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Diagnostics play a crucial role in ensuring the reliability and e�ciency of

Cyber-Physical Systems (CPSs). By promptly detecting system anomalies and

their root causes, it becomes possible to ensure maximum uptime through

preventive or corrective measures. However, developing an e�ective diag-

nostic system is challenging, requiring comprehensive knowledge about the

expected system behavior. One way to achieve this is by specifying a model

of the system using a Domain-Speci�c Language (DSL) that incorporates

knowledge of the system’s components and processes. In this research, we

de�ne a methodology for developing such a DSL. We begin by identifying a

general methodology for designing a DSL applicable to the domain of CPS

diagnostics. Then, we explore how the knowledge about CPS diagnostics

can be formalized within a model. Finally, we investigate the methodology

utilized by an existing DSL in this domain. This research is expected to

contribute to the �eld of DSL development and the diagnostic formalization

of complex systems.

Additional KeyWords and Phrases: Cyber-Physical System, Domain-Speci�c

Language, Diagnostics

1 INTRODUCTION

Cyber-Physical Systems (CPSs) represent complex structures, inte-

grating software, networking, computation, and physical operations

[37]. They are found in various �elds such as transportation, health-

care, smart housing, and agriculture, accounting for a large part

of the global economy [4]. For instance, the market size of CPSs

was around $8.45 billion in 2023 and is anticipated to grow to $14.2

billion by 2031 [3]. Therefore, failures in such systems are critical

and can potentially lead to signi�cant �nancial losses due to reduced

productivity and customer dissatisfaction. Additionally, system mal-

functions could lead to serious injuries or even fatalities, as is the

case with medical systems [37]. Hence, to ensure the reliability

and e�ciency of such systems, it is necessary to incorporate e�-

cient diagnostics that allow the timely application of preventive or

corrective measures.

However, various diagnostic techniques, such as Model-Based

Diagnosis (MBD), require the formalization of the system’s com-

ponents and processes within a model, along with indicators of

potential failures [32]. One possible solution to achieve this is by im-

plementing a Domain-Speci�c Language (DSL), which is a computer

programming language designed for a speci�c application domain

[17]. In the scope of this research, the domain is CPS diagnostics.

Thus, the DSL de�nes formal rules by which the system behaves

under normal conditions. If the system functions di�erently from

what is speci�ed in the model, it could indicate a potential failure.

Additionally, such models could provide insights into the speci�c

causes of failures, allowing for a more orderly approach to their

resolution.
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Another alternative is to use a General-Purpose Language (GPL)

such as Java, Python, or C++. However, DSLs are more appropriate

for diagnostics as they o�er reduced expressiveness, ensuring lower

complexity and bettermaintainability [17, 27, 37]. DSLs also improve

communication between programmers and domain experts, as the

latter are not always familiar with GPL concepts [17].

Nevertheless, despite extensive research conducted on designing

and evolving DSLs in general [17, 19, 21, 24, 27, 28, 38], modeling

complex systems [6, 7, 10, 22, 26, 33, 37], and formalizing knowledge

about system anomalies [8, 15, 29, 30, 32], there remains a gap in

de�ning the methodology for DSL design speci�cally in the domain

of CPS diagnostics. Such a methodology can provide an overview

of things to take into consideration when developing a DSL for this

domain. This knowledge can improve CPS diagnosability, thereby

reducing downtime and the risks of critical failures. Hence, we

express the purpose of this research as follows:

De�ne a methodology for DSL design in the domain of CPS diag-

nostics.

Wewill further explore this by considering the following research

questions:

(1) How can a DSL be designed speci�cally for the domain of

CPS diagnostics?

(2) How can the knowledge about CPS diagnostics be formalized

within a model?

(3) What is the methodology used by CML, an existing DSL in

the domain of CPS diagnostics?

This paper is organized as follows: Section 2 describes the method-

ology, Section 3 reviews related literature to establish the context

and background for the research, Section 4 presents �ndings on

the DSL design in the domain of CPS diagnostics, and Section 5

concludes the paper and suggests options for further research.

