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The automation of detecting rare diseases accurately has proven to be chal-
lenging due to the lack of enough data on cases with such diseases. This
research explores and compares the effectiveness of supervised and unsuper-
vised machine learning methods to identify rare disease patterns in medical
imaging. Supervised learning methods are known to be very accurate but
unsupervised methods are adept at handling unlabelled data and identifying
the anomalies that exist. Thus, a thorough comparison will bring more clarity
on what methods to prefer for anomaly detection. This research also focuses
primarily on using different types of autoencoders to detect anomalies in
medical images. To thoroughly assess the supervised models(Resnet50 and
Densenet121) and the unsupervised models(Autoencoders and Variational
Autoencoders), this study will make use of multiple datasets: Retinal OCT
Images, Brain Tumor MRI Scans, COVID-19 Radiography images and ISIC
2018 HAM10000 dataset. By conducting this comparative analysis, this re-
search aims to shed light on suitable machine learning models for the use of
detection of diseases in medical images.

Additional Key Words and Phrases: Supervised machine learning, Unsuper-
vised machine learning, Autoencoders, Variational autoencoders, Masked
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1 INTRODUCTION

Despite being "rare", rare diseases on the whole impact a large per-
centage of the population worldwide, even if each condition alone
affects a relatively small number of people. This means that while we
have a lot of cumulative data when we look at all diseases if we look
into certain diseases in specific, the datasets become a lot sparser.
Due to this, there is an immense need for different approaches to
analyse data and detect and treat these diseases effectively.

In this context, machine learning(ML) emerges as a potent tool.
Using ML, we can make predictions or decisions when trying to de-
tect rare diseases. This thesis explores two primary categories of ML,
namely supervised and unsupervised methods of learning. Super-
vised learning methods are those that depend on labelled datasets
being available as a prerequisite so that models(algorithms) can be
trained on them to produce effective results when dealing with new
data. Unsupervised learning methods, on the other hand, do not
involve any prerequisite labelled data. The models look for patterns
and try to classify them based on these patterns. Many models like
Resnet50 and Densenet121, for supervised methods, and autoen-
coders(AE) and variational autoencoders(VAE), for unsupervised
methods, have been used in the field of medicine for this purpose.
We shall discuss more in detail how these models work later, but
for now, let us look at the uses in different research.
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An issue that does arise from this is that it is not immediately
apparent which models would be suitable for use in different datasets
of medical images. By conducting a thorough analysis of various
models, it is possible to gain a better insight into the most suitable
models for disease detection in medical images.

Hamlili et al. explore the use of the Resnet50 model, a type of
convolutional neural network(CNN) to derive an effective model
for the classification of x-ray and CT images of lungs for the detec-
tion of COVID-19[3]. Another research conducted by Zebari et al.
focus[16]. Both Resnet50 and Densenet121 are supervised models
which proved to give results of high quality.

In terms of unsupervised models, this research mainly focuses
on the use of autoencoders. These are models which encode im-
ages to represent encodings that capture the most essential fea-
tures of the images, and then decode them and attempt to recon-
struct the original images using just the encoded data. Applying
a different approach for the detection of COVID-19 in radiogra-
phy images, a method involving the use of deep CNNs along with
a regular AE yielded promising results[4]. Another research also
uses a VAE - a type of autoencoder that outputs a distribution of
probable outputs, rather than just one reconstructed image - on the
HAM10000(Human Against Machine) dataset, provided by ISIC as a
challenge in 2018 for the detection of skin cancer in images of skin
lesions which showed fruitful outcomes[8].

All these models are valid means of detection of the different dis-
eases. This research, however, takes the experiments a step further
to test the effectiveness of the different models on various datasets,
rather than just one. Performing a strong comparative analysis in
this manner allows for a better assessment of the effectiveness of the
different models as well as how applicable they are for the different
datasets, by examining the pros and cons of the different models
used.

2 PROBLEM STATEMENT

It is undeniable that there has been a substantial amount of research
in the field of anomaly detection, both, for supervised and unsu-
pervised learning methods. However, an understanding of which
methods to use in which context requires an in-depth analysis of
how effectively the different methods work. This brings up the
research questions we will aim to answer in this paper.

2.1 Research Question

What is the comparative effectiveness of supervised and unsupervised
learning methods in detecting rare diseases from limited data?

This question can be challenging to answer on its own and can be
better answered through the following sub-questions:

2.1.1 SQT1: In terms of the various metrics available, how do su-
pervised and unsupervised models perform on the datasets?
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2.1.2  $Q2: To what extent can fine-tuning and transfer learning
aid the models in producing better results?

