
The evaluation of the conditioning task regarding probabilistic databases
JULIAN VAN DEN NIEUWENHUIZEN, University of Twente, The Netherlands

Probabilistic Databases aim to solve the problem of inconsistent or uncertain
data collection and storage by using data representation on a probabilistic
basis. By using this representation the database is able to store, retrieve and
change uncertain data [2]. Probabilistic data Integration (PDI) is a type of
data integration that achieves this goal. The PDI process contains 2 phases
[2], the integration of data where data quality problems are not immediately
solved but instead are represented as uncertainty in the probabilistic database.
Afterwards the data will be continuously improved by gathering evidence
through for example user feedback and improving the data accordingly. This
research will focus primarily on the second step of the PDI process. The
second phase of the PDI process is called conditioning. This paper shows
results regarding the scalability of conditioning as well as the scalability of
optimizing the database after a conditioning cycle. Furthermore, it shows in
what situations optimizing the conditioned database has a positive effect.

Additional KeyWords and Phrases: Probabilistic Database, PDI, conditioning,
data quality, evidence, uncertain data

1 INTRODUCTION
Over the past decades, the introduction of probabilistic databases
has become a viable substitution in fields like information retrieval,
data cleaning, sensor data, tracking moving objects, crime fighting
and computational science [1]. The ability to create, change, query
and manipulate uncertain data is what sets a probabilistic database
apart from a conventional database. In theory this should allow the
user to retrieve this data in a much more efficient and reliable way.
This research will make use of an extension on PostgreSQL named
DuBio which adds probabilistic data types, functions and operators,
making a database into a probabilistic database. The way to achieve
an advantage over the conventional database involves the use of
the second step of the PDI process. After doing a quick integration
of the uncertain data, the database will in essence be based on the
possible worlds theory [4]. Data can be represented in a number
of different ways depending on the probability of the data. This
creates a number of different possible worlds. Conditioning aims to
introduce rules to eliminate a subset of possible worlds [3] [4] [5] .
This is done by eliminating possible worlds that are not consistent
with the newly proposed rule(s). The next step is to redistribute the
eliminated probability mass over the possible worlds that do satisfy
the newly proposed rule(s)[4]. We can make a distinction between
hard and soft rules, hard rules completely eliminate possible worlds
while soft rules redistribute the probability of the existing possible
worlds [4]. More on this can be found in [4].

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Table 1. Example of database entry

name eye_color _sentence
Julian blue Bdd(X=1)
Julian brown Bdd(X=2)
Julian green Bdd(X=3)

Table 2. Example of dictionary

name dict
mydict X=1:0.5; X=2:0.3; X=3:0.2

2 BACKGROUND

2.1 Dubio
The probabilistic database system DuBio is being developed by the
University of Twente since 2021. DuBio adds a number of additional
functions to the existing capabilities of the SQL language. While
SQL already has a wide range of functionality in creating, querying
and altering databases, DuBio is aimed to specifically add function-
ality to accommodate the use of probabilistic concepts. To achieve
this, several existing functions and capabilities of the SQL-language
needed to be updated to include the creation of the required new
data types and the ability to query and update the new data. The
first step to making the use of probabilistic data possible, involves
the creation of an efficient way to store the data. This required the
creation of a new data type called "Bdd", this data type has the ability
to store a large number of variables with their respective probability
of being true. The Bdd data type has a numeric value between 0 and
1, based on the combined probability of all the variables and their
individual probabilities. This newly created Bdd data is stored in
the sentence column of a database entry. Table 1 shows a simple
example of what this would look like. A person with three different
possible data entries with a Bdd value stored in the _sentence col-
umn. In addition to this new data type and data entry column, a way
to store variables with different possible values and their respective
probabilities needed to be created. This is done with the use of a
dictionary. Figure 2 shows a simple example of what this would look
like. A dictionary with variable X, that can obtain different values
with their respective probability.