2 METHODOLOGY

In this section, we describe the steps used to achieve the research

objectives, including an extensive literature review and an interview

with an expert in language engineering.

2.1 Literature Review

To collect related literature within the research domain, we used

Google Scholar. By utilizing combinations of search terms, such

as "Model-Based Diagnosis", "Fault Diagnosis", "Domain-Speci�c

Language", "Anomaly Detection", and "Cyber-Physical System", we

identi�ed a range of documents addressing these topics.

For the literature review, we combined the knowledge from exist-

ing work in the �elds of domain-speci�c languages, model-based

diagnosis, and model-driven engineering, and applied it to derive

a methodology for DSL development speci�cally in the domain of

CPS diagnostics.
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We began by studying DSL design in general and identifying

relevant information speci�c to the domain. In particular, we deter-

mined the purpose of the DSL and its usage for CPS diagnostics. We

also de�ned the potentially supported features by the DSL based on

existing applications. Next, we chose an appropriate category of the

DSL applicable to the domain. Additionally, we derived design prin-

ciples and computational models that are suitable for the domain of

CPS diagnostics. Finally, we formulated development phases and

their corresponding patterns based on the domain.

The next step in the literature review involved formalizing CPS

diagnostics within the MBD framework, which is explained in sub-

section 4.2. Speci�cally, we explored MBD techniques to formalize

system diagnostics within a model and examined how CPSmodeling

di�ers from traditional embedded systems modeling by considering

the notions of system-of-systems and interoperability. We paid par-

ticular attention to the approach illustrated by Barbini et al. (2021)

[8], which was utilized by the ADiA project [2] and discussed during

the expert interview.

2.2 Expert Interview

An essential part of this study was an interview with a specialist

at TNO-ESI [5], a research center specializing in systems design

and engineering for the high-tech equipment sector. This interview

provided valuable insights into the ADiA (Assisted Diagnostics in

Action) project, which developed a DSL named CML (Component

Modeling Language) used to model CPSs for computing diagnos-

ability. We analyzed the methodology utilized in CML, involving

aspects such as the framework, language concepts, functionality,

and development phases.

3 RELATED WORK

In this section, we provide an overview of the existing work done

in the �elds of domain-speci�c languages, model-based diagnosis,

and model-driven engineering. This knowledge is further used in

the literature review from subsection 2.1 as part of the research

methodology.

3.1 Domain-Specific Languages (DSLs)

The �eld of DSLs is a widely researched topic, covering aspects of

real-world applications, development methodologies, and Model-to-

Model (M2M) transformations. Fowler and Parsons (2010) [17] as

well as Wąsowski and Berger (2023) [38] provide general overviews

of DSLs, which discuss terminologies in DSL development, their

categories, design guidelines, language aspects, and M2M transfor-

mations. Mernik et al. (2005) [28] analyze development phases and

their recurring patterns utilized by DSLs. Mengerink et al. (2018)

[27] explore the evolution of DSLs by examining (semi-)automated

processes and identifying the most volatile components in DSL de-

velopment. Hermans et al. (2009) [21] explore the success factors

of DSLs, focusing on a DSL used for creating web services. Van

den Berg et al. (2018) [37] developed and described a DSL for CPSs

with the ability to compute the Pareto optimal system designs and

explore all possible operation modes. In industrial contexts, Gray

and Karsai (2004) [19] provide an overview of three DSLs, focusing

on tool integration through model transformations, and quantitative

analysis of DSLs with their generated code in C++. Lastly, Karsai et

al. (2014) [24] detail 26 general principles for DSL design, providing

practical guidelines for developers.

This research also builds on the methodologies and patterns of ex-

isting DSLs. For instance, Hawk [26] is a DSL embedded in Haskell,

using a functional approach to de�ne and verify micro-architectures.