3 RELATED WORK

In this section, we will delve deeper into the related work on disease
detection using various learning methods. It is worth understanding
the concepts that apply when discussing the different models that
were experimented with previously as this will also help understand
the models used in this research.

Resnet50 and Densenet121 are two supervised methods and are
convolutional neural networks(CNNs). CNNs are a type of model
that makes use of layers of convolutions that essentially take images
as matrices of pixels and perform mathematical operations using
certain types of matrices (called "filters") which gather the more
important features in the images. These are layered to grasp and
extract as many features as possible. Edges and brightness are good
examples of features that are extracted using this method. With each
layer, the image is reduced further to the most important features
with the help of a pooling layer. There are also non-linearity layers
to represent the images better since images cannot be represented
as linear functions[9]. As their name implies, Resnet50 has 50 layers,
while Densenet121 has 121 layers. Resnet50 makes use of skip con-
nections which allow it to bypass some layers if required, whereas
the layers in Densenet121 are densely connected, where each layer
receives all information for every preceding layer and provides its
information over to succeeding layers[13][14].

The paper written by Hamlili et al. discusses an attempt at trans-
fer learning with Resnet50 for use on radiography images of the
chest, to handle a multi-class classification of a dataset that con-
sists of COVID-19 positive, viral pneumonia, bacterial pneumonia
and normal images[3]. The dataset was preprocessed to change the
contrast, and denoised so that the anomalies were easier to see,
and the images were resized to the dimensions that are required by
Resnet50(224x224 pixels). The images also underwent transforma-
tions(rotations, reflections, translations) and normalisation. Then,
using the base model of Resnet50 combined with a deep CNN, the
model was trained and was able to produce close to perfect results.
Specifically, the overall accuracy was 95.2%, with an average sensi-
tivity of 95.6%, specificity of 98.4%, and precision and F1-score of
95.3%.

Similarly, for a dataset for brain tumour classification, Zebari
et al. develop a model, with Densenet121 playing a vital role in
their architecture[16]. This dataset was meant for a binary classifi-
cation problem, so the images were either indicative of a tumour,
or not. Similar to the research involving Resnet50[3], the images
were preprocessed with various transformations and resized as per
Densenet121’s requirements(224x224 pixels). These images were
also denoised and normalised. For this research, Densenet121 along
with the final layers for the classification of the image were suf-
ficient to yield effective results. When tested on unseen data, the
model had a recall of 89.04%, which was slightly below their train
recall of 92.87%, for the brain tumour class, and the normal image
class also seemed to exhibit a slight reduction in metrics.

The principles of CNNs allow us to better understand how au-
toencoders work. There are many types of autoencoders(this paper
focuses on regular and VAEs). They work on a similar idea; an en-
coder uses convolutions to encode images into their most important
features and a decoder reconstructs the image from this encoded
form as best as it can. In its encoded form, the image exists in what is
called a "latent space". The encoder and decoder model together are
what builds an autoencoder. These have been crucial for research
regarding anomaly detection in medical images.

There has been research done to detect skin diseases using a VAE
[8]. Here the dataset used was the ISIC 2018 HAM10000 challenge
dataset. The decoder in this type of autoencoder produces a Gauss-
ian distribution from which it samples the latent state. By doing this,
the resulting output is a reconstruction of the input but is not part
of the input set. Using this model yielded high AUC values(0.77) for
the reconstruction scores and showed promising results for what
seems to be one of the first attempts at using unsupervised learning
methods to detect skin diseases. This score for reconstruction al-
lowed for melanoma to be detected with 86% accuracy. Interestingly,
during preprocessing, the images were normalised between a range
of -1 to 1, rather than the standard 0 to 1. The images were resized
to 128x128 pixels here.

Finally, a study done on a different dataset for images of chest
x-rays to detect COVID-19 made use of a combination of a CNN
and a regular AE[4]. The data is preprocessed to a size of 254x254
pixels and sent through similar augmentations as the other studies,
including rotations, translations, reflections, and also normalized
and denoised. The model is an AE with a large number of convo-
lutional layers that bring down an input image of 254x254 pixels
reduced to 31x31 pixels, which hold the extracted features. These
are then used by the decoder to reconstruct the data. Once again,
promising results were obtained, with a high accuracy of 98%.