2.2 Conditioning
Conditioning is part of the Probabilistic Data Integration process,
or PDI. As mentioned in the introduction, the PDI process consists
of 2 steps. The first step involves the quick integration of the proba-
bilistic data into the database. The second step, called conditioning,
is the process of improving the quality of the data. The quality
improvement of the data starts with obtaining evidence of some
form, this could be through data analysis, witness testimonies, user
surveys and many more things. This evidence can be split into two
categories, hard rules and soft rules. A hard rule implies that one

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Julian van den Nieuwenhuizen

of the values that a variable can attain, is either definitively true or
false, meaning the probability of that value is either 1 or 0. A soft
rule implies that the probability of the values that a variable can at-
tain have to be redistributed. The process of applying a hard or soft
rule to a probabilistic database involves updating the probabilities
in the dictionary table to be in line with the new rule. Furthermore,
if a hard rule is introduced, the sentence column in the database
entries has to be updated as well.

3 IMPLEMENTATION

3.1 Conditioning
For the purpose of this research, an implementation of conditioning
has been made. This implementation requires the introduction of a
new rule, meaning the probabilities of the values of a variable will
change. This implementation will make use of the introduction of
a hard rule. The introduced hard rule will make the probability of
one of the values of a variable one, meaning it is the only possible
value for this variable. This implementation requires two steps:

• Updating the dictionary after the introduction of the hard
rule

• Updating the sentence column of the database entries

The first step is accomplished by running an update statement on
the dictionary. The probability of one of the values of a variable is set
to 1, while the others are set to 0. The second step is accomplished
by running an Update statement on the testdata table. The sentence
column of the database entries will be appended with the only
possible value for the updated variable, if the sentence does not
contain this value yet. This will make all the database entries which
previously did not contain the only possible value inherently false,
since the probability of a database entry having two different values
for the same variable is impossible. The exact update statements
used for the implementation are listed in Appendix A.

3.2 Optimization
For the purpose of this research, an implementation of optimizing a
conditioned database has been made. This implementation builds
on the implementation of conditioning described in the previous
subsection. The optimization of a conditioned database, is the pro-
cess of deleting all database entries that have a probability of 0 after
the conditioning cycle. This implementation requires two steps:

• Fetching all the probabilities of the database entries
• Deleting all database entries that have a probability of 0

The two steps are done simultaneously by using the testdata and
dictionary table together in a delete statement. The statement will
check if the probability of the database entry is equal to 0, if this
is the case, the statement will then delete this database entry. The
exact delete statement used for the implementation is listed in Ap-
pendix A.

4 RESEARCH QUESTIONS
The two main research question that this paper will try to answer
are:

• How does the performance of the conditioning implementa-
tion scale with growing data?

• How does the performance of the optimization implementa-
tion scale with growing data?

The sub research questions to support themain research questions
are:

• What kind of mathematical function best represents the re-
lation between the data sample size and execution time of a
conditioning cycle?

• What kind of mathematical function best represents the re-
lation between the data sample size and execution time of
optimizing a conditioned database?

• How does the performance of a conditioned database compare
to the performance of a conditioned database which has been
optimized?

5 METHODOLOGY

5.1 Preparing the database
5.1.1 Database structure. In order to answer the research questions,
a suitable database needs to be setup. This process starts with defin-
ing the database structure. The database structure needs to have
a unique id so that multiple database entries can be linked to this
id. Furthermore, the database structure needs 2 variables that can
have different values, for the purpose of the second part of this
research. This also means that there needs to be a sentence to store
these variables. And lastly the database structure needs to include a
dictionary, that can store the different variables and their respective
probabilities. The proposed database structure will be set up using
phpPgAdmin.

5.1.2 Generating and inserting data. For the purpose of this re-
search, the choice was made to use synthetically generated data.
Because this is the first research being done on this subject, the
obvious starting point is to use synthetic data. Real data would take
many additional steps to prepare for testing which could take a
considerable amount of time. The generation of the data is done
through the use of a script. A single instance of data contains the
following:

• An id, [1,2,3....]
• An eye color, [blue, brown, green]
• A hair color, [blonde, brown, black]
• A sentence, containing two variables with their respective
value

There will be 9 different database entries for each unique id, since
there are three different eye and hair colors. Table 3. gives a visual
representation of the different database entries of one unique id.
The script will also fill the dictionary with two variables X and Y,
referring to eye and hair color respectively. The two variables will
have three different values, referring to the different eye and hair
colors. Table 4. gives a visual representation of the dictionary.