Verilog [7] is used for designing and verifying digital circuits at the

register transfer level. An extension of Verilog, Verischemelog [22],

embedded in Scheme [16], o�ers greater �exibility and maintain-

ability for hardware design simulations. Facile [33] speci�es micro-

architecture simulators using fast-forwarding techniques. SHIFT [6]

uses state-based descriptions to model complex systems such as au-

tomated highways and air tra�c control. LINQ (Language Integrated

Query) [14] is a DSL internal to C# that provides a user-friendly

solution for querying data from sources like SQL or XML. UPPAAL

[10] represents real-time systems as networks of timed automata.

ATL [23] and VMT [35] focus on describing M2M transformations.

mCRL2 [20] is used for modeling, validation, and veri�cation of

concurrent systems. Overall, these DSLs demonstrate a range of

approaches and techniques, providing insights into design patterns

for various domains.

3.2 Model-Based Diagnosis (MBD)

Understanding the domain of the DSL is crucial to its design. In

the context of CPS diagnostics, this involves the concept of MBD.

Within this area, Chandola et al. (2009) [15] provide di�erent math-

ematical techniques for anomaly detection. Pietersma et al. (2005)

[32] illustrate a model-based approach for deriving test sequences

for fault diagnosis using the modeling DSL called Lydia. Barbini

et al. (2021) [8] demonstrate an application of the MBD method-

ology to compute system diagnosability and identify hypothetical

sensors needed to �nd root causes of system anomalies. Kurien and

R-Moreno (2008) [25] as well as Pietersma and van Gemund (2007)

[31] analyze the costs and bene�ts of the MBD approach. Munirathi-

nam and Balakrishnan (2016) [30] also consider an alternative to

the MBD approach in the form of Data-Driven Diagnostics (DDD),

proposing machine learning techniques for predicting equipment

faults in the semiconductor manufacturing process.

3.3 Model-Driven Engineering (MDE)

In the scope of this research, the DSLmethodology is used within the

context of MDE, and this paper considers general principles from

this framework. For instance, Bézivin (2004) [13] explores meta-

modeling, model transformations, and automated code generation

from models. Similarly, Brown (2004) [12] provides an introduction

to MDE theory and its practical applications, o�ering examples

of various models, extensions of modeling languages, and Rapid

Application Development (RAD) solutions.

4 FINDINGS

4.1 RQ 1: DSL Design

There are many di�erent aspects when it comes to the DSL design

of CPS diagnostics. Due to the limited scope of this research, we

considered only the following: DSL’s purpose, features, category,

principles, computational models, and development phases. These
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aspects were chosen based on those considered in other DSL-related

papers [17, 21, 28, 37, 38].

4.1.1 Purpose. Before designing a DSL, it is important to under-

stand its application in the domain. For CPS diagnostics, the DSL can

be applied within the MBD framework, where the system’s health

is inferred by its compositional model in comparison with observed

inputs and outputs [32]. Speci�cally, a DSL is used to model the sys-

tem and transform it into the primary language of the application,

which is then used for further development of diagnostic algorithms.

More information on that is provided in subsection 4.2.

4.1.2 Features. Based on theDSL’s purpose and existing approaches

to MBD, the language can potentially support the following features:

(1) Detection of faults and their root causes [9, 32, 37].

(2) Choosing CPS sensors [8, 9].

(3) Evaluating diagnosis accuracy [8, 9, 37].

(4) Evaluating diagnosis costs [32].

(5) Model extraction from existing data [9].

(6) Model visualization [8, 37].

However, the exact features would depend on the speci�c require-

ments of CPS stakeholders. Depending on the chosen feature set,

the design can signi�cantly vary. For instance, determining the root

causes of CPS faults would require the mappings between anomalies

and fault indicators to be embedded in the DSL design.

4.1.3 Category. According to Wąsowski and Berger (2023) [38],

all DSLs can be divided into the following two categories: external

DSLs and internal DSLs.

(1) External DSLs: Languages that operate independently from

the primary language of the application they work with. For

example, database queries in SQL, software building in Make,

typesetting in LaTeX, and hardware design in VHDL [28].

