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Facial emotion recognition (FER) is among computer vision’s most complex
fields and has several practical uses in human-computer interaction (HCI)
and psychology. Currently, existing FER models are trained on datasets
dominated by a singular ethnicity, for instance, AffectNet [19]. AffectNet is
a widely used dataset for FER tasks with over 400,000 manually annotated
samples, and has 64.4% of its training data represented by White subjects
[3]. As a result, the accuracy is often limited when the model is deployed in
the real world, where the population is much more culturally diverse. This
research will investigate the impact of augmenting existing FER datasets
with EiLA (Emotions in LatAm Dataset), a newly curated emotion recog-
nition in-the-wild dataset consisting of video recordings of Latin American
populations and their facial expressions, on the accuracy and performance of
well-known FER models. The study begins with dataset preparation, where
different-sized portions of the EiLA dataset are integrated with two existing
FER datasets, to form larger datasets. Next, the integrated datasets are used
to train the chosen neural network, followed by testing and metrics evalua-
tion using ground truth labels from the EiLA dataset. Finally, the analysis of
results will be interpreted to determine whether augmenting the cultural
diversity of datasets positively impacts the efficacy of FER models.

Additional Key Words and Phrases: Facial emotion recognition (FER), Deep
convolutional neural networks (DCNN), computer vision, image analysis,
data processing

1 INTRODUCTION

Facial expressions and the showcase of emotions through body lan-
guage are significant in human interaction and contain 55% of the
emotional information communicated [18]. Facial expressions espe-
cially, carry a lot of information such as the emotions a person is
trying to convey [5]. Therefore, teaching machines to perceive and
interpret human body language effectively, has become a pivotal
task in human-computer interaction (HCI).

The interpretation of facial emotions is significantly affected by
the cultural background of an individual [8]. A facial emotion recog-
nition (FER) model, trained on a dataset with most subjects from
a singular ethnicity, for instance, White-Caucasian males of the
United States, may struggle to differentiate the cultural nuances
of facial expressions of people from Southeast Asia. As a result,
models trained using such datasets are vulnerable to bias. Racial
bias is a prominent problem in state-of-the-art FER methods. Past
experiments had shown that FER models trained using datasets of
a singular ethnicity performed significantly better when the test
subjects were from the same ethnicity than when they were not
[15]. At present, many widely used datasets for FER suffer from this
problem, such as MMI (MMI Face Database) [21] and CK+ (Extended
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Cohn-Kanade dataset) [15], which consist of primarily Caucasian
subjects. Models trained on such datasets, performed poorly when
evaluated on datasets curated for a different region, such as the
JAFFE (Japanese Female Facial Expression) dataset [16, 17].

FER models use an array of emotional cues, namely action units
(AU) and micro/macro facial expressions to classify the emotion
detected. As such, a model trained on the emotional expressions of
a certain ethnicity, would not be able to generalize well with other
ones, as there are subtle differences in the ways different races and
cultures express their emotions, which are not included in the train-
ing data. As suggested by Lukac¢ et al., an ensemble of FER models
trained on culturally diverse datasets can allow the model to pick
up those differences more easily, which can reduce inter-culture
bias in recognizing emotions. Consequently, a FER model that can
generalize well can be expected to achieve better accuracy [16].

For this research, instead of devising an ensemble of models and
neural network architectures to improve cross-cultural generaliz-
ability and model performance, a different approach was taken, with
the focus being on how enhancing the training data can achieve
better results. The research seeks to answer the following questions:

RQ1: How does augmenting existing FER datasets with samples from
the EiLA dataset affect the accuracy of existing FER methods in recog-
nizing the emotions of individuals?

RQ2: To what extent does the integration of EiLA with other FER
datasets reduce racial bias in the form of performance discrepancies,
for existing FER methods?

