
Comparative study of the state of the art of machine learning-based
models for load forecasting
AIMAN ABDUL WAHAB, University of Twente, The Netherlands

A reliable energy forecasting system is crucial in the energy sector. Multiple
classical machine learning models have been investigated in terms of accu-
racy. This paper aims to shed light on two hybrid models: CNN-XGBoost and
LSTM-XGBoost for short-term load forecasting (STLF). The Convolutional
Neural Network (CNN) and Long Short-term Memory (LSTM) models can
be used to extract relevant time series patterns which can then be passed on
to XGBoost and perform better forecasting. The model is evaluated on the
load energy data collected from a company residing in a business park in
the Netherlands. Temperature and weather data were also considered. The
two gradient boosting models were compared, and XGBoost was chosen for
constructing a hybrid model because it performed better than CatBoost. The
hybrid models were compared and performed better than XGBoost in most
benchmarks. Between the two hybrid models, CNN-XGBoost outperformed
LSTM-XGBoost by a small margin. Additionally, the paper explores an in-
terpretability tool, Maximum Mean Discrepancy (MMD-Critic) with limited
research in the time series domain and is used for understanding black-
model decision-making. The model performed worse when attempting to
forecast the criticism date with a MAE = 7.23 compared to the preceding two
and three weeks with scores of 5.85 and 6.01. The paper demonstrated that
hybrid models are more reliable than decision tree models and additionally
presented a tool for understanding the weak links of a hybrid model.

Additional Key Words and Phrases: CatBoost, CNN, LSTM, STLF, Gradi-
ent Boosting Decision Tree, XGBoost, MMD-Critic, CNN-XGBoost, LSTM-
XGBoost, Criticism

1 INTRODUCTION
There is an ongoing shift towards decentralized energy systems.
Large power plants are being used to send energy only in one-way
transmission, from producers to consumers. Energy transmission is
becoming more decentralized thanks to renewable energy and smart
grids. Businesses are less reliant on fixed energy contracts. They use
energy more efficiently at a lower cost and generate profit by selling
excess energy produced via the grid. Despite the advantages, the
shift to a two-way energy transmission is causing grid congestion.
Without proper measures to ensure a balance of demand and supply
of energy passing through the transmission lines, various problems
arise, such as price fluctuations and blackouts. Therefore, a stable
energy delivery is needed.
Given the significant costs involved in improving the transport

capacity within power grids, computational intelligent models can
mitigate congestion. The role of the ‘model’ is to perform energy
forecasting such that it can give insights to businesses on peak
demand to prepare accordingly.
Extensive research is being done regarding which models are

most suited for load forecasting. Models range from time-series

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

methods, classic machine learning models, deep learning models,
and hybrid models. Researchers extensively cite the inadequacy
of time-series models, such as Autoregressive Integrated Moving
Average (ARIMA) in addressing high data dimensions and complex
seasonality [1–3].

Alquthami et al. compared the various machine learning and deep
learning algorithms for STLF in terms of accuracy and proposed an
Enhanced Decision Tree Classifier (EDTC) which integrates fitting
function, loss function, and gradient boosting. Deep learning models
require a large amount of data to prevent overfitting, which may
cause them to get outperformed by decision tree-based models.
Other research papers also cited them as underperforming due to
lack of locality and higher computational costs [4, 5].
In another paper by Fan et al., Support Vector Machine (SVM)

performed slightly better than XGBoost with a Δ RMSE (Root Mean
Square Error) of 0.199 in terms of accuracy but at the expense of
being 90 times more computationally expensive. Thus, XGBoost and
boosting models are recommended for their accuracy and perfor-
mance [3, 4].