(2) Internal DSLs: The use of a GPL in a speci�c way, utilizing

a subset of its features to manage a particular aspect of the

system. For example, querying data in LINQ within C# [14].

In the domain of CPS diagnostics, an internal DSL might not be a

suitable choice due to the system’s complexity and the possibility

that domain experts may not have adequate skills in GPLs [17]. How-

ever, an external DSL that mirrors the structure and semantics of

CPSs is a potential option. In this case, the DSL provides an intuitive

understanding of the system, thereby facilitating communication

between stakeholders.

DSLs can also be categorized according to their development

work�ow patterns, which is described in more detail in subsubsec-

tion 4.1.6.

4.1.4 Principles. To determine the principles behind the DSL de-

sign, it is necessary to understand its intentions. In the context of

CPS diagnostics, the DSLs are expected to improve productivity

during the development, maintenance, and utilization of diagnostic

software by facilitating error detection, system modi�cation, and

program understanding [17, 28]. The latter is especially important

as code comprehension can be time-consuming and may require

more than half of the time allocated for software maintenance [39].

Another principal intention behind DSLs is to enhance interaction

with domain specialists, as they are not always familiar with GPL

concepts such as algorithms and data structures [17]. Taking this

into account, we postulate the following design principles based

on the existing work of Fowler and Parsons (2010) [17], Wąsowski

and Berger (2023) [38], Hermans et al. (2009) [21], and Karsai et al.

(2014) [24]:

(1) Use concise and simple syntax to facilitate communication

with stakeholders.

(2) Use domain-speci�c terminology in the syntax and the seman-

tic model to improve understandability for domain experts.

(3) Use common conventions familiar to everyday coding prac-

tices (e.g., adopting "//" for commenting if Java is widely

used).

(4) Avoid ambiguity in de�nitions and reasoning.

(5) Avoid making the DSL resemble a natural language, as this

introduces syntactic sugar that can obscure the semantics.

(6) Separate the DSL’s semantic model and syntax, allowing their

independent evolution.

(7) Implement automatic migration between DSL versions.

(8) Implement testing of the DSL’s parser, scripts, and the seman-

tic model.

4.1.5 Computational Models. When designing a DSL, it is crucial

to choose the right computational model. This model determines

the framework used to describe the computational processes and

de�ne the language semantics [17]. Most popular GPLs, such as

Java, Python, and C++, utilize an imperative approach where the

program consists of statements executed step by step [34]. They

employ selection statements, iterative statements, support for object-

oriented programming, and other constructs [34]. This approach is

not always suitable, especially for CPS diagnostics, due to its high

complexity for domain experts [17]. Therefore, a more declarative

approach, such as the decision table, state machine, or production

rule system, can be used instead [17].

Let us consider each one using a simple example of diagnosing

a malfunction in a thermostat system. In this case, the diagnosis is

based on conditions such as temperature readings (T), sensor status

(S), and error codes (E). Also, the system adheres to the following

rules consecutively:

(1) If E = 1, then the output is "system failure".

(2) If S != OK, then the output is "sensor failure".

(3) If T > 75, then the output is "high temperature".

(4) otherwise the system functions normally.

The result of translating the aforementioned example to a deci-

sion table is shown in Listing 1. As can be observed, this approach

is e�cient in combining the outputs of multiple interacting con-

ditions. It is also well understood by both software engineers and

domain experts [17]. This model can be used to de�ne the correct

system behavior in diagnostics as a set of conditions leading to either

fault/non-fault states or the probabilities of failures. An example of

this model’s usage can be found in the work by Barbini et al. (2021)
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1 inputs:

2 TemperatureReading T,

3 SensorStatus S,

4 ErrorCode E

5

6 outputs:

7 Diagnosis D

8

9 table:

10 T > 75 ; S = OK ; E = 0 ; D = high_temperature

11 T = _ ; S != OK ; E = 0 ; D = sensor_failure

12 T = _ ; S = _ ; E = 1 ; D = system_failure

Listing 1. Thermostat example as a decision table, formalizing diagnostics

as a table of inputs/outputs.