Clearly, there have been many areas explored, all of which have
been proven to produce effective results for the detection of different
diseases. However, it is still unclear as to which methods work best
for which scenarios, and there is no analytical comparison of which
methods perform better than the other. This paper aims to get a
better insight on what models could be the most suitable in different
scenarios.

4 METHODOLOGIES

This section will highlight the methods taken to answer the research
question. We will make use of existing models which can be fine-
tuned to work for the datasets we will use. This research makes use
of four datasets and four models for a comparative analysis. Below
is a list of these datasets and models:

Datasets
Retinal OCT Images (optical coherence tomography)[7]
Brain Tumor MRI Dataset[10]
COVID-19 Radiography Database[1][11][12]
ISIC 2018 HAM10000[15]

Models

e Resnet50([5]
e Densenet121[6]
e Regular Autoencoder



e Variational Autoencoder

The implementations primarily make use of Tensorflow Keras.
The "applications" module available with Keras provides the models
for Resnet50 and Densenet121. The autoencoders were made from
scratch using Keras too. The Retinal OCT Images, Brain tumour
MRI, and COVID-19 Radiography datasets were obtained through
Kaggle, and the ISIC2018 HAM10000 dataset was obtained from the
official ISIC archive website.

Each of the models is built to perform a multi-class classification
on each dataset used. For the supervised methods, each dataset
is organised to have "train", "val", and "test" sub-directories, for
the training, validation and test data respectively. The split of the
Covid dataset is done such that 70% data is utilised for training,
10% for validation and 20% for testing(unseen data). For the tumour,
retina and melanoma datasets, the split was already predetermined
and the exact number of images will be mentioned later in the
experiment section. For the unsupervised models, the datasets are
organised such that the model is trained only on normal images.
So, for ISIC, the model is trained and validated only on the benign
keratosis class and tested with each anomaly to see how many are
detected. A similar split is made for the tumour dataset with the
"notumor" class, "NORMAL" class for the retina dataset, and "covid"
class for the COVID dataset. The AE and VAE are then tested on
the anomaly classes to see how many of the anomalous images are
indeed recognised to have anomalies. Below is the list of classes in
each of the datasets:

e Retinal OCT Images [7]

— Dataset: Optical Coherence Tomography (OCT) images of
the retina.

— Classes:
% CNV (Choroidal Neovascularization)
* DME (Diabetic Macular Edema)
*+ DRUSEN
* NORMAL

e Brain Tumor MRI[10]
— Dataset: Magnetic Resonance Imaging (MRI) scans for
brain tumor detection.
— Classes:
* Glioma
* Meningioma
* Pituitary
* notumor (No tumor)
e COVID-19 Radiography[1][11][12]
— Dataset: Radiographic images used to detect COVID-19
and other respiratory conditions.
— Classes:
x* COVID
* Lung_Opacity
* Viral Pneumonia
* Normal

e HAM10000[15]
— Dataset: Dermoscopic images from the HAM10000 dataset.
- Classes:
* Melanoma
* Melanocytic nevus

* Basal cell carcinoma

* Actinic keratosis / Bowen’s disease (intraepithelial carci-
noma)

* Benign keratosis (solar lentigo / seborrheic keratosis /
lichen planus-like keratosis)

* Dermatofibroma

* Vascular lesion

Moving on to the sub-research questions, below is an overview
of how the experiments are set up and conducted to answer each of
the questions.

4.1 On answering SQ1:

For each model, we take a collection of metrics. Firstly, we determine
the accuracy, precision and recall with which each of the classes is
determined. This helps us understand if the classes of images from
the unseen data are correctly and consistently identified, and check
if the classes identified are truly relevant to the results we need to
see, which in our case, are cases where the anomalies(diseases) exist
in the image.

Numbero fcorrectpredictions

Accuracy =
Y Totalnumberofpredictions
. TruePositives
Precision = — —
TruePositives + FalsePositives
TruePositives
Recall =

TruePositives + FalseNegatives

Apart from these standard metrics, we also want to measure
F1-scores for the supervised models. This allows us to balance the
precision and recall and make sure that underrepresented classes -
which in our case are the positive cases of diseases, since they are
rare - are identified well. The unsupervised models do not require
this metric since they are already being assessed to detect one anom-
aly at a time against the normal class, so we do not have to worry
about other classes that might make the performance of the model
seem better by a weighted average.

Precision X Recall
Flscore =2 X —MMM ™
Precision + Recall
Finally, we also keep an eye on losses to make sure that the models
are not losing out on too much of the information obtained from
the images while training. We also plot ROC graphs to observe the
model’s AUC for the different classes. A neat classification report
will also show the scores for the metrics mentioned so far for each
of the classes in each dataset.