Xianjin and Zhonghua proposed a hybrid model by stacking Cat-
boost and Load Short Term Memory (LSTM), passing the combiner
data to a Rigid Regression for the prediction [2]. Features included
time features (year, month, weekday, etc.), weather features, and
holiday features that are then passed directly to Catboost with no
encoding methods. The authors performed a comparison with regu-
lar CatBoost, LSTM, and GBDT. The stacking had a Mean Absolute
Error (MAE) of 0.9232, a Mean Absolute Percentage Error (MAPE)
of 2.36%, and a Root Mean Square Error (RMSE) of 1.1727, different
from CatBoost alone, which had 1.1103, 2.77%, and 1.4758, respec-
tively but surpassed GBDT.
Kim et al. predicted solar radiation using a CNN-CatBoost Hy-

brid model, one of one layer and another of two layers. CNN was
adapted to handle time-series data from weather observations such
as temperature, humidity, and cloud volume. This adaption allowed
CNN to extract significant features from the sequential data impor-
tant for predicting solar radiation levels. The extractions were then
passed to CatBoost to perform the forecasts. The study measured
solar radiation across 18 locations and for specific time intervals
of sunrise and sunset. The models were compared across different
stations and the one-layer hybrid model had an MAE of 0.1040 and
an RMSE of 0.2106. The two-layer hybrid model performed better,
with a 0.1027 MAE and 0.2104 RMSE. Both performed better than
CatBoost and CNN individually. [6]
Shwartz-Zic and Armon delved into hybrid model comparisons

of different forms such as an assembly of a gradient boost with
another gradient boost, one deep learning model with another deep
learning model, and a deep learning with a gradient boost model.
The authors compared different papers, trained and preprocessed
the hybrid models the same way as in the respective papers, and
tested them across various datasets. The models included XGBoost,

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Aiman Abdul Wahab

Dynamic Neural Field (DNF-NET), 1D-CNN, and Deep Ensemble
with and without XGBoost. The results showed that a deep learning
network with a gradient-boosting model gave the smallest MSE [4].
While the papers show promising results when doing hybrid

models, they do not adequately address the loss of interpretability.
Models should be intepretable so that stakeholders can understand
how the predictions get selected. There also has not been significant
research done on different hybrid model comparisons.
Kim et al. proposed an MMD-critic model that can be used to

increase interpretability or explain the decision-making of a black-
box model. MMD-critic uses two main concepts: prototypes and
criticism. Prototypes are data instances that are ‘representative’ of
the data points. They reside close to the date distribution. Criticism
represents instances of data points that differ from the data distri-
bution. ’Maximum mean discrepancy’ (MMD) informs how well the
selected prototypes are and the goal is to choose the prototypes that
output the smallest MMD result. While ’Witness’ is for criticism, the
greater the witness output deviates from 0, the more it represents
a difference from the typical dataset. A reflection of the criticism
is encouraged for these instances. This paper aims to shed light on
this tool [7].

The scope of this paper is to identify the better machine learning
model between CatBoost and XGBoost while also assessing whether
constructing it with a neural network increases the accuracy. An-
other aim of this paper is to successfully use the MMD-critic model
for time series data to highlight patterns the hybrid model failed to
capture.
Thus my research question (RQ) is formed:
RQ: How can traditional machine learning and deep learning mod-

els be effectively combined to enhance predictive accuracy and inter-
pretability in load forecasting?

The question tackles multiple themes, thus it is broken down into
two sub-questions:
SQ1: To what extent do hybrid models outperform regular

gradient boosting models in regards to accuracy?
SQ2: In what ways can the MMD-critic tool be used to effec-

tively identify weak links in a hybrid model?
By the end of this research, we expect to have contributed in two

ways. First, we will compare multiple hybrid models, thus expanding
beyond the current scope of classical model comparisons. Second,
wewill investigate an Explainable AI (XAI) tool not much researched
and apply it to the hybrid models.
Section 2 details the methodologies which include an introduc-

tion to our dataset, analysis performed on the data, data preparation,
model tuning, and an overview of benchmarks and metrics used
to compare the models. Section 3 provides a brief overview of
the model architectures used in this paper, Section 4 provides an
overview and a separate methodology for the MMD-Critic tool, and
Section 5 presents the results and discussions arising from it.