1 states:

2 normal,

3 high_temperature,

4 sensor_failure,

5 system_error

6

7 parameters:

8 TemperatureReading T,

9 SensorStatus S,

10 ErrorCode E

11

12 transitions:

13 normal -> sensor_failure

14 when E = 0 and S != OK

15

16 normal -> high_temperature

17 when E = 0 and S = OK and T > 75

18

19 normal -> system_error

20 when E = 1

Listing 2. Thermostat example as a state machine, formalizing diagnostics

as states and transitions between them.

[8], which introduces a model-based approach for computing the

system’s diagnosability by generating Bayesian networks. However,

the drawback of this model is that de�ning input conditions can be

time-consuming, especially for complex systems [17].

Another alternative is translating the thermostat example to a

state machine, which de�nes the system as a set of states and tran-

sitions between them, as shown in Listing 2. This approach can be

used to describe CPS diagnostics with "normal" states and transi-

tions that lead to "faulty" states. Its application can be found in DSLs

such as SHIFT [6], which focuses on describing complex systems,

and Facile [33], which is used for micro-architecture simulations.

The last alternative is the production rule system. It is similar

to the decision table, but the di�erence is that it focuses on the

behavior of individual rules rather than the whole table [17]. Its

usage is illustrated in Listing 3. This model is more compact than

1 inputs:

2 TemperatureReading T,

3 SensorStatus S,

4 ErrorCode E

5

6 outputs:

7 Diagnosis D

8

9 rules:

10 E = 1 -> D = system_failure

11 S != OK -> D = sensor_failure

12 T > 75 -> D = high_temperature

Listing 3. Thermostat example as a production rule system, formalizing

diagnostics as rules in a specific order.

the decision table, but engineers should also consider how rules

interact with each other.

Nevertheless, other computational models exist besides those

mentioned in this research that can also be suitable for the domain of

CPS diagnostics. For example, Petri Nets [18] for the description and

analysis of systems characterized by concurrency, synchronization,

and resource sharing.

4.1.6 Development Phases. When it comes to DSL design, we can

also standardize the patterns for each of the development phases.

Even though they may di�er from application to application, it is

still possible to de�ne the fundamental steps present in a typical

development work�ow [28]. This paper considers the following

phases: decision, analysis, and design, which were inspired byMernik

et al. (2005) [28].

In the decision phase, the purpose of the DSL is identi�ed based

on the expected functionality for a given domain. In the case of CPS

diagnostics, the following patterns can be applied:

(1) Task Automation: Automating diagnostics by converting

DSL code to an appropriate GPL.

(2) Notation: Formalizing knowledge about CPS diagnostics in

a textual format.

(3) AVORT: Analysis, veri�cation, optimization, parallelization,

and transformation of CPS diagnostic models.

In the analysis phase, information about the domain is collected,

including its scope, terminology, description of concepts, their vari-

ability, and interdependencies. The available patterns are:

(1) Informal: Informally examining the domain.

(2) Formal: Applying structured methodology.

(3) Extracted: Automatically extracting domain knowledge from

an existing GPL or technical documentation.

In the design phase, the formal nature of the DSL and its relation-

ship with existing languages are characterized. For this purpose, the

following patterns can be derived:

4



Developing a DSL Design Methodology for CPS Diagnostics TScIT 41, July 5, 2024, Enschede, The Netherlands

1 system AndGate (

2 bool x1, x2, // inputs

3 bool h, // health

4 bool y // output

5 ) {

6 // explicit fault mode: stuck-at-zero

7 y = (h ? (x1 and x2) : false);

8 }

9 system OrGate (

10 bool x1, x2, // inputs

11 bool h, // health

12 bool y // output

13 ) {

14 // explicit fault mode: stuck-at-zero

15 y = (h ? (x1 or x2) : false);

16 }

Listing 4. AND and OR gate models in Lydia [32].