2



The evaluation of the conditioning task regarding probabilistic databases TScIT 41, July 5, 2024, Enschede, The Netherlands

Table 3. Database entry

id eye_color hair_color _sentence
1 blue blond Bdd(X=1 & Y=1)
1 blue brown Bdd(X=1 & Y=2)
1 brown black Bdd(X=1 & Y=3)
1 brown blond Bdd(X=2 & Y=1)
1 brown brown Bdd(X=2 & Y=2)
1 brown black Bdd(X=2 & Y=3)
1 green blond Bdd(X=3 & Y=1)
1 green brown Bdd(X=3 & Y=2)
1 green black Bdd(X=3 & Y=3)

Table 4. Dictionary

name dict
mydict X=1:0.5; X=2:0.3; X=3:0.2

Y=1:0.5; Y=2:0.3; Y=3:0.2

5.2 Experiments
5.2.1 Conditioning. To test the scalability of conditioning a data-
base, the performance of the conditioning will have to be measured
at various data sample sizes. This includes the measuring of the
times it takes to update the sentence column, as well as the time it
takes to update the dictionary. With the measurements gathered, a
graph can be constructed to study the relation between the perfor-
mance and the data sample size.

5.2.2 Optimization. To test the scalability of optimizing a condi-
tioned database, the performance of the optimization of a condi-
tioned database will have to be measured at various sample sizes.
With the measurements gathered, a graph can be constructed to
study the relation between the performance and the data sample
size.

5.2.3 Performance gain of optimizing a conditioned database. To
test the performance gain of optimizing a conditioned database, a
set of experiments will have to be conducted. A distinction is made
between the retrieval of normal data and probabilistic data. For both
methods of retrieval, the performance of a conditioned database
will have to be compared to the performance of an optimized con-
ditioned database. The statement to measure the performance of a
conditioned database will have an addition that guarantees that the
list of database entries retrieved, only contains database entries with
a probability higher than 0. The statement needed to measure the
performance of an optimized conditioned database will not require
the addition, since the data left after optimizing is guaranteed to
have a probability higher than 0. Furthermore, the performance of
retrieving data will also be tested for probabilistic data. The key
difference is the fact that these statements will have an additional
column attached to all the retrieved database entries, containing
the probability. This probability will be calculated with help of the
dictionary table. The exact queries that will be used, can be found
in Appendix A.

5.3 Measuring performance
5.3.1 Explain analyze. The PostgreSQL language has a wide range
of functionality to measure performance. For the purposes of this
research, the SQL command EXPLAIN ANALYZE will be used. By
adding this command before any select/update/create statement,
SQL will supply the user with a range of information. Most im-
portantly it will supply the user with the execution time of the
statement based on the plan it constructs. However, the statement
following the explain analyze will be executed as well. For some of
the statements that will be used for this research, we do not want
that to happen. To prevent the execution of the statement, a script
ensures that the SQL statements are not committed.

5.3.2 Method of measurement. It is important to choose a method
of measurement that will ensure that the data gathered is of good
quality. To ensure that the variation in execution times of different
statements is minimized in the results, each statement will be run
ten times in succession. The first measurement will be discarded
because it is always somewhat to considerably slower than the sub-
sequent measurements. The remaining measurements will be used
to calculate an average execution time, which can be used to draw
graphs and draw conclusions. All execution time measurements will
be in milliseconds. To measure the scalability, the measurements
will be done on a range of different sample sizes. The sample sizes
are logarithmic with base 10, up to 100000. This will grant the abil-
ity to study the mathematical function that the measurements of
scalability will present. The data samples have a logarithmic size
of unique id’s, meaning that the actual database sample size is nine
times higher.