2 METHODOLOGIES
Load data has been collected for a business park located in The
Netherlands. The park included multiple companies, such as utility,
electric, energy, and logistics. Smart meter data from one company

was provided and used for data analysis and forecasting. Data sci-
entists widely use the CRISP-DM framework, which consists of
business and data understanding, data preparation, modeling, eval-
uation, and development. The CRIPSM-DM structure is adopted in
this paper.

2.1 Business and data understanding
2.1.1 Data understanding and description. The inspection focuses
solely on the instantaneous power factor column in the time series
aggregated data of 15 minutes for multiple fields from 1 January
2023 until 31 May 2024. The instantaneous power column is called
’obis_9_7_0_mean’ and is referred to as load energy in this paper.
More description on this field, and other fields not used in this paper
can be found in the IEC 62056 protocol on the description of OBIS
code [8]. The weather station, Deelan, provided us with weather
data, including wind (DD, FH, FF, FX), temperature (T, T10N, TD),
pressure (P), sun rays (SQ, Q), precipitation (DR), moisture (RH),
visibility (VV), cloudiness (N), and humidity (U). The weather data
chosen to be incorporated into the dataframe are T and FH. T is
the temperature in Celsius measured at the height of 1.50m, and
FH is the hourly average wind speed measured in 0.1 m/s unit.
The full description of each abbreviated term is described in the
Koninklijk Nederlands Meteorologisch Instituut (KNMI) platform
[9]. All features were merged in a dataframe and tools such as
pandas, TensorFlow, and NumPy were used.

2.1.2 Data analysis. Box plots of monthly and weekday instanta-
neous power were plotted and analyzed. Only the weekday box
plot is shown in Figure 1. Energy consumption is higher during the
autumn and winter months, from October to March, and has a lower
value in spring and summer. The mode in June is higher than the
precedent and subsequent months. Working days have more energy
consumption than non-working days. The highest is on Tuesday
and Thursday and the lowest is on Sunday as shown in Figure 1.
The dataset also contains a large number of outliers.

Figure 2 compares the load electricity for the years 2023 and 2024.
There was a sudden spike in usage starting from September, which
continued throughout the following year. Overall, there is a sizeable
difference between all months when comparing 2023 with 2024 for
the analyzed company.

Figure 3 displays the hourly box plot, it can be seen that from 00:00
until 17:00 energy remains below 5 kW and then starts increasing,
with a peak at 8 AM. It goes back low after 16:00.

Some days had a fewmissing values (around 2-3 for the 15-minute
aggregated data) and were replaced with the preceding value. When
entire days had missing data, the values were replaced with the
mean value for that month.
All features were plotted against the target feature, the features

that provided no apparent trend were removed from the dataframe.
A correlation matrix was plotted using seaborn. Features that had a
very low correlation (|x| < 0.1) and features that had a high correla-
tion with each other (|x| > 0.5) were removed due to providing little
to no information. Only features highly correlated with the target
variable were maintained.

It was also investigated how the usage changes during holiday
seasons such as Christmas Day, and New Year’s Day, and not all of

2

Comparative study of the state of the art of machine learning-based models for load forecasting TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 1. Weekday box plots of load energy for the year 2023

them had an apparent change in usage when they were compared to
the typical days. The correlation between holidays and load usage
was also very low (below 0.1) thus the column was omitted.

The witnessed seasonality: energy spikes on specific months,
days, times, and years were added as extra columns. Many columns
incorporated from the weather data were dropped due to low corre-
lation with the target variable. The ones kept were temperature and
wind speed. The feature ’month’ had a 0.41 correlation with load us-
age, the ’year’ had a 0.23 correlation and the ’weekday’ column was
replaced with ’business day’, a boolean that is set to ’1’ for working
days. This presented a 0.23 correlation. Regarding the seasonality
for periods, a boolean value ’peak time’ was incorporated, with ’1’
signifying ’high’ set from 06:00 to 17:00. This feature had a 0.41
correlation with load energy.

Fig. 2. Yearly electricity load forecast comparison between years 2023 and 2024

Lag values, which represent past observations of a variable, were
also added to the dataframe. Different types of lags were tested such
as lags of previous days, previous weeks, and previous months.