Association with existing languages:

(1) Exploitation: The DSL partially/fully uses an existing GPL

(same as an internal DSL).

(2) Invention: The DSL has no relationship with existing GPLs

(same as an external DSL).

Formal nature of the DSL:

(1) Informal: Specifying a DSL informally by, for example, using

a natural language.

(2) Formal: Specifying a DSL formally using techniques for se-

mantic de�nition like grammars or state machines.

4.2 RQ 2: Modeling CPS Diagnostics

This research considers MBD as a framework for incorporating

knowledge about CPS diagnostics within a model. This approach is

used to automatically determine faults in the system based on the

di�erences between the actual and expected behavior [32]. If MBD

is applied to the discrete domain, then the process can be formalized

as follows [32]:

outputs = Model(inputs, health)

health = Model−1 (inputs, outputs)

where "health" is a collection of health states of system compo-

nents, "inputs" is the inbound information to those components,

and "outputs" is the outbound information. As can be observed, by

"inverting" the speci�ed model, it is possible to determine the sys-

tem’s health (diagnosis) based on the observed inputs and outputs.

In this context, "inverting" is an abstract way to describe the use of

the model in diagnostic algorithms.

4.2.1 Applications. One possibility for utilizing the MBD frame-

work was introduced by Pietersma et al. (2005) [32]. They proposed

automatically deriving optimal test sequences at the lowest com-

putational cost, where the cost is de�ned as the average number

1 system Polycell (

2 bool x1, x2, x3, x4, x5, // inputs

3 bool h1, h2, h3, h4, h5, // healths

4 bool y1, y2 // outputs

5 ) {

6 // declare intermediate outputs

7 bool z1, z2, z3;

8

9 // declare components

10 system AndGate m1, m2, m3;

11 system OrGate a1, a2;

12

13 // connect components

14 m1 (x1, x2, h1, z1);

15 m2 (x3, x4, h2, z2);

16 m3 (x2, x5, h3, z3);

17 a1 (z1, z2, h4, y1);

18 a2 (z2, z3, h5, y2);

19

20 // define health probabilities

21 probability (h1 = true) = 0.99;

22 probability (h2 = true) = 0.99;

23 probability (h3 = true) = 0.99;

24 probability (h4 = true) = 0.99;

25 probability (h5 = true) = 0.99;

26 }

Listing 5. Polycell model in Lydia [32].

Table 1. Partial polycell diagnosis table, where x indicates inputs, y indi-

cates outputs, h indicates health states of components (diagnosis), and P(h)

indicates the probability of diagnosis [32].

x y h P(h)

(1, 1, 1, 1, 1) (1, 0) (1, 1, 1, 1, 0) 0.0096

(0, 1) (1, 1, 1, 0, 1) 0.0096

(1, 1) (1, 1, 1, 1, 1) 0.9510

(0, 1, 1, 1, 1) 0.0096

(1, 0, 1, 1, 1) 0.0096

(1, 1, 0, 1, 1) 0.0096

(1, 1, 1, 0, 1) (1, 0) (1, 1, 1, 1, 0) 0.0096

(1, 1, 0, 1, 1) 0.0096

(0, 1) (1, 1, 1, 0, 1) 0.0096

(0, 1, 1, 1, 1) 0.0096

(1, 1) (1, 1, 1, 1, 1) 0.9510

(1, 0, 1, 1, 1) 0.0096

of tests necessary to determine a diagnosis. Probabilities were as-

signed to the expected health states, and from all the variations of

inputs/outputs, the information content or entropy was obtained.

This calculation allowed them to determine the information gain

for inputs, which was used to decide the sequences of tests forming

the test decision tree. An example of formalizing the system for this

approach is shown in Listing 4 [32], which speci�es the behavior of

AND and OR gates using the modeling language called Lydia. These

gates are then combined to form a polycell system as illustrated in
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Listing 5 [32]. Finally, the system is used to derive diagnostic data

as in Table 1, which determines the probabilities of components’

health states based on inputs/outputs.

