking at the slightly larger datasets, Tables 6 and 7 show

that TL2cgen with a thread pool slightly outperformed the

other cases for the larger random forests, even though both

Treelite and the original TL2cgen implementation were many

times faster for a single decision tree. The pattern where

Treelite starts off being noticeably faster than all the other

cases is a recurring one (and aligns with the GitHub issue),

but as the size of the data sets grow, as shown in Table 8

(largest dataset), all the cases show negligible differences in

performance. Another good example of this is shown by the

custom datasets whose runtimes are shown in Tables 9 – 16,

where the number of samples are 750, 1500, 3000, and 6000

where the number of attributes remained at 100. Already at a

random forest size of 100 do incrementing sample sizes show

a linear relationship, suggesting that by scaling the size of the

dataset, the runtime will scale by a similar factor independent

of how the parallelization scheme of TL2cgen and Treelite are

configured. These observations remain consistent for Tables.

6.2. CPU Usage

When the program is executed with the Microsoft Visual

Studio Diagnostic Tool (DT) enabled, it will take snapshots of

a functions execution to provide an estimate of how much

time the CPU spent executing it. The number of snapshots per

unit time is called the sample rate and was set to a value of

4000 samples per second. For each dataset and for each tree

count 𝑁 the program was executed for a pair of configurations

(𝐶𝑖 , 𝐶𝑖+1):

1) 𝐶1 = (𝑇𝐿2𝐶𝑔𝑒𝑛 𝑂𝑝𝑒𝑛𝑀𝑃, 𝐷𝑖 , 𝑁)

2) 𝐶2 = (𝑇𝑟𝑒𝑒𝑙𝑖𝑡𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑜𝑜𝑙, 𝐷𝑖 , 𝑁)

3) 𝐶3 = (𝑇𝐿2𝐶𝑔𝑒𝑛 𝐶𝑜𝑝𝑖𝑒𝑑 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑜𝑜𝑙, 𝐷𝑖 , 𝑁)

4) 𝐶4 = (𝑇𝑟𝑒𝑒𝑙𝑖𝑡𝑒 𝐶𝑜𝑝𝑖𝑒𝑑 𝑂𝑝𝑒𝑛𝑀𝑃, 𝐷𝑖 , 𝑁)

Its important to note that configuration pair (𝐶1, 𝐶2) were

executed in sequence and in a separate execution as the other

pair, the same was done for (𝐶3, 𝐶4). The reason for this is so

then the DT could provide the percentage of time the CPU

spent executing the Treelite and TL2cgen configurations and

not mixed configurations.

A logical expectation for the CPU usage results would be that

Treelite spends a smaller percentage of CPU time and has a

faster runtime compared to TL2cgen, however the data

indicates that his is not always the case. At face value it

appears that generally, as the size of the data set increases,

then the CPU spends a larger percentage of time on execution

for both TL2cgen and Treelite. Additionally, for a given data

set, as the number of trees in a random forest increase, then

once again, the CPU spends a larger percentage of time on

execution. A deeper inspection of the data will show that the

percentage values do not converge and stabilize as

consistently as the runtimes do. For example, Table 19 in the

final row, the Treelite Copied OpenMP implementation used

between 2 and 3 times less CPU time compared to the others.

A similar case is true for Tables 17,18, and 21. While its clear

that the runtimes get larger for larger random forests, the same

cannot be said for the CPU usages.

In Tables 17 – 29 there is at least one case where the next CPU

usage percentage is smaller than the previous one. While it is

not of much interest if they differ by a few percentage points,

but decreasing by almost fifty percent is cause for

investigation. Table 21 illustrates this in the Treelite Thread

Pool column and at tree count 500 and 1500. On top of this,

the runtimes that map to Table 21 are Table 8, showing that

the CPU spent a smaller percentage of time on the case for

tree count 1500 as opposed to tree count 500, despite the

former having a much slower run time. Additionally for tree

count 2000 in Table 21, the TL2cgen Copied Thread Pool was

marginally faster but had a significantly higher CPU usage

percentage than the Treelite Thread Pool and the Treelite

Copied OpenMP implementations.

In Tables 17 – 29 it appears that when TL2cgen adopted the

custom thread pool from Treelite, the CPU usage percentage

in most cells tends to be significantly larger than the OpenMP

implementation. Why this is the case might have to do with

manually creating threads instead of having OpenMP manage

them as it is designed for parallel process management and

creation. The standard implementation for Treelite also tends

to have larger CPU percentages than the OpenMP

implementation from TL2cgen, however the significance is

not as large as when TL2cgen uses the thread pool. Tables 22,

23, 24, and 27 all have missing data. The reason for this is

because the DT adds overhead by taking samples of function

execution and thus increases the total execution time. The

overhead got so large that the program began to take too long

to complete.