To summarize, the following columns were added: lag values,
business days, temperature, wind speed, and peak time.

2.1.3 Data Preparation. Two types of data preparations were ex-
perimented with: 2D (Dimensional) data only for decision trees and
3D data for all models.
First, investigations were done on whether the incorporation of

smaller or greater past units presented a better model accuracy.
Different lags were considered such as three monthly, seven weekly,
seven daily, and seven hourly lags. The lags were tested by being
added as extra columns. The initial rows had to be discarded depend-
ing on the chosen lag size. For example, three hourly lags would
mean that the first 15x4x3 = 180 columns would be dropped. The
number fifteen is because of the data being 15 minutes aggregated.
Six, nine, eleven, and fifteen months training instances were per-
formed for forecasting horizons of three days, one day, and one hour.
The lags with the lowest MAE were chosen as additional columns
for the hybrid model.
The standard data structure for training neural network models

such as LSTM and CNN is 3D-shaped. More on expected data pre-
processing requirements for neural network models can be found on
the tensorflow website [10]. The data structure (batch size, features)
is transformed into (batch size, time offset, features). Time offset
represents preceeding points the model will look at in making the
next prediction. This is also known as a rolling window. The rolling
window size chosen was 8, as the lag correlations deteriorated past
this point which were observed in a partial autocorrelation func-
tions (PACF) plot. A PACF shows the correlation of time series data
for different lags. Since our data frame is of 15-minute intervals, an
eight-rolling window size represents a 2-hour rolling period.

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Aiman Abdul Wahab

Fig. 3. 2023 hourly box plot for load energy

2.1.4 Modelling. The Catboost and XGBoost models were hyper-
tuned and then forecasted for three days, one day, and one hour
and were compared on the seven hourly, seven weekly, and three
monthly lags. Grid search was performed on XGBoost and CatBoost
for the parameters subsample, n_estimates, max_depth, learning_-
rate, colsample_bytree, and colsample_bylevel and on CatBoost for
the parameters learning_rate, depth, l2_leaf_reg, grow_policy, and
iterations. For neural network models in hybrid models, tuning was
performed by manually testing different learning rates. The train-
ing sizes varied between six, nine, eleven, and fifteen months, the
validation size was of fixed three weeks, and the testing sizes were
the forecasting horizons.
After the better of the two models is selected, it is used in con-

struction with two neural network models CNN and LSTM. The
flow chart is shown in Figure 4. First, the lags are added as columns
and the NaN values are discarded. Rolling window is then applied to
data with window size eight. If only the base model is constructed,
it is flattened, hypertuned, and trained. The neural network models
follow a similar procedure but flattening is not required. For the
hybrid implementation, the neural network model is first created
separately in a similar process and then the results are passed on
to a boosted tree model. The architecture of the hybrid models is
described in section 3.0.4.
Because the rolling window uses preceding points and because

our data is 15-minute aggregated, only one 15-minute forecasting is
possible. To go beyond this, predictions were looped and used as
past units until the desired time was reached.

2.1.5 Evaluation. This section details the metrics used for model
comparisons.
Mean Absolute Error: Calculates the absolute difference between
the model’s predicted value and actual value [11].
Mean Squared Error (MSE)&RootMean Squared Error (RMSE):
MSE computes the average squared difference between predicted
values and actual values, while RMSE is the square root of MSE.

Input

Lag values

time steps

tree model? flatten

hypertuned? tuning

model training

Output

yes

no

Fig. 4. Flowcharts illustrating the data preparation process

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (1) MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (2)

where 𝑦𝑖 represents the actual value at observation 𝑖 and 𝑦𝑖 repre-
sents the predicted value.
For all comparisons, MAE was mostly used. However, RMSE is

sometimes presented in the results as well.

4

Comparative study of the state of the art of machine learning-based models for load forecasting TScIT 37, July 8, 2022, Enschede, The Netherlands

3 ARCHITECTURAL DESCRIPTION OF VARIOUS
MODELS

This section presents a brief overview of the models used in this pa-
per, it is not intended to be detailed. For a more nuanced description,
other resources should be consulted.