2 SCIENTIFIC BACKGROUND

Several existing research have laid the groundwork for the aug-
mentation of popular Facial Emotion Recognition (FER) datasets.
Notably, research by Mollahosseini et al. [20] has suggested the lack
of cultural diversity in FER datasets and the need for more inclusive
approaches. Specifically, the study discovered the limitations of ex-
isting datasets, in capturing facial expressions of different ethnicities
and cultural backgrounds equally. Furthermore, the importance of
dataset augmentation to address biases and improve the generaliza-
tion capability of FER models was highlighted.

Additionally, Javadi and Lim [9] worked on the creation of a new
FER dataset for Persians, which they considered to be an under-
represented ethnic group in the FER world. The research highlighted
that people express and interpret emotions differently, across differ-
ent cultures. Currently, there are no publicly available FER datasets
focused on the Latin American population, which makes EiLA a
first of its kind.
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Furthermore, recent work by Fan et al. [4] attempted to address
the problem of racial bias in FER, by sub-sampling training data
with different racial distributions into multiple sets and measuring
the performance of FER models trained on each set. The study found
that in smaller datasets, the racial balance of the training set had
a positive correlation with the fairness and performance of FER
models. Using a sub-sample of the CAFE (Child Affective Facial
Expression) dataset, the F1-score increased by 27.2%, and the de-
mographic parity (similarity in prediction accuracy across different
ethnicities) by 15.7% [14].

3 METHODOLOGY & EXPERIMENTAL SETUP

The research will follow the methodology and approach as depicted
in Figure 1. The preparation process begins with the collection of
data, followed by image pre-processing and preparation of inte-
grated datasets. Then, the experiment phase begins with training
the selected model (Figure 6) using the datasets in Table 3. The final
step would be to test the model using ground truths from the EiLA
test set. The performance and generalizability are to be measured
through accuracy and fairness metrics.

Dataset Collection

Preparation phase

Preprocessed?

Yes No

Dataset Integration Data Preprocessing

Experiment phase

1 I
I I
1 Training Testing & Evaluation| |
1 I
1 I

Fig. 1. Research Methodology Pipeline

3.1 Preparation

Data Collection: The three datasets listed in Table 1 were collected
for this research. The EiLA (Emotions in LatAm) dataset, as shown
in Figure 3, was provided by The University of Twente and consists
of video recordings from TV shows aired in Latin America. FER2013
[6] and SFEW (Static Facial Expressions in the Wild) [2] were
also chosen. FER2013 (Figure 2) is a popular dataset with many
pre-processed samples for each emotion class. SFEW (Figure 4) on
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Table 1. Datasets overview

Dataset Sample format Size | Pre-processed
FER2013 | 48x48 grayscale image | 35,887 Yes
SFEW | 48x48 grayscale image | 1,322 Yes
EiLA 1280x720 color video 8,088 No

the other hand, is a smaller subset of static frames of the dataset
AFEW (Acted Facial Expressions In The Wild), which originated from
popular TV shows and movies. The nature of the images is very
similar to that of EiLA, which makes it an ideal candidate for this
study.

Fig. 2. Samples from FER Dataset

Disgust

Neutral Surprise

Fig. 3. Samples from EiLA dataset (processed)

Disgust

Neutral Surprise

Fig. 4. Samples from SFEW dataset
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Table 2. Sample EiLA dataset annotations
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Video Tag Cid Labels Frame Number X Y Width Height Pid
ngITkMvWuq8 | 3 | [[Happy’], 'No annotation’, ['Neutral’]] 22471 0.05208333333 | 6.78219417 | 73.68036263 | 93.12521324 | 9
ngITkMvWuq8 | 3 | [[Happy’], 'No annotation’, ['Neutral’]] 22477 0.05208333333 | 6.78219417 | 72.97850563 | 93.12521324 | 9
ngITkMvWuq8 | 3 | [[Happy’], 'No annotation’, ['Neutral’]] 22483 0.05208333333 | 6.78219417 | 72.27664863 | 93.12521324 | 9
nglTkMvWuq8 | 3 | [[Happy’], ‘No annotation’, ['Neutral’]] 22489 3.314621716 6.78219417 | 69.15301945 | 93.12521324 | 9
ngITkMvWuq8 3 [[Happy’], 'No annotation’, ["Happy’]] 22495 22.41555783 0.1421585352 | 70.11258956 | 99.71568293 0