4.2 On answering SQ2:

This sub-question will call for various tweaks in the model followed
by observation of the metrics mentioned in SQ1. This includes
varying learning rates, varying number of epochs for which the
model trains, experimenting with different optimisers, and freezing
and unfreezing layers in the pre-trained models.



5 APPROACH
5.1 Objective

The objective of this experiment is to evaluate and compare the per-
formance of four machine learning models—ResNet50, DenseNet121,
Autoencoder (AE), and Variational Autoencoder (VAE)—in classi-
fying images of diseases across four distinct datasets. This study
aims primarily to measure each model’s effectiveness through accu-
racy, loss, precision, recall, and F1 score, and, we will also observe
training times if the previously mentioned metrics are nearly equal
between models. The outcomes will provide insights into the po-
tential of these models to enhance diagnostic accuracy in medical
imaging, guiding optimal model selection for specific disease con-
texts and contributing to the advancement of personalized medical
interventions.

5.2 Experimental Setup

The supervised models required a different experimental setup com-
pared to the unsupervised models, especially with regard to how the
datasets are organised for training, validation and testing. In general,
all images in every dataset were resized to 128x128 which allowed
for models to be trained faster. The models were run on servers with
NVIDIA A10 and A16 GPUs which allowed the supervised models
to train at a speed of approximately one minute per epoch, whereas
the unsupervised models trained at thirty seconds per epoch.

Image Augmentations

For all the models, all images undergo the same augmentations
for training, validation and testing. These include rotating with a
range of +20, width and height shift range of +20% of the width
and height respectively, a zoom range of +10% of the original image,
and random horizontal and vertical flips. The images are normalised
between values 0 and 1 for the supervised models and the regular
autoencoder and between -1 and 1 for the variational autoencoder.
For the validation and test set, only the normalisation and noth-
ing else is performed. Finally, apart from the HAM10000 dataset,
the images used in the unsupervised models are augmented to be
grayscale. The HAM10000 dataset deals with melanoma which can
have many intricate features that the model needs to learn and these
could get overshadowed if the images were made grayscale. The
supervised models use colour images.

Supervised

Dataset Organisation

The split of the different datasets for supervised methods is elab-
orated below. Each of the folders contains a proportion of all the
different classes.

¢ Retinal OCT Images [7]
— train - 83484 images
— validation - 968 images
— test - 32 images
e Brain Tumor MRI[10]
— train - 5143 images
— validation - 569 images
— test - 1311 images
e COVID-19 Radiography[1][11][12]

— train - 14815 images
— validation - 2117 images
— test - 4233 images

o HAM10000[15]
— train - 10015 images
— validation - 193 images
— test - 1512 images

Models

The models used in for this experiment involve the use of Resnet50
and Densenet121 as base models, pre-trained on the "imagenet"
dataset[2], both of which can be imported through the applications
module of Tensorflow Keras. To apply transfer learning, all layers
of both models are frozen initially. We build layers on top of the
frozen models which will handle the classification of the images into
their respective classes. After experimenting with different possible
values, at this stage, both models returned best results when they
had their hyperparameters set to:

Batch size = 32

Learning Rate = 0.001

Number of Epochs: 20

Optimizer = Adam

Target size = (64, 64) for Densenet121 and (128,128) for Resnet50

Once this finishes training, we unfreeze all layers for both cases.
We then retrain the model, with slightly different hyperparameters
for both.

o For Resnet50 we only lower the learning rate to 0.0001 and
train for 20 more epochs.

e For Densenet121 we lower the learning rate to 0.00007 and
train for 30 more epochs.

This allows the models to be trained enough to be tested on unseen
data. Throughout the training process, we observe the accuracy,
precision, recall and loss.