The reason why these results are interesting is because the test

cases assume all else is constant, the only changes for a given

configuration are the number of trees, so at face value, the

CPU should dedicate a similar amount of time to all

components of the program. However, it was observed during

the data collection phase that an increasing amount of time

was spent compiling the model into a .dll file (larger random

forest). So it may be logical to assume that for a given

configuration pair (𝐶𝑖 , 𝐶𝑖+1), that if the T(𝐶𝑖) > 𝑇(𝐶𝑖+1)

where 𝑇 is some CPU usage function, and the actual

prediction runtimes are approximately the same, then the CPU

must have spent more time on other processes related to the

operation of 𝐶𝑖.

6.3. Custom Thread Pool Approach

Despite the data showing that the thread pool from

Treelite does not significantly influence the runtime of

TL2cgen, it is still interesting to explore other possible

parallelization schemes. The proposed scheme has not been

thoroughly tested and will require further investigation and

development, however if correctly implemented, it may

improve the runtimes of the current implementations in both

TL2cgen and Treelite. The algorithm does not deviate much

from what Treelite already does, it uses the same SPSC queue

and still has an input and output channel per thread for

popping and pushing tasks and their prediction results. Where

the proposed algorithm differs is in the structure of the tasks.

Specifically, Treelite currently pushes for a single thread a

single task containing a batch of inputs for which

corresponding predictions are to be made. Instead, the

algorithm will separate this batch into individual prediction

tasks, so a single task consisting of a batch of five inputs, will

now be stored as five individual tasks.

The motivation for this algorithm stems from the fact that if

multiple threads are spawned, its expected that these threads

will complete their tasks at different points in time. Since

initially, each thread only has a single task, a thread who

finishes its task quicker than the others will wait idly until it

is destroyed. The new algorithm suggests that a thread who is

finished with its tasks, may steal tasks from another thread to

make productive use of its time alive. The first action a thread

will take is to try and pop from the input queue. After a

successful pop, the thread will make a prediction for the given

input and store the result. The thread will keep track of the

tasks that it has completed and a variable to store the

accumulated prediction result.

Once a thread has completed all its tasks it then can

continuously steal and execute the tasks of the next thread

(thread id + 1). The steal function is the same as the pop

function except with the condition that the steal will fail if the

number of tasks in the victim thread queue is one. If the victim

thread only has one task left, then the stealing thread will

leave it. If there is more than one task, then the stealing thread

will atomically pop it from the queue of the victim. The

stealing thread will store the results from each prediction to a

variable and keep track of the number of tasks it has stolen.

Once the stealing thread can no longer steal, it will atomically

share the number of stolen tasks and result value with the

victim thread using an atomic store operation. Since the

victim thread will have at most one task remaining, it will be

able to pop this task and as usual increment its completed

count and current result value. The difference now is that the

number of stolen tasks may be larger than zero, in which case

it can load the stolen result and task count and update its own

values as if it were the one to have executed those tasks. At

this point the victim thread is finished with its tasks and may

begin stealing tasks.

Listing 9: Custom thread pool worker function

7. RELATED WORK

Given a random forest and an input vector for which a

prediction must be made, it might be that there are hundreds

or even thousands of decision trees in the random forest. It is

therefore reasonable to assume that generating predictions for

each tree sequentially is not as computationally and memory

efficient as opposed to using some form of parallel

computing. There has been ample research done in the domain

of improving the inference times of tree ensembles. One paper

investigated fast inference of tree ensembles on ARM devices

where they investigate the effects of using fixed point

quantization in random forests along with the architectural

differences between ARM and Intel CPUs [7]. Another paper

proposed solutions for making training of random forests

faster by efficiently finding split points [14]. Specifically, they

investigated accelerating the training process of Gradient

Boosted Decision Trees in the case where the outputs are

multidimensional. Here multidimensional output refers to

multiclass classification, multilabel classification, or

multioutput regression. A scoring function was developed to

find the best split of a decision tree. A similar paper was

written that implemented faster training using MABSplit,

which is a subroutine used to efficiently find split points [8].

A more related paper did research into a CUDA based

implementation of random forests. CUDA stands for

Compute Unified Device Architecture which is a C API that

gives direct access to the instruction set of the GPU and

allows developers to utilize the parallel computing

capabilities of said GPU [5]. What is interesting about this

paper is that their implementation parallelized both training

and classification, except it was directed towards GPUs.

While the use of GPUs is essential in applications that make

use of machine learning, not all such applications can make

use of one. Specifically, GPUs are expensive, resource

intensive, require a lot of computational power and memory

as opposed to embedded devices that only have a CPU. In

addition, TL2cgen compiles a model to an easy to work with

format that can be distributed amongst C++ applications. This

paper did not specify the model format or how it gets handled

in their program. Furthermore, they assigned each thread to a

tree for prediction, so if a random forest contains hundreds or

even thousands of trees, then the GPU spawns an equivalent

number of threads.