Data Preprocessing: The EiLA dataset is the only one of the three

Table 3. Created Experiment Configurations

chosen datasets that need to be pre-processed, as the other two
datasets both contain samples of 48x48 grayscale images, whereas
the EiLA dataset consists of high-resolution video recordings. To in-
tegrate EiLA with FER2013 & SFEW, samples from the EiLA dataset
must be converted to static 48x48 grayscale images. As illustrated
in Figure 5, the pre-processing begins with the extraction of static
frames, using existing annotations as shown in Table 2. The an-
notations also contain the XY coordinates of the bounding box of
the person in interest and their emotion in the frame. Then, the
bounding box is cut from the frame, and face detection is used to
isolate the face from the rest of the framework using YOLOVS, a
state-of-the-art object detection tool that can also be applied to faces
[22]. Frames where the tool cannot identify a face were discarded.
Next, the remaining images were cropped and resized to match the
standard dimensions of the integrating dataset. The resulting set of
EiLA samples was separated into one of the three sets below, based
on the number of valid annotations for the emotions perceived by a
maximum of three human annotators:

Train: 3 out of 3 annotations
Validation: 2 out of 3 annotations
Test: 1 out of 3 annotations

Furthermore, the EiLA dataset provides demographic data for every
person represented in the frame. This also includes each individ-
ual’s race, which is represented as Black, White or Mixed. After all
images have been pre-processed, the demographic information was
extracted and added to the test set, stored in a numpy dataframe.

Crop rdinates
‘Extract static frame and emotion with bounding box generted from YOLOY detection
coordinats from xisting annotatons

Fig. 5. Pre-processing of EiLA dataset

Experiment Set Training Set Size | Validation Set Size
EiLA only 4,852 1362
FER2013 only 28,709 7,178
SFEW only 891 431
SFEW + 10% EiLA 1373 564
SFEW + 30% EiLA 2,342 837
SFEW + 50% EiLA 3,316 1,111
SFEW + 100% EiLA 5,743 1,793
FER2013 + 10% EiLA 29,191 7,311
FER2013 + 30% EiLA 30,160 7,584
FER2013 + 50% EiLA 31,134 7,858
FER2013 + 100% EiLA 33,561 8,540

Table 4. Racial Composition of EiLA test set

Race | Count | Portion
Black 163 20.00%
White 588 72.15%
Mixed 64 7.85%
Total 815 100%

Dataset Integration: The next step involves integrating various
proportions of the pre-processed EiLA dataset as listed in Figure 3,
selected randomly using Python’s random module, with each of the
existing datasets chosen for this study. Eight augmented datasets
were created, each consisting of the full FER2013 or SFEW dataset,
plus a portion of EiLA. For example, if the EiLA training and valida-
tion sets contained 100 and 20 images respectively, an augmented
FER2013 dataset containing 50% of data from EiLA will include all
the training and validation samples from FER2013, as well as 50
training samples and 10 validation samples from EiLA.

3.2 Model Selection

In this research, a deep learning approach is proposed for the classi-
fication of emotions. The approach consisted of using ResNet50V2
as the base model and pre-trained ImageNet [1] weights for transfer
learning. This approach initializes the model with meaningful pre-
trained weights, which saves a considerable amount of time needed
for training.