Unsupervised

The split of the different datasets for the unsupervised methods
is elaborated below along with which classes are used to train the
models and which were used in testing. We do this because we have
to train the autoencoder to learn one type of class so that when
it tries to reconstruct images from the anomaly classes, it has a
high reconstruction loss, which is then detected to be beyond the
acceptable loss threshold and classified to possess the anomaly.

e Retinal OCT Images [7]
— train - 26315 images (all "normal" images)
— validation - 242 images (all "normal" images)
- test - 726 images (different anomalies)
e Brain Tumor MRI[10]
— train - 1595 images (all "notumor" images)
- validation - 405 images (all "notumor" images)
— test - 906 images (different anomalies)
e COVID-19 Radiography[1][11][12]
— train - 2531 images (all "covid" images)
— validation - 723 images (all "covid" images)
— test - 3510 images (different anomalies and the normal
images)



o HAM10000[15]
— train - 6705 images (all "nevus" images)
— validation - 909 images (all "nevus" images)
— test - 568 images (different anomalies)

Models To experiment with unsupervised models, we use autoen-
coders and variational autoencoders. The architecture for these
primarily remains the same across datasets, but there are a few
differences with the HAM10000 dataset since we deal with colour
images for that.

e Architecture for Retinal OCT Scans, Brain Tumor MRI,
and COVID-19 Radiography Datasets
For these datasets, the autoencoder is structured to have an
input shape of (64x64x1). We use 32, 64, 128, and 256 filters
in the first, second, third and fourth convolutional layers
of the encoder respectively, using max pooling after each
layer to reduce the spatial dimensions by half. We also use
batch normalization, L2 regularization with a factor of 0.0001
and dropout with a rate of 0.4 to prevent overfitting and sta-
bilize learning. The final output shape from the encoder is
(4x4x256). The decoder of this autoencoder upsamples the
spatial dimensions, doubling them each time, a convolutional
layer between each upsample to reduce the number of fea-
ture maps per upsample until the output shape is once again
(64x64x1).
The variational autoencoder is quite similar to the autoen-
coder with a few minor changes. The dropout rate in this is
set to 0.5 and the L2 regularisation factor is 0.01. The convolu-
tional layers remain the same. The main difference lies at the
end of the encoding process, where the output of the final con-
volutional layer is flattened and passed through a dense layer
of 128 units, followed by a dropout layer with a parameter
of 0.5. We also now have two separate dense layers to repre-
sent the mean and log variance of the latent space. Finally,
a sampling layer takes care of gradient-based optimisation
using the reparameterisation trick, which is the process of
sampling a point in the latent space, based on the outputs of
the mean and log variance dense layers. The decoder, which
accepts latent vectors of size 64, then accepts this output of
the encoder and reshapes it to a (4x4x256) shape. From here,
the decoder behaves the same as that in the autoencoder and
reproduces the (64x64x1) shape.
Below is a list of the hyperparameters used for the autoen-
coder:
— Batch size = 32
— Learning Rate = 0.0005
— Number of Epochs: 20
— Optimizer = Adam
— Target size = (64, 64)
For the variational autoencoder:
— Batch size = 32
- latent dimension = 300
— Learning Rate = 0.0001
— Number of Samples = 15
— Number of Epochs: 50
— Optimizer = Adam

— Target size = (64, 64)
- beta = 0.01

o Architecture for HAM10000 dataset
The architecture for the HAM10000 dataset for the autoen-
coder and the variational autoencoder is similar to that for
the other datasets too. While the AE and VAE for the other
datasets operate on grayscale images, the ones made for the
HAM10000 dataset deal with colour images. This is because
the images in this dataset hold intricate detail and even these
small differences in details change the diagnosis completely.
Hence, the last layer needs to allow for three filters in the
output, for the red, green and blue data, rather than one, like
the the models for the other datasets, where the images are
grayscale. Apart from this, everything, including the hyper-
parameters, is the same.

It should be noted that for the AE, we make use of the Structural
Similarity Index Measure(SSIM) loss to calculate the reconstruction
loss and measure the threshold to recognise anomalies, whereas the
VAE uses a the sum of the Kullback-Leibler loss and the reconstruc-
tion loss. The reconstruction loss is calculated as the mean of the
sum of the mean squared errors of the initial and the reconstructed
image.

Once the AE and VAE models are complete, the training process
is quite similar. Run the models to train on the established training
class so that it learns to reconstruct images of that specific class very
well. The validation is also done with images of the same class. In
the training phase, we tweak the various parameters so as to obtain
a greater difference in the losses between the model reconstructs
images for the class it was trained on and classes that are anomalous
so that the threshold is easier to determine. Once they are trained,
they can be tested on the anomaly classes individually. We also
produce ROC curves to observe the learning of the AE and VAE for
each of the classes and measure the AUC values for the classes.

It is also worth mentioning that the hyperparameters selected
for this study were optimized through a systematic trial and error
process. This was primarily because the models and datasets used
in this research were quite complex to work with within the given
time frame. Future research could attempt to experiment with and
fine-tune these parameters further to attempt to get better results.