3.0.1 Gradient Boosting, XGBoost, and CatBoost. XGBoost is based
on the concepts of decision tree ensembles and gradient boosting
addressed below.

A decision tree is used for decision-making and predictions. The
entire dataset is represented by the root node and then splits re-
cursively left and right until an outcome is made. The ensemble
consists of combining multiple decision trees to result in a better
prediction score.

The model starts with a weak prediction and becomes better as it
adds new trees that learn from the previous model by minimizing
the ‘objective’ function, which includes loss and regularization. Loss
consists of metrics such as MSE, MAE, or Huber loss, while regular-
ization helps with overfitting. When using the MSE, the objective
function is derived as follows:

obj(𝑡) =
𝑇∑︁
𝑗=1

[(
∑︁
𝑖𝜖𝐼 𝑗

𝑔𝑖)𝑤 𝑗 +
1
2
(
∑︁
𝑖𝜖𝐼 𝑗

ℎ𝑖 + 𝜆)𝜔2
𝑗] + 𝛾𝑇 (1)

where𝑇 is the number of leaves in the tree, 𝑔𝑖 and ℎ𝑖 are first and
second order derivatives of loss function, 𝜔 𝑗 represents the weight
of the leaf, and 𝜆 and 𝛾 are regularization parameters to penalize
for overfitting.
The regularization feature addressed in this section is not part

of the traditional gradient boosting but instead is implemented in
’optimized’ models such as XGBoost. Other elements incorporated
in XGBoost consist of pruning and parallel tree boosting. The in-
formation has been retrieved from the official documentation on
XGBoost [12].

CatBoost is built on gradient boosting and a categorical feature
preprocessing is by default integrated. Except for this, it also uses
‘symmetric leaf nodes’ for faster tree convergence [13].

3.0.2 LSTM. Both LSTM and RNN use backpropagation in their
architecture. Recurrent Neural Network (RNN) predicts new values
based on previous ones via a feedback loop. The feedback loop may
cause vanishing gradients.

The LSTM architecture is an enhanced implementation of RNN to
solve the gradient vanishing problem. It does this by using two gates:
long-term and short-termmemory. It uses a combination of tanh and
sigmoid as its activation functions. LSTM has three gates: ’Forget
gate’, ’Input gate’, and ’Output gate’. Forget gate determines the
proportion of long-term memory to retain. The input gate updates
the long-term memory information, and the output gate updates the
short-term memory information. For more details, refer to "Long
Short-Term Memory" by Hochreiter et al. [14].

3.0.3 CNN. CNN is another popular neural network model, vastly
used in image processing. The architecture is as follows: The data is
first passed through a convolution layer with filters used to detect
specific features, such as trends or patterns. The filters are improved

while applying backpropagation several times. The dot product of
the filter and input is called a feature map, where each cell represents
a group of similar data patterns. The feature map passes through an
activation layer and a pooling that further reduces the data. Finally,
the output is flattened and passed on to the dense layer.

3.0.4 Hybrid Models. Figures 5 and 6 showcase the architectures
of LSTM-XGBoost and CNN-XGBoost.

Input LSTM Dense Reshape XGBoost Output

Fig. 5. Flowchart of the LSTM-XGBoost architecture

First, the Input of shape (batch size, time offset, features) is trained
on LSTM, then passes through a dense layer with activation layer
’ReLu’ and reshaped to 2D before being trained on XGBoost.

Input Conv1D Flatten Dense Dense Reshape XGBoost Output

Fig. 6. Flowchart of the CNN-XGBoost architecture

A similar process is done for the CNN-XGBoost hybrid model
where the input is passed through a convolutional layer, flattened,
densed twice, first with the activation layer ’ReLu’ and then a second
time with the ’linear’ activation layer, is reshaped, and then passed
to XGBoost.