6 RESULTS

6.1 Conditioning
The measurements of a conditioning cycle include the execution
times of updating the dictionary and updating the sentence column.
This research is aimed at studying the scalability of the conditioning
cycle. The execution time to update the dictionary can be disre-
garded for the purpose of this experiment, since the value will be
the same regardless of the data sample size. The graph depicted
in Figure 1. shows the different sample sizes with their respective
execution times. Both axis have a logarithmic scale, so that a mathe-
matical function can be seen. The line appears to be nearly straight,
meaning that the execution times grow at the same rate as the data
sample size. This points to a linear function.
The graph depicted in Figure 2. shows the average execution times
of 10 unique id’s per data sample size. The size of the bars, which
represent the execution time, decrease at a steady rate, after which
they increase slightly to a relatively consistent level. This points to a
function that linearly decreases up until a certain point, after which
it becomes a linear function. Further testing revealed the lowest
relative execution time to be at approximately 5000 id’s.

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Julian van den Nieuwenhuizen

Fig. 1. Execution time for data sample sizes

Fig. 2. Execution time per 10 IDS

6.2 Optimization
The measurements of optimizing the conditioned database include
the execution times of optimizing the database by deleting the data-
base entries that have a probability of 0. The conditioning cycle is
responsible for making two thirds of the database entries suited
for deletion. The graph depicted in Figure 3. shows the different
sample sizes and their respective execution times. Both axis have
a logarithmic scale, so that a mathematical function can be seen.
With every increase in database sample size, it can be noted that
the execution time increases at a slight exponential rate. Indicating
that the optimization of a conditioned database will become more
time consuming, the bigger the sample size gets.

Fig. 3. Execution time for data sample sizes

6.3 Performance gain of optimizing a conditioned
database

The goal of optimizing a conditioned database, is to decrease the ex-
ecution times of all the subsequent queries and functions performed
on the database. In the following sections, the performance gain of
retrieving data through a select statement will be examined through
the measurements presented. A distinction is made between the
retrieval of normal data and the retrieval of probabilistic data. The
measurements for the sample size of 100000 have been omitted since
they made the graphs unreadable.

6.3.1 Normal data. The measurements of retrieving normal data
from an optimized conditioned database and from a conditioned
database show the execution time for various data sample sizes.
The graph depicted in Figure 4. shows the comparison between
execution times and data sample sizes. There are two lines in the

4



The evaluation of the conditioning task regarding probabilistic databases TScIT 41, July 5, 2024, Enschede, The Netherlands

graph, one represents the execution times of data retrieval from a
conditioned database, the other represents the execution times of
data retrieval from an optimized conditioned database. The lines
show that the execution times of data retrieval without optimizing
the database are faster at every data sample size. Indicating that opti-
mizing the conditioned database, does not save time when retrieving
data. However, the fact that optimizing the conditioned database
only has to be done once, has to be considered. The graphs depicted
in Figure 5. show the relation of execution times for subsequent
select statements for different data sample sizes. The lines represent
the conditioned database and the optimized conditioned database.
The lines intersect somewhere between the first and second select
statement. This points to the fact that after only 2 subsequent se-
lect statements, the optimized conditioned database has a faster
execution time for every data sample size.

Fig. 4. Execution times of select statements

Fig. 5. Execution times of subsequent select statements

6.3.2 Probabilistic data retrieval. The measurements of retrieving
probabilistic data from an optimized conditioned database and from
a conditioned database show the execution time for various data
sample sizes. The graph depicted in Figure 6. shows the comparison

between the execution times and data sample sizes. The two lines
represent the execution times of probabilistic data retrieval from
a conditioned database, and from an optimized conditioned data-
base. The lines indicate the same pattern as the retrieval of normal
data. The retrieval on a conditioned database is faster in every case.
However, again the fact that the optimization only has to be done
once has to be considered. The graphs depicted in Figure 7. show
the relation of execution times for subsequent select statements
for different data sample sizes. The point where the lines intersect,
indicates that the retrieval from the optimized conditioned database
has surpassed that of the conditioned database. Furthermore, the
point of intersection seems to decrease, the bigger the data sample
size. Indicating that the performance gain increases, the bigger the
data sample size becomes.