6 RESULTS

Throughout the experiment, some metrics need to be kept track of.
Below is a list of the metrics calculated, along with the reason for
choice.

6.0.1 Accuracy. This metric helps understand how well the models
detect anomalies and classify the medical images correctly.

6.0.2  Precision. This metric allows us to determine how consis-
tently the model can predict the classes of different anomalies.

6.0.3 Recall. This metric helps evaluate whether the model is truly
learning how the different classes are different from each other and
how to detect them.



6.0.4 f1-Score. This metric explicitly shows the balance and trade-
off between precision and recall for the supervised models, which
are both important metrics for this research

6.0.5 AUC ROC curve. This metric also measures the models’ abil-
ity to correctly classify different images but is more specific to each
class in the dataset, rather than the "Accuracy" metric which gives
a weighted average.

6.1 Performance

In this section, we will go over the final results obtained using the
models after testing them with unseen data. Each of the four models
is tested with unseen data from each dataset.

Resnet50 Densenet121
OCT
CNV 99% 100%
DME 100% 100%
DRUSEN 100% 99%
NORMAL 100% 100%
Brain MRI
Glioma 92% 71%
Meningioma 91% 86%
Pituitary 99% 91%
notumor 88% 81%
COVID-19
COVID 91% 92%
Lung_Opacity 89% 89%
Pneumonia 92% 95%
Normal 93% 92%
HAM10000
AKIEC 51% 57%
BCC 51% 85%
BKL 58% 37%
DF 31% 0%
MEL 52% 65%
NV 88% 92%
VASC 70% 80%

Table 1. F1-Scores for Classes Across Datasets

Table 1 draws a comparison between the Resnet and Densenet
models based on their F1 scores for each of the classes in each
dataset. In terms of the OCT Retinal scans, we see that the scores
are nearly a perfect 100%. This can be explained by the fact that
the training dataset is extremely extensive. The model has so many
images to train on that it is able to extract all important features
extremely well and use that on the test set, a significantly smaller

set of unseen data in comparison to the size of the training set.

Another point to note about the OCT dataset would be the fact
that each of the classes has images that are quite distinct from each
other, unlike with the HAM10000 dataset, where the images can

be easily confused(which is also one of the reasons for why the
models perform significantly poorer on those images). Therefore,
the models can learn the differences a lot better, thereby producing
great results. For the Brain MRI dataset, Resnet50 seems to return
better results compared to Densenet. However, it should be possible
to achieve such results, if not better, with Densenet, considering
its architecture allows for more intricate features to be detected.
However, this would be for future research to try and experiment
with. The COVID dataset has similar results for both models. Finally,
the HAM dataset shows significantly varying results. Some classes
are better detected by Resnet while others are better detected by
Densenet. However, what is more useful to note here is that this is
a prime example of where supervised methods start to falter. The
other datasets contained a reasonably large amount of training data
with extensive labelling. However, with the HAM10000 dataset, the
imbalance in datasets was too high for the models to keep up. The
AE and VAE were able to perform significantly better in this regard
by detecting anomalies effectively.

Moving on to the unsupervised methods of anomaly detection,
the way we collect and compare the AE and VAE is slightly different.
In the supervised methods, we perform a multiclass classification
which means that the AUC for the ROC curves may result in high
values, but this would be because one of the classes is easier to
predict, while other underrepresented classes are not. This is what
we see in Table 1 for the HAM10000 dataset.

However, the AE and VAE are dealt with differently. Since each
model is trained on one class which is considered the non-anomalous
data, and then tested on a mix of just one anomalous class and
the non-anomolous class, the AUC values are more reliable and
determine how well the model is able to predict the different classes.
Table 2 shows the resulting AUC values for the AE and VAE for
each of the classes in the different datasets.



VAE AE

OCT
CNV 0.98 0.99
DME 092 0.92
DRUSEN 0.80 0.74
NORMAL - -
Brain MRI
Glioma 0.70  0.55

Meningioma | 0.88 0.64
Pituitary 0.85 0.67
notumor - -

COVID-19

COVID - -
Lung Opacity | 0.55 0.52
Pneumonia 0.92 0.86

Normal 0.72 0.64
HAM10000
AKIEC 0.76 0.74
BCC 0.74 0.68
BKL 0.71 0.65
DF 0.68 0.51
MEL 0.75 0.66
NV - -
VASC 0.82 0.57

Table 2. AUC Scores for Classes Across Datasets

As seen in Table 2, the autoencoders are very suitable for the job
regardless of the dataset we look at. There are some classes that
they do struggle to detect, for example, the lung opacity class, where
neither the AE nor the VAE was able to go beyond 0.52 and 0.55
respectively. Further fine-tuning in future research could help bump
these numbers up too. The classes with "-" for values are the ones on
which the model was trained and were taken as the non-anomaly
classes when training the models. Observing the AUC values for
these classes is not necessary since the research focuses more on if
the models can detect the anomalies well.