8. CONCLUSION

The problem addressed in this research was to find out if

TL2cgen was indeed slower than Treelite, and if it was, how

the influence of thread pools used in TL2cgen might affect the

runtime. The reason why thread pools were of interest was

because it was asserted in a conversation on a GitHub issue

that Treelite using custom thread pools might be the reason

for its superior performance. However, it was found that

TL2cgen is a few times worse than Treelite for a small number

of decision trees in a random forest and performs slightly

better or approximately the same for anything larger than

1000 trees. In addition, it was also uncovered that the initial

GitHub issue was misleading as it presented a single case for

which TL2cgen was slower, and that the reason for this was

due to not using thread pools, but turned out that the thread

pool from Treelite has very little influence on performance.

9. FUTURE WORK

There is still room for investigation, as the reason why

Treelite is superior to TL2cgen for small instances is still

unknown. Furthermore, while the CPU data presented

interesting results, a more detailed breakdown of the

respective libraries per function would make a good

exploration. Finally, reproducing the same or similar

experiments as the ones conducted in this research on

different architectures and operating systems would show if

Treelite or TL2cgen are optimised for different pieces of

hardware.

10. ACKNOWLEDGEMENTS

I would like to personally thank my supervisors, Dr.Kuan-

Hsun Chen and Duncan Bart for guiding me throughout this

research project and always being there if I needed any

assistance. I would also like to thank Philip.H.Cho for taking

the time to help me understand his work, answer my questions

and giving me pointers.

REFERENCES

[1] Cho, P.H. (2023) Why does it seem that TL2cgen is

slower than treelite_runtime? · issue #18 · DMLC/TL2cgen ,

GitHub. Available at: https://github.com/dmlc/TL2cgen

/issues/18 (Accessed: 30 June 2024).

[2] Cho, P.H.. 2023. “Treelite”.

https://github.com/dmlc/treelite/tree/release_3.9. (2024)

[3] Cho, P.H..2023. “TL2cgen ”.

https://github.com/dmlc/TL2cgen /tree/release_0.3. (2024)

[4] Coursera Staff (2024) 10 examples of Deep Learning

Applications, Coursera. Available at:

https://www.coursera.org/articles/deep-learning-applications

(Accessed: 30 June 2024).

[5] H. Grahn, N. Lavesson, M. H. Lapajne, and D. Slat,

“Cudarf: A cudabased implementation of random forests,” in

2011 9th IEEE/ACS International Conference on Computer

Systems and Applications (AICCSA), 2011, pp. 95–101.

[6] Humayun, Z. (2024) Atomics and concurrency in C++,

freeCodeCamp.org. Available at:

https://www.freecodecamp.org/news/atomics-and-

concurrency-in-cpp. (Accessed: 30 June 2024).

[7] L. M. Koschel, Buschjager, “Fast inference of tree

ensembles on arm devices,” arXiv:2305.08579, 2023.

[8] L. T. P. S. Z. Tiwari, Kang, “Mabsplit: Faster forest

training using multiarmed bandits,” arXiv:2212.07473,

2022.

[9] Molnar, C. (2020) Interpretable machine learning ; a

guide for making Black Box models explainable. Leanpub.

[10] OpenMP - scheduling(static, dynamic, guided, runtime,

auto) (no date) OpenMP - Scheduling(static, dynamic,

guided, runtime, auto) - Yiling’s Tech Zone | 风逝无殇的瞎

逼逼基地. Available at:

https://610yilingliu.github.io/2020/07/15/ScheduleinOpenM

P/ (Accessed: 30 June 2024).

[11] Ousterhout, J. and Mazières, D. (no date) Locks and

condition variables, Locks & Cond. Vars. Available at:

https://web.stanford.edu/~ouster/cs111-

spring21/lectures/locks/ (Accessed: 30 June 2024).

[12] scikit-learn developers (no date b) 1.11. ensembles:

Gradient boosting, random forests, bagging, voting,

stacking, scikit. Available at: https://scikit-

learn.org/stable/modules/ensemble.html#forest (Accessed:

30 June 2024).

[13] scikit-learn developers (no date) 1.10. decision trees,

scikit. Available at: https://scikit-

learn.org/stable/modules/tree.html (Accessed: 30 June

2024).

[14] V. Iosipoi, “Sketchboost: Fast gradient boosted decision

tree for multioutput problems,” arXiv:2211.12858, 2022.

[15] Williams, A. (2019) C++ concurrency in action, second

edition by Anthony Williams. S.l., Norwood, Mass.: Manning

Publications : distributed by Skillsoft Books.