ResNet50V2 Architecture

Figure 6 presents the basic architecture of ResNet50v2, a deep con-
volutional neural network (DCNN) specifically built for the task



TScIT 41, July 5, 2024, Enschede, The Netherlands

Input | Output

Residual
Block x6.

o | et Max || Residual
Norm Pool Block x3

224x224 ImageNet
Images Weights

£

Fig. 6. ResNet50V2 Architecture

of image recognition. It is a 50-layer variant of the Deep residual
neural network ResNet, which had previously achieved state-of-
the-art performances on benchmarks such as ImageNet [1]. The
network specifically makes use of residual blocks with shortcut
connections (Figure 7) to mitigate common issues such as degrada-
tion, vanishing/exploding gradients and slow Convergence [7]. The
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Fig. 7. Example of a Residual Block

model is initialized with pre-trained weights and receives an input
of 224x224x3 images. First, the images are padded with zeros and
pass through a convolution, followed by batch normalization, the
ReLU activation function in Equation (1) and max pooling. Then,
the image is passed through five stages with 3 residual blocks each,
where each block consists of three convolutions (1x1, 3x3, 1x1).
Next, a global average pooling layer is applied, which reduces each
7x7 feature map from the image to a single value, by averaging the
values in every feature map. Finally, a fully connected dense layer is
used for the final classification. As shown in Equation 2, the Softmax
activation function is applied to compute a vector of probabilities
of each class, and the class which receives the highest probability
becomes the final output. [24]

ReLU(z) = max(0, z) (1)
fi e
Soft e — 2
oftmax(s) = T @
where the input is a vector z = [z1,22, . ..,2,], and z; is the i-th

element.
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Loss Function & Optimizer

For the training of our model, the Adamax optimizer [11] is used
to adjust the weights and biases of the model to minimize the loss
function. Loss is a measure of the differences between the model’s
predictions and the ground truth. A lower loss value indicates better
model performance. For this research, categorical cross-entropy is
used to calculate loss, as shown in Equation 3.

Categorical Cross-Entropy Loss

The cross-entropy loss function measures the difference between
the predicted probabilities of a given model, and the true label, and
is defined as:

Loss(y, §) = - Zyl log(4:) &)

i=1

where y is the true label and ¢ is the predicted probability.

Adamax

Adamax is an extension of the Adam optimizer [12], which uses
the infinity norm (max norm) to scale the gradient updates. The
following section describes how the Adamax optimizer operates in
a neural network. First, the following parameters are initialized:

0p: Initial parameter vector

mp: 1st moment vector

uo: Exponentially weighted infinity norm

n: Learning rate (small value constant)

p1 and fo: Exponential decay rates (constants between 0-1)

Then, while 6; has not converged, at every time step ¢, given the
parameters 6;, learning rate 1, and decay rates ff; and f:

1. Compute the gradient of the loss function:
9t =VoJ(0r-1)
2. Compute biased first-moment estimate
my = fime—1+ (1= f1)g:
3. Compute exponentially weighted infinity norm:
ur = max(faus-1,19:1)

4. Compute bias-corrected first-moment estimate:

mg

1-p

m =
5. Update parameters:

61 = 0r — L
ur
where:
- g+ is the gradient of the loss function at time step t
- my is the first-moment vector (moving average of the gradients)
- u; is the exponentially weighted infinity norm
- my; is the bias-corrected first moment estimate
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Callbacks

Callbacks are useful functions that are executed in between epochs
during the training of our model. They provide the ability to au-
tomate adjustments to the model midst training, which allows for
greater control and flexibility over the process. For this research,
two callback functions, Early Stopping and ReduceLROnPlateau
were used.

Early Stopping is a regularization method used to prevent over-
fitting. It is triggered when the validation accuracy stops improving
during training. Another benefit of this method is the saved compu-
tational time by terminating early.

ReduceLROnPlateau is another regularization method used to
monitor the model’s performance and reduce the learning rate when
there is no improvement for several epochs. The learning rate re-
duction on plateau strategy is defined as:

Nnew = Nold X factor

where 7 is the learning rate of the model, and factor is a number
between 0— 1 that determines how much the learning rate is reduced
by each method call.