So far, we have compared the supervised models among them-
selves, and likewise for the unsupervised models. To compare all
the models with each other, we can also take a look at the accuracy
of each model. Table 3 is an overview of the final accuracy that each
model was able to achieve, for each dataset.

[ Resnet50 Densenet121 AE VAE

OCT 100% 93.75% 92.15% 93.11%
Brain MRI 92.44% 84.38% 70.02% 87.15%
COVID-19 93.10% 92.68% 70.48% 65.61%
HAM10000 83.42% 72.82% 70.18% 82.52%

Table 3. Accuracy of Different Models on Different Datasets

Overall, the supervised models seemingly exceed the unsuper-
vised models in terms of accuracy, based on Table 3. However, upon
further inspection, there are some other points to consider. The
accuracy of the different models present in this table is simply an
overall accuracy and does not give a full idea of whether or not the
models perform well on the datasets. To truly make a judgement,
we must look back on Tables 1 and 2. As stated before, the datasets
selected portray a degree of imbalance in all cases. This means that
even if the accuracy of the different models is high, this might just
mean that the models have adapted extremely well to detecting
classes in the dataset that might be the majority. This still leaves
the underrepresented data difficult to predict for the model. This
is precisely what we see with Resnet50 and Densenet121. For the
HAM10000 dataset, while the models have been showing an accu-
racy of 83.42% and 72.82%, their F1-scores for the underrepresented
classes seem to be too low for the model to be able to effectively
predict those specific classes. The "NV" and "VASC" classes have
high F1-scores since those classes have high representation and the
models train extremely well to learn their features and distinguish
them. But in terms of other classes like AKIEC, MEL or DF, both
Resnet50 and Densenet121 struggle to produce good results.

On the other hand, the AE and VAE seem to do a better job
at predicting the different classes of the HAM10000 dataset. The
accuracy for the AE and VAE on this dataset are 70.18% and 82.52%
respectively, and this time, these numbers do reflect the performance
of the models well because the AUC for most classes of this dataset
are also consistently high. Both models produce a more balanced
output for AUC values for all classes, with the VAE performing
exceedingly better than the AE. This is expected considering that the
VAE learns and reconstructs images using features on a distribution
rather than discrete values, allowing it to capture the finer details
in images better than the regular AE.

This does make room for one more question; if the AE and VAE
display such reliable results for the HAM10000 dataset, why do
Resnet50 and Densenet121 seem to outshine these models when we
look at the results with other datasets? Clearly, the accuracy and
the F1 scores of all classes in the other datasets are very high, and
this does show that Resnet50 and Densenet121 are more suitable for
these datasets. What must be considered here are the datasets rather
than the models. The HAM10000 dataset is a case of a dataset with an
extreme imbalance in the representation of classes. The remaining
datasets, however, are not as extremely imbalanced. This makes
it still possible to classify the different images in these datasets
using the supervised models. While more datasets like HAM10000
would have been ideal to test the AE and VAE further, finding such
datasets is also very difficult, given the extreme financial and labour
costs of labelling data for the use of training supervised models.
Therefore, unsupervised models would be the next best reliable
option for the use of detection of diseases in medical imaging. In
the case of datasets like OCT retinal scans, Brain Tumor MRI scans
or COVID-19 Radiography images, the supervised models show
extremely reliable results. This also directly ties to the fact that
supervised models like Resnet50 and Densenet121 are designed to
extract important, intricate features present in medical images. This
allows the models to learn the data significantly better than the AE
or VAE, which cater more towards reconstruction of images, and rely



more on poor reconstruction of images to reliably detect anomalies.
In other words, the AE and VAE do not extract as much information
as Resnet50 or Densenet121 would from the given data, since they
are not designed for such a task. However, with other datasets that
may be as extremely imbalanced as HAM10000, if not more, the AE
and VAE would be more likely to have the upper hand at producing
useful results, in comparison to Resnet50 or Densenet121.