4 PROTOTYPES & CRTICISIM
Models may have data entries where they fail to generalize. Pro-
totypes and criticism will help find those cases. In the book In-
terpretable machine learning, Molnar provides the reader with a
pseudo-algorithm on the usage of MMD-critic for black-box model
intepretability [15]. However, careful consideration is needed when
selecting the prototypes and criticism for time-series data as time
sequential order is assumed. Thus, an adjusted approach tailored to
time-series data is used when finding the prototypes and criticism
using the MMD-critic tool.

First, train the machine learning model as usual. The prototypes
and criticism are found as stated below:

• Loop until the end of the forecasting horizon, which also
depends on the time-series data interval:

Loop = Forecast horizon
time-series aggregated interval

where the forecast horizon and time-series aggregated inter-
val have the same time units. For example, 24-hour forecast-
ing on 15-minute data aggregation requires 24*60/15 = 96
iterations. While looping, perform the following:
– aggregate the trained dataset to contain only rows of the
same time period. This is a crucial step, otherwise, the
prototypes selected could be a of a different time causing
the time sequence order to be distorted. To illustrate an

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Aiman Abdul Wahab

example, find the prototype for ’00:15’ by grouping the
trained set size by this time. Prototypes are found in the
sequence 00:00, 00:15, ..., 23:45.

– find the prototype and criticism using the MMD-critic func-
tion by passing the aggregated dataset and the number of
prototypes and criticisms to be found for the current time
horizon. In this paper, only one was considered for both
prototype and criticism.

• Perform forecasting on the machine learning model using the
computed prototypes and criticism.

The prototype and criticism MAE are measured using different
window sizes and for a one-day forecasting horizon. First, the MAE
of one-day forecasts is computed for the prototype and criticism
data. The next experiment involves selecting a date of ’criticism’
and the model attempts to forecast that day. The date is selected by
choosing data points residing closer to the criticism instances. The
MAE scores are compared with those of 2 and 3 weeks prior.

5 RESULTS AND DISCUSSION
This section aims to find the best model with the appropriate feature
engineering techniques. It starts by finding the most significant lag
periods by testing them on hourly, weekly, and monthly periods
for the two decision trees. The models: CatBoost and XGBoost are
compared and the better-performing one is used for constructing
the hybrid model. The boosted tree is then compared to the hybrid
model to determine whether the results improved. The section ends
with an extensive analysis regarding time periods the CNN-XGBoost
model fails to forecast accurately which is achieved through the
usage of prototypes and criticism.

5.1 Metrics comparison between XGBoost & CatBoost

Model Forecast Type Lag time MAE

XGBoost

1 day Monthly 1, 2, 3 6.23
1 hour Monthly 1, 2, 3 5.18
1 day Weekly 1, 2, 3 3.84
1 hour Weekly 1, 2, 3 3.59
1 day Daily 1, 2, ..., 8 3.64
1 hour Daily 1, 2, ..., 8 3.70
1 day Hourly 1, 2, ..., 8 2.87
1 hour Houry 1, 2, ..., 8 2.50

CatBoost

1 day Monthly 1, 2, 3 5.84
1 hour Monthly 1, 2, 3 4.89
1 day Weekly 1, 2, 3 3.73
1 hour Weekly 1, 2, 3 4.20
1 day Daily 1, 2, ..., 8 3.92
1 hour Daily 1, 2, ..., 8 3.90
1 day Hourly 1, 2, ..., 8 2.95
1 hour Hourly 1, 2, ..., 8 2.53

Table 1. XGBoost and CatBoost results for 6 months training size

Table 1 showcases the results of XGBoost and Catboost for 6-
month training and different lag intervals. Monthly lags presented
the poorest performance with MAE values of 6.23 and 5.84 for 1-
day forecasting for XGBoost and Catboost respectively. The MAE
scores decreased as the lag time shortened indicating a stronger

correlation between nearby data points. The smallest MAE values
were for 1-hour forecast and hourly past data points with MAE
scores of 2.50 for XGBoost and 2.53 for CatBoost, this represents a
|Δ𝑀𝐴𝐸 | = 2.68 for XGBoost and |Δ𝑀𝐴𝐸 | = 2.36 for CatBoost when
subtracted from monthly lags of one-hour forecasting.