3.3 Experimentation

Training: The experimentation phase started with loading the
datasets for training. For that, ImageDataGenerator from the library
keras was used to fetch and process the datasets from the directories
where they were stored. The tool allowed for convenient batching,
normalization and resizing of the images to match the standard
input size of 224x224x3 for ResNet50V2. The next step in the ex-
periment was to choose the loss function, optimizer and training
hyper-parameters. For this research, categorical cross-entropy was
used to evaluate model performance throughout training. The ini-
tial training consisted of 15 epochs with an initial learning rate of
1x 10~* using the Adamax optimizer. Afterwards, the last 10 layers
of the base model were unfreezed for fine-tuning of an additional 35
epochs, with a reduced initial learning rate of 1x 107>, Furthermore,
Dropout with a rate of 10%, Early Stopping with a patience of 15
epochs and ReduceLROnPlateau with a factor of 0.2, patience of 3
epochs, a minimum learning rate of 1 x 10~7 were added to prevent
over-fitting.

Testing & Evaluation: For this research, the EiLA test set was
used as the testing benchmark, for all models trained using the
datasets configurations in Table 3. To evaluate whether augmenting
FER datasets with samples from EiLA affects the accuracy of exist-
ing FER methods, the weighted f1 score (Equation 4 & 5), accuracy
(Equation 6) and categorical cross-entropy loss (Equation 3) were
computed for each experiment. The performance metrics were com-
pared with the baseline, which are the experiments highlighted in
bold in Table 3. Additionally, to measure the extent to which dataset
integration affects racial bias in FER models, the model’s accuracy
per racial group (Equation 7), and the standard deviation in per-
centages, were calculated using the ground truths and demographic
information from the test set.
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To calculate the F1 score for class i:
Precision; X Recall;

F1Score; =2 % 4
! Precision; + Recall; )

TP;

TP; + FP;
TP;

TP; + FN;

Precision; =
Recall; =

where for some class i:
TP; (True Positives) is the number of correct class i predictions.
FP; (False Positives) is the number of incorrect class i predictions.
FN; (False Negatives) is the number of predictions made to an-
other class, even though the ground truth is class i.

Once the f1 score has been computed for each class in the dataset.
The weighted f1-score can be calculated using the formula below:

™1 Support; x F1Score;

Weighted F1 Score = (5)

7, Support

where n is the number of classes, and Support; is the number of
samples labelled as class i) in the ground truth.

To calculate overall model accuracy:

Total # of correct predictions
%Accuracy = X 100 6)
Total # of samples
To calculate model accuracy for racial group G:
# t dicti in G
%ihceuracy(G) = correct predic 19ns nG\ . 100 @
# of samples in G

4 RESULTS & DISCUSSION

Table 5 presents the performance metrics recorded for all experimen-
tal setups listed in Table 3. This includes the F1 score, accuracy, and
categorical cross-entropy loss. For the baseline, the model trained
only using the EiLA training data achieved an F1 score of 0.267,
accuracy of 31.9% and loss of 2.733 when evaluated against the EiLA
test set. The model trained using the SFEW dataset reported an F1
score of 0.254, accuracy of 28.3% and loss of 1.838. As for the model
trained using the entirety of the FER2013 training set, it achieved
the best baseline performance of the three with an F1 score of 0.342,
accuracy of 40.2% and loss of 2.274.