Fig. 6. Execution times of probabilistic select statements

Fig. 7. Execution times of subsequent probabilistic select statements

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Julian van den Nieuwenhuizen

7 CONCLUSIONS
The results on the scalability of the conditioning cycle indicate that
the execution time scales approximately linear with the size of the
database. The optimal performance was found to be around 5000
unique id’s, which is around 45000 database entries. The results on
the optimization of the database indicate two things. The scalability
of the optimization is limited by sample size. However, the results
indicate that the optimization does in fact provide a performance
gain after only a few select statements. Moreover, the performance
gain increases with database size when retrieving probabilistic data.

8 DISCUSSION
Based on the conclusion made regarding the performance gain of
the optimization of the conditioned database, the advise for the
creators of DuBio is to make an optimize function. The conclusion
is based on the performance gain observed when using subsequent
select statements, which is a real world use case. The optimize
function would therefore actually save time and therefore is worth
developing.

9 FUTURE WORK
The scope of this research is limited, therefore there is a lot of re-
search still to be done regarding the evaluation of the conditioning
task.

Firstly, this research is focused on the scalability of the condition-
ing task through varying data sample sizes. Further research can
be done on the scalability of the complexity of the sentence. This
would be a great addition to the overall research of the scalability.

Secondly, this research focused solely on the use of a select state-
ment to test the optimization implementation. Further research can
be done with a range of different statements.

REFERENCES
[1] Oktie Hassanzadeh and Renée J. Miller. 2009. Creating probabilistic databases

from duplicated data. The VLDB Journal 18, 5 (01 Oct 2009), 1141–1166. https:
//doi.org/10.1007/s00778-009-0161-2

[2] Maurice Van Keulen. 2018. Probabilistic Data Integration. Springer International
Publishing, Cham, 1–9. https://doi.org/10.1007/978-3-319-63962-8_18-1

[3] Christoph Koch and Dan Olteanu. 2008. Conditioning probabilistic databases. arXiv
preprint arXiv:0803.2212 (2008).

[4] Maurice van Keulen, Benjamin L. Kaminski, Christoph Matheja, and Joost-Pieter
Katoen. 2018. Rule-Based Conditioning of Probabilistic Data. In Scalable Uncertainty
Management, Davide Ciucci, Gabriella Pasi, and Barbara Vantaggi (Eds.). Springer
International Publishing, Cham, 290–305.

[5] Hong Zhu, Caicai Zhang, Zhongsheng Cao, Ruiming Tang, and Mengyuan Yang.
2014. An Efficient Conditioning Method for Probabilistic Relational Databases. In
Web-Age Information Management, Feifei Li, Guoliang Li, Seung-won Hwang, Bin
Yao, and Zhenjie Zhang (Eds.). Springer International Publishing, Cham, 225–236.

A SQL AND DUBIO QUERIES
Goal Query
Update the dictio-
nary

UPDATE testdatabase._dict SET dict =
upd(dict, ’X=1:1; X=2:0; X=3:0’)

Update the sentence
column

UPDATE testdatabase.testdata SET
_sentence = _sentence & Bdd(’X=1’)

Query data with
probability not 0

SELECT t FROM testdatabase.testdata t,
testdatabase._dict d WHERE d.name =
’mydict’ AND prob(d.dict, t._sentence)
!= 0

Query probabilistic
data with probabil-
ity not 0

SELECT t, prob(d.dict, t._sentence)
FROM testdatabase.testdata t, test-
database._dict d WHERE d.name = ’my-
dict’ AND prob(d.dict, t._sentence) != 0

Query optimized
data SELECT * FROM testdatabase.testdata

Query probabilistic
optimized data

SELECT t, prob(d.dict, t._sentence)
FROM testdatabase.testdata t, test-
database._dict d