XGBoost performed better than CatBoost in 5 out of 8 cases and
was selected as the gradient tree to be incorporated in the hybrid
model. For daily lags and one-day forecasting, XGBoost had an MAE
of 3.64 and CatBoost 3.73, a difference of 0.09. Additionally, even
though smaller lag periods represent better results, it is unrealistic
to have hourly lag values when performing 1-day forecasting, thus
the addition of daily lag values into the data frame was chosen
instead.

5.2 Metrics comparison XGBoost & Hybrid models
Tables 2 and 3 summarize the results of the models for different
horizons and training sizes.

Note: The data for XGBoost was preprocessed differently in this
section than in the previous one. For three-day forecasting, predicted
lag values should have been used instead of the actual values for
lag days one and two.
As can be seen, in most cases, the hybrid models outperformed

XGBoost. The only exception was for fifteen months of training size
when performing 3-day and 1-hour forecasting.

CNN-XGBoost was the better hybrid model of the two, outper-
forming LSTM-XGBoost seven times. The architecture of CNN was
also slightly different, previously shown in Figures 5 and 6 where
CNN had an additional Dense layer with ’ReLU’ as the activation
unit. This feature incorporation might have given this hybrid model
an advantage over the other.

While the hybridmodels performed better overall, many instances
were minor improvements. The smallest positive difference was of
|Δ𝑀𝐴𝐸 | = 0.01. In most cases, the difference was around 0.05-0.35.
This does come with higher computational costs. Training a neural
network model is known to take more training time as compared
to decision tree models [16]. In this case, it took even longer as it
involved the cost of training the neural network and the gradient
boosting model. The accuracy and computational cost trade-off
should be considered when deciding which model to use.

In some cases, longer forecasting intervals outperform the shorter
ones such as the column with an 11-month training size. The model
performed poorly on 1-hour forecasting, the CNN-XGBoost had
a value of MAE 12.45 and performed much better during a three-
day forecasting horizon with a value of MAE 6.89. The predictions
are performed every 15 minutes and the difference is quite large
indicating that the other points severely ’compensated’ for the poor
performance. This can be seen again for the nine-month training
size column where 1-hour forecasting is 0.91 for CNN-XGBoost
but 12.94 for 1-day forecasting. This issue is addressed in the next
subsection.

5.3 Metric comparison between Prototypes & Criticism
96 prototype and criticism data instances were calculated for dif-
ferent window sizes. These points represent a full 24-hour day. A
CNN-XGBoost hybrid model was trained on 11-month data and

6

Comparative study of the state of the art of machine learning-based models for load forecasting TScIT 37, July 8, 2022, Enschede, The Netherlands

Training
Size

Model Forecasting
Horizon

RMSE MAE

6 months
CNN-XGBoost 5.02 2.90
LSTM-XGBoost 3 days 5.18 2.96
XGBoost 5.05 2.91
CNN-XGBoost 0.92 0.44
LSTM-XGBoost 1 day 0.93 0.48
XGBoost 0.94 0.45
CNN-XGBoost 0.07 0.06
LSTM-XGBoost 1 hour 0.13 0.13
XGBoost 0.1 0.09

9 months
CNN-XGBoost 12.49 9.22
LSTM-XGBoost 3 days 13.07 9.90
XGBoost 12.6 9.29
CNN-XGBoost 16.22 12.94
LSTM-XGBoost 1 day 14.72 11.53
XGBoost 16.66 13.44
CNN-XGBoost 1.15 0.91
LSTM-XGBoost 1 hour 1.41 1.25
XGBoost 1.40 1.23

Table 2. Comparison between XGBoost and hybrid models for 6 and 9
months training size

Training
Size

Model Forecasting
Horizon

RMSE MAE

11 months
CNN-XGBoost 8.63 6.89
LSTM-XGBoost 3 days 8.81 7.02
XGBoost 8.45 6.76
CNN-XGBoost 9.02 7.34
LSTM-XGBoost 1 day 9.75 7.98
XGBoost 9.26 7.65
CNN-XGBoost 