As for integrated models, integrating 10% of training data from
EiLA with SFEW helped improve the F1 score from 0.254 to 0.278,
and accuracy from 28.3% to 34.0%, a 5.7% increase. On the contrary,
cross-entropy loss increased slightly from 1.838 to 2.030. Other mod-
els with more data integration from EiLA also yielded improvements
in comparison to the baseline. However, there was no correlation
between higher integration percentages and consistent performance
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Table 5. Measured Performance For Each Model

Experiment Weighted F1 score | %Accuracy | Loss
EiLA only 0.267 319 2.733
SFEW only 0.254 28.3 1.838

SFEW + 10% EiLA 0.278 34.0 2.030
SFEW + 30% EiLA 0.255 30.3 2.285
SFEW + 50% EiLA 0.283 32.8 2.311
SFEW + 100% EiLA 0.256 30.9 2.675
FER2013 only 0.342 40.2 2.274
FER2013 + 10% EiLA 0.332 38.9 2.420
FER2013 + 30% EiLA 0.334 38.5 2.520
FER2013 + 50% EiLA 0.341 39.8 2.492
FER2013 + 100% EiLA 0.327 36.9 2.608

Table 6. Measured Performance For Each Model on Represented Race

Experiment %Acc(Black) | %Acc(White) | %Acc(Mixed) | %Std
EiLA only 36.8 31.1 26.6 5.14
SFEW only 38.7 25.9 25.0 7.65

SFEW + 10% EiLA 45.4 313 29.7 8.65
SFEW + 30% EiLA 41.1 27.6 28.1 7.66
SFEW + 50% EiLA 42.9 30.3 29.7 7.49
SFEW + 100% EiLA 43.6 26.2 32.8 8.77
FER2013 only 58.9 34.5 45.3 12.2
FER2013 + 10% EiLA 46.0 37.6 32.8 6.68
FER2013 + 30% EiLA 43.6 37.9 31.3 6.16
FER2013 + 50% EiLA 50.9 37.4 32.8 9.41
FER2013 + 100% EiLA 423 35.5 35.9 3.81

gains, as the F1 score and accuracy fluctuated as more EiLA sam-
ples were integrated with SFEW. An additional observation was
that the loss value continued to increase, as more samples were
being integrated. The model trained using SFEW and 100% of the
EiLA training set, recorded the highest loss of 2.675, much higher in
comparison to the baseline value of 1.838. On the other hand, inte-
grating the EiLA dataset with FER2013 resulted in minor reductions
in performance across all experiments. The best-performing model
of them all, trained with FER2013 and 50% of samples from EiLA,
recorded an F1 score of 0.341, accuracy of 39.8% and loss of 2.492,
which are slightly worse than the baseline model.

Table 6 details the accuracy of different models at predicting emo-
tions for each of the racial groups represented in the EiLA test
set (Black, White, Mixed). The baseline model trained solely using
EiLA’s training data, showed the highest accuracy for Black individ-
uals (36.8%), followed by White (31.1%) and Mixed (26.6%). Similarly,
the baseline model trained only using SFEW was the most accurate
for Black individuals (38.7%), and less accurate at predicting subjects
with White (25.9%) and Mixed (25.0%) skin tones. The model trained
with FER2013 data showed the highest baseline accuracy for all
racial groups at 58.9% for black individuals, 34.5% and 45.3% respec-
tively for White and Mixed groups. As demonstrated in Figure 8,
adding data samples of EiLA to SFEW improved the accuracy for all
racial groups, with the most significant improvement (6.7%, 5.4% &
4.7% for Black, White and Mixed groups respectively) observed in
the model with 10% of EiLA integrated with SFEW. Despite yielding
worse performances compared to the 10% model, further integration

Yulin Chen

SFEW: Accuracy Across Racial Groups

Black
—=— White

Mixed
7 -%- Average

Accuracy (%)
ol
°

Dataset Configuration
Fig. 8. Accuracy of models trained on SFEW+EILA across racial groups
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Fig. 9. Accuracy of models trained on FER2013+EiLA across racial groups

still performed better than the baseline. Conversely, as depicted in
Figure 9, integrating EiLA data with FER2013 only resulted in a
3.4% improvement at most for white individuals. On the other hand,
significant reductions in accuracy (-16.6% & -14.0% at most) were
observed for Black and Mixed groups.