Another application within the context of MBD was shown by

Barbini et al. (2021) [8]. Even though their approach is not directly

used for fault diagnosis, but rather for computing diagnosability at

design time, we still considered it from the perspective of modeling

system diagnostics. They proposed viewing the models as mappings

from inputs/outputs to failure modes (root causes of failures). These

mappings are then used to generate Bayesian Networks (BNs) for

calculating the diagnosability of CPSs and determining the required

sensors. This is discussed in more detail in subsection 4.3, which

showcases the application of this approach based on CML, a DSL

developed in the ADiA project [2].

4.2.2 System-of-Systems (SoS). CPSs are systems that integrate soft-

ware, networking, computation, and physical operations [37]. This

requires an approach known as SoS, where physical processes are

observed andmanaged bymultiple embedded systems and networks

[37]. As a result, CPS models expand conventional embedded system

models with additional support for network connectivity, temporal

alignment (concurrency), and seamless integration between compo-

nents (interoperability) [37]. Furthermore, if CPSs consist of systems

requiring di�erent model speci�cations, then their formalization

can utilize the megamodeling approach [36]. The megamodels are

models that combine other models and transformations between

them and can be used as abstract languages for model operations

[36]. Overall, when language engineers describe CPSs using a model-

based approach, they need to consider aspects such as networking,

concurrency, interoperability, and megamodeling.

4.2.3 Interoperability. According to IEEE, interoperability is de-

�ned as the capability of multiple systems or components to share

data and make use of the shared data [1]. It is essential in mod-

eling CPSs, as these systems can be composed of networks from

various manufacturers and vendors [37]. One approach to address

interoperability was demonstrated in the DSL called aDSL, where

operation spaces and their constraints are clearly de�ned for each

subsystem, allowing automatic validation for interoperability dur-

ing the design phase [37]. Embedding interoperability validation

is bene�cial for CPS diagnostics, as con�icts in operational spaces

might cause system failures. For example, if an autonomous car’s

collision avoidance system requires a minimum distance of 2 meters

from obstacles to function correctly, while its parking assist system

needs to operate within 1 meter of surrounding objects, this creates

an interoperability con�ict.

4.3 RQ 3: ADiA project

One of the notable instances of fault formalization in complex sys-

tems was illustrated in the project called ADiA [2]. It is an initiative

by TNO-ESI [5], a Dutch research institute specializing in the de-

velopment of advanced methodologies and tools for the design and

maintenance of complex high-tech systems. The project focused

on developing advanced diagnostic tools for complex systems to

enhance the e�ciency and accuracy of troubleshooting system fail-

ures. It uses a technique suggested by Barbini et al. (2021) [8], which

involves generating BNs used to identify the root causes of faults

based on the system’s inputs/outputs. An example of generating a

BN can be observed in the valve model shown in Figure 1 [8], where

the valve’s behaviors were initially speci�ed in a table. ADiA, on

the other hand, formalized the system’s components and processes

using a DSL called CML (Component Modelling Language).

In the scope of this research, an interviewwas conducted with one

of the CML developers to analyze its design methodology. The inter-

view determined the development framework, language concepts,

functionality, and development phases.

4.3.1 Framework. CML was developed using the Xtext framework,

an open-source project for developing DSLs and other programming

languages [11]. This approach is often referred to as using a language

workbench [17, 38] for developing an external DSL, a category from

subsubsection 4.1.3 of the DSL design. The motivation for choosing

this frameworkwas the CML developer’s familiarity with the Eclipse

IDE, an environment supported by Xtext.

4.3.2 Language Concepts. The DSL utilizes the following elements

(or concepts) to construct models:

(1) Components: Basic building blocks of the system.

(2) Composites: Aggregates of components.

(3) Inputs/Outputs: De�ned explicitly for each component.

(4) Failure Modes: Categories of failure root causes.

(5) FailureMaps: Mappings from inputs/outputs to failuremodes.