Optimize the data-
base

DELETE FROM testdatabase.testdata
t USING testdatabase._dict d WHERE
d.name = ’mydict’ AND prob(d.dict,
t._sentence) = 0

B RAW DATA

6

https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.1007/978-3-319-63962-8_18-1


The evaluation of the conditioning task regarding probabilistic databases TScIT 41, July 5, 2024, Enschede, The Netherlands

10 UI 90 entries 100 UI 900 entries 1000 UI 9000 entries 10000 UI 90000 entries 100000 UI 900000 entries
Conditioning 2,536 15,354 171,84 1699,717 14238,866

1,809 13,522 101,529 1333,757 13233,676
2,205 12,564 103,731 1165,814 10603,249
2,034 15,459 102,863 1286,068 10689,47
1,685 14,091 101,401 1354,016 13920,596
1,629 13,612 103,875 1194,332 13461,876
1,953 16,264 104,553 1258,049 13642,271
1,856 14,955 104,557 1420,608 10408,216
1,735 13,39 105,003 1377,203 10908,769
2,256 14,523 106,499 1317,405 12579,337

Optimizing Database 1,112 3,014 17,951 186,885 4822,191
0,757 2,536 16,554 125,894 2449,012
0,962 2,61 17,461 128,011 2558,104
0,891 2,655 15,837 127,802 2412,541
0,798 2,915 17,05 128,237 2401,413
1,027 2,871 16,351 127,4 2395,215
0,962 2,401 16,899 127,135 2438,297
1,11 2,745 16,813 126,824 2517,303
1,009 2,091 17,439 126,984 2590,416
0,909 2,841 15,862 127,79 2426,581

Select Not Optimized 1,112 3,014 17,951 186,885
0,757 2,536 16,554 125,894
0,962 2,61 17,461 128,011
0,891 2,655 15,837 127,802
0,798 2,915 17,05 128,237
1,027 2,871 16,351 127,4
0,962 2,401 16,899 127,135
1,11 2,745 16,813 126,824
1,009 2,091 17,439 126,984
0,909 2,841 15,862 127,79

Select Optimized 0,152 0,277 1,416 13,455
0,124 0,204 1,022 10,787
0,127 0,173 1,398 11,664
0,1 0,182 1,294 13,452
0,094 0,182 1,097 10,891
0,105 0,183 1,084 13,145
0,094 0,256 1,083 11,849
0,115 0,236 1,077 11,72
0,093 0,183 1,022 11,899
0,079 0,244 1,079 11,53

Select Not Optimized PROB 1,121 2,728 15,629 172,178
1,099 2,197 14,318 109,449
1,104 2,52 14,6 130,547
1,087 2,231 15,088 109,884
0,877 2,543 15,11 109,247
0,969 2,557 14,095 108,616
1,011 2,359 15,234 108,271
0,895 2,718 15,291 109,671
0,775 2,571 14,857 108,763
1,003 2,535 13,912 109,913

Select Optimized PROB 0,951 1,364 6,937 40,266
0,772 1,09 6,277 38,336
0,699 1,29 6,662 38,19
0,647 1,281 5,539 38,951
0,766 1,289 6,209 38,91
0,88 1,239 6,322 39,657
0,676 1,075 5,196 38,131
0,824 1,36 5,429 39,504
0,674 1,281 5,194 38,277
0,625 1,142 6,225 39,501

7


	Abstract
	1 Introduction
	2 Background
	2.1 Dubio
	2.2 Conditioning

	3 Implementation
	3.1 Conditioning
	3.2 Optimization

	4 Research Questions
	5 Methodology
	5.1 Preparing the database
	5.2 Experiments
	5.3 Measuring performance

	6 Results
	6.1 Conditioning
	6.2 Optimization
	6.3 Performance gain of optimizing a conditioned database

	7 Conclusions
	8 Discussion
	9 Future Work
	References
	A SQL and DuBio Queries
	B Raw data