Discussion

How does augmenting existing FER datasets with samples from
the EiLA dataset affects the accuracy of existing FER methods
in recognizing the emotions of individuals?

The results from the above experiments suggest that augmenting a
small dataset such as SFEW with a small portion of samples from
EiLA can improve the overall model performance, as indicated by
the accuracy metrics. However, higher levels of integration yielded
diminishing performance gains. This could be because EiLA is sev-
eral times larger than SFEW, and the model might overfit when
EiLA make up the majority of the integrated dataset. As a result,
the model may be unable to learn the characteristics of the SFEW
samples and become unable to generalize between datasets. As for
the much larger FER2013 dataset, integration with EiLA resulted in
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(a) Correct Classifications (Before & After Training
Data Integrated With EiLA)

(b) Incorrect Classifications (Before & After Training
Data Integrated With EiLA

(c) Corrected Classifications After Training Data In-
tegrated With EiLA

Fig. 10. Classification Examples Between Model Trained Using Only SFEW
versus SFEW+10%EiLA (Best-performing)

worse performances, compared to the baseline. This may suggest
that the diversity introduced by EiLA may be insufficient as it is too
small to make a significant representation in the integrated dataset.

Another possible reason for the observed behaviour is the differ-
ences in characteristics such as angle, lighting and background of
the samples, which can confuse the model. The photographic styles
of samples in FER2013 and EiLA are quite different. As depicted in
Figure 2 and 3, the majority of FER2013 samples are forward-facing
and make eye contact with the lens, whereas in the EiLA dataset,
many samples show a side profile of the face, or are filmed at an
angle where the subject does not make eye contact with the camera.
This is a similar trend in SFEW as it was sourced similarly from
TV shows and films. The results tend to support this theory, as the
accuracy improved when EiLA was merged with SFEW, but not
with FER2013.

Furthermore, in Figure 10 & 11, a small batch of prediction re-
sults from two of the best performing models (SFEW+10%EiLA &
FER2013+50%EiLA) show how the models perform on the different
samples in the EiLA test set. Most of the correct predictions are
images where the subject faces forward, or at an angle where the
facial features are still quite clear. On the other hand, a significant
portion of the incorrect predictions come from samples depicting
the side profile of subjects and/or containing some occlusion to
facial features, such as glasses.
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(a) Correct Classifications (Before & After
Training Data Integrated With EiLA)

(b) Incorrect Classifications (Before & After
Training Data Integrated With EiLA

B =

(c) Corrected Classifications After Training
Data Integrated With EiLA

Fig. 11. Classification Examples Between Model Trained Using Only
FER2013 versus FER2013+50%EiLA (Best-performing)

To what extent does the integration of EiLA with other FER
datasets reduce racial bias in the form of performance discrep-
ancies, for existing FER methods?

In most cases, combining the EiLA dataset with SFEW increased
model accuracy for each ethnic group, although the percentage
standard deviation of accuracy remained practically the same as
the benchmark. This suggests that, even though the integration
with EiLA enhanced the model’s ability to detect emotions across
all racial groups, it failed to eliminate performance gaps between
the racial groups represented. On the contrary, integrating EiLA
with FER2013 failed to boost model performance across racial groups
in most instances. However, the percentage standard deviation re-
duced substantially, indicating that the model’s performance across
racial backgrounds became equal, even though the overall perfor-
mance was worse than the baseline.