The overall structure resembles an object-oriented approach,

where components and composites can be de�ned as "objects", and

inputs/outputs as "attributes". Failure maps, in turn, are an instance

of a "decision table" computational model from subsubsection 4.1.5,

where combinations of attributes and failure models are speci�ed

in a matrix-like format. This choice of elements and semantics was

largely made by mirroring the concepts by Barbini et al. (2021) [8],

with an addition of "composites" for combining multiple compo-

nents.

4.3.3 Functionality. Regarding the DSL’s functionality, the follow-

ing features were mentioned during the interview:

(1) Validation: Automatically validates the code syntax.

(2) Autocompletion: Autocompletes code for faster develop-

ment. For example, entries in failure maps.

(3) Generation: Generates the target language, which involves

BNs for diagnostic reasoning.

Where "validation" and "autocompletion" are supported to facili-

tate the development and maintenance of the DSL, and "generation"

is included as part of the mandatory features.

4.3.4 Development Phases. The interview also captured the devel-

opment phases of CML. It was mentioned that the methodology

utilized an incremental development approach, following these steps

in cycles:
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(a) Behaviour mappings. (b) Generated BN from behavior mappings.

Fig. 1. BN generation for diagnosability of a valve model [8].

(1) De�ne Backbone: Core concepts and their dependencies.

(2) Write Grammar: Syntax rules for the language.

(3) Build Generator(s): Generate the target language.

As can be observed, these steps are di�erent from those speci�ed

in subsubsection 4.1.6 of the DSL design. This is because they refer

more to the implementation part of the DSL, following the decision,

analysis, and design phases. The motivation for the incremental ap-

proach was to lower the costs in case of changes in the requirements

or design.

5 CONCLUSION

Throughout this research, we identi�ed the key factors to consider

when designing a DSL for CPS diagnostics and investigated the

methodology of an existing DSL in this domain. To achieve our

research objectives, we conducted an extensive literature review

and interviewed a language engineer from TNO-ESI to understand

the methodology of CML, a DSL in the domain of CPS diagnostics.

To study how a DSL can be designed speci�cally for the do-

main of CPS diagnostics, we considered the following aspects: its

purpose, features, category, principles, computational models, and

development phases. We determined that an external DSL is more

appropriate than an internal DSL for this domain. Additionally, we

found that the DSL should facilitate error detection, system modi�-

cation, program understanding, and communication with domain

experts, deriving eight corresponding principles. Regarding compu-

tational models, we examined the decision table, state machine, and

production rule system, concluding that they all apply to system

diagnostics based on a thermostat example. Lastly, we found that

the development phases can be divided into decision, analysis, and

design phases, each with its patterns for CPS diagnostics.

To understand how knowledge about CPS diagnostics can be

formalized within a model, we explored the MBD framework and

its possible applications, as well as how CPS modeling di�ers from

embedded systems modeling. We demonstrated that a system can

be modeled using a DSL to derive diagnosis probabilities given the

system’s inputs and outputs. Additionally, we showed that a system

can be modeled in a table-like format to generate Bayesian net-

works for computing diagnosability. Finally, we indicated that CPS

systems, in comparison with embedded systems, should consider

networking, concurrency, interoperability, and megamodeling in

order to formalize them in a model.

After studying the methodology of CML, we discovered that it

follows an object-oriented approach with a "decision table" compu-

tational model. It comprises composites and the components they

consist of, as well as the inputs and outputs that connect them. The

primary features of the DSL are validation, autocompletion, and

generation. Lastly, its development phases are iterative, involving

de�ning the backbone model, writing grammar, and building the

generator(s).

For future work, the research can be extended with additional

computational models and their examples, besides a thermostat

system, to better represent the di�erences between models. Addi-

tionally, more DSL principles can be introduced and described in

more detail, such as o�ering examples when principles are violated.

Last but not least, other methodologies from existing DSLs in the

domain of CPS diagnostics can be studied and used to improve the

methodology detailed in this paper.
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