To further expand on why the AE and VAE might be a better
choice for imbalanced datasets, we can also look at the time taken
for the models to train. The table below gives an overview of the
average times taken per epoch to train the different models on
different datasets.

Resnet50 Densenet121 AE VAE

OCT 510 290 60 25
Brain MRI 40 20 4 4
COVID-19 100 42 4 3
HAM10000 62 35 16 4

Table 4. Time per Epoch of Different Models(in seconds)

As seen in Table 4, the AE and VAE in general display significantly
better performance in terms of time taken to train. Combining this
with the fact that the AE and VAE tend to produce better results
with imbalanced datasets, the unsupervised models do seem like the
wise choice for a task involving a dataset with extreme imbalances.

7 FUTURE WORK

Looking back on the goals of this research, there is plenty of room
for further development, which could be reached with an increase in
resources like time, number of researchers and more. Collaborative
efforts from various researchers would be beneficial to the expan-
sion of this research to deepen our views on the different machine
learning models used to detect diseases.

7.0.1  Unsupervised Models. So far, there is ample evidence that
shows that autoencoders and variational autoencoders might be
a better choice when it comes to extremely imbalanced data, es-
pecially considering the costs that go into obtaining and labelling
data for supervised models. We looked at the AUC values of dif-
ferent classes for the unsupervised models, and along with their
accuracy, were able to conclude that they are an effective means of
detecting anomalies in medical images. However, there are many
varieties of autoencoders. For example, masked(MAE) and sparse
autoencoders(SAE) could perform just as well, if not better than the
VAE, and performing further experiments with these models would
deepen our insight on what models are more suited for the different
types of datasets.

7.0.2  Supervised Models. At the same time, we also looked at the
accuracy of supervised models along with the F1 scores on the
different classes. Once again, other supervised models like Deep-
CNNss or other pre-trained models can also be tested to explore the
possibilities and check if perhaps there might just be a model that
produces fruitful results.

7.0.3  Enhancing Current Performance. Finally, the models that were
explored in this research could still be further fine-tuned for use on
the datasets used, to check if there may be ways of obtaining better
results and making sure no class has low F1-scores or AUC values.

8 CONCLUSION

In this study, we attempt to enhance our understanding of the per-
formances of different models, both supervised and unsupervised,
in the field of the detection of diseases in medical images. We ex-
plore two supervised models - Resnet50 and Densenet121 - and two
unsupervised models - autoencoders and variational autoencoders.
The former two models are pre-trained models on which we apply
transfer learning and fine-tuning to produce results that cater to
the requirements of this study. The latter two models, are trained
on one non-anomaly class and then used to detect the presence of
different diseases in the anomalous images.

By doing this, we see that supervised models may perform effec-
tively with a certain level of imbalance in datasets and even produce
results better than an AE or VAE can since these supervised models
can extract features from images better, considering they are de-
signed for this purpose. However, after a certain threshold, when
the imbalance is too extreme, AEs and VAEs seem to surpass the
performance of the supervised models, not just by how well they
predict anomalies, but also by the short period under which they
achieve the task.

This helps us answer SQ1, which asks how well the supervised
and unsupervised models perform in terms of the various metrics
available since we now see that all models seem to produce results
with high accuracy. The supervised models have a higher accu-
racy than the unsupervised models since they are meant to extract
features from images. However, their effectiveness reduces with a
greater imbalance in the datasets, as observed in Table 1, where
the F1-scores are very low for HAM10000. On the other hand, even
though the accuracy of the AE and VAE are slightly lower, they
are still effective enough to detect anomalies and would be able to
operate at this level consistently, regardless of the dataset.

To answer SQ2, which refers to how effectively we can use trans-
fer learning and fine-tuning to produce better results, we experi-
mented with the hyperparameters of the various models and arrived
at the best possible results. The different metrics recorded in this
paper are based on these models. Future research in this field can
attempt to improve the models by tweaking the results further.

The research aims to highlight the need for the use of anomaly
detection and multiclass classification for the diagnoses of rare
diseases, since they become increasingly arduous to detect, the rarer
they get. It portrays the effectiveness of such models and shows the
potential of Al in the field of medicine as a means to detect health
concerns quicker before extensive treatment is required, as well as
to make sure that diagnoses are accurate.

This study lays a foundation for many future studies to come.
With the collective action of multiple researchers on this topic, as
well as deeper investigation of the models used and new models alike,
we can pave a clearer path to further our understanding of the most
effective means of machine learning and potentially revolutionise
the methods by which we detect and treat rare diseases.
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