Therefore, it is reasonable to believe that the impact of dataset
integration on accuracy and racial bias of FER models is dataset-
dependent since results are quite clearly contrasting for experi-
ments involving FER2013 and SFEW. Furthermore, there is a no-
ticeable trade-off between a model’s overall accuracy and balanced
performance across all racial groups, as improvements in one metric
result in a setback for the other.
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Limitations

Class Imbalance was a significant limitation that impacted the
accuracy of the models. As illustrated in Tables 7, 8, 9, classes such
as Happy and Neutral are more represented across the datasets
compared to Disgust. Such imbalance can lead to training a model
biased towards predicting only the majority classes and ignoring
the smaller classes altogether. Evidence of this behaviour can be
found in Figure 12, in which the models trained on the FER2013
dataset, predicted almost exclusively one of its majority classes.
Domain Mismatch is another potential cause of poor model per-
formance. The facial orientation and placement of the subject in
images appear to be different for the datasets, especially FER2013
when compared to EiLA and SFEW. Additionally, accessories such
as glasses partially obstruct the face. This distinction can increase
the difficulty for models trained with FER2013 to learn the facial
features present in the EiLA test set.

Insufficient Sample Size was another issue for this research. In
contrast to FER2013 with over 35,000 samples, the EiLA dataset only
consisted of roughly 8,000 samples, still more than SFEW, which
holds an even lower figure at just over 1,300. Despite efforts to in-
tegrate datasets, the combined size is possibly too small to train
a robust and generalized model that can identify the nuances of
emotional expression between different cultural backgrounds.
Lack of Publicly Available Data was problematic, considering
the limited time available for this research. There are very few FER
datasets that can be freely accessed from the internet. Many datasets
can only be obtained by making a formal request to their creators,
which is in most cases a time-consuming process.

- 150

- 125

True labels

100

sad

surprise

Disgust Fear Happy Neutral surprise
Predicted Iabels

Fig. 12. Confusion matrix of model trained on FER2013 training set

Future work

Future research should begin with addressing the limitations of
this study, by increasing the size, diversity and quality of datasets.
Some methods to address this include data augmentation and syn-
thetic data generation for smaller classes. Synthetic Minority Over-
Sampling Technique (SMOTE) is a suitable over-sampling method,
which interpolates between similar samples of a minority class to

Yulin Chen

Table 7. FER2013 Training set class distribution

Total | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprise
28,709 | 3,995 436 4,097 | 7,215 4,965 4,830 3,171

Table 8. SFEW Training set class distribution

Total | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprise
891 178 52 78 184 144 161 94

Table 9. EiLA Training set class distribution

Total | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprise
4,852 944 96 76 1,053 2,516 122 45

create new samples of that class [13]. Furthermore, Generative Ad-
versarial Networks (GANSs) can be used to generate synthetic data
based on existing datasets. The synthetic data generated can closely
resemble the original data, which makes this a good approach for
populating minority classes [23]. To reduce the effects of face orien-
tation and occlusions on the performance of FER models, existing
methods such as CFR-GAN can be used in future research to apply
facial re-orientation and de-occlusion to faces [10].

5 CONCLUSIONS

Facial emotion recognition is a challenging task, due to the subtle
nuances in the way we as humans express emotions. The complexity
is further amplified when cultural differences are introduced to the
problem, which highlights the need for FER models to be able to
generalize facial expressions of people from different cultural back-
grounds. This research explored the effects of integrating multiple
datasets, namely EiLA, FER2013 and SFEW, on the cross-cultural
generalizability and performance of FER models. The experiments
revealed that models trained using data consisting of EiLA and
SFEW made notable improvements in performance, whereas models
trained on FER2013 and EiLA performed slightly worse than the
baseline. Furthermore, the study investigated the effect of dataset
integration on the accuracy of FER models across different racial
groups. The findings noted that while such a technique has the
potential to reduce racial bias and improve overall accuracy, the
limitations discussed in this paper must be appropriately addressed
first in future research.

A APPENDIX
A.1 Declaration use of Al

During the preparation of this work, the author used Grammarly
& Overleaf, in order to correct spelling, grammar, sentence struc-
ture and used expressions. In addition, ChatGPT had been used
to assist with proper formatting of the scientific paper in LaTeX
and written definitions of mathematical formulae. After using the
above-mentioned tools & services, the author reviewed and edited
the content as needed and takes full responsibility for the content
of the work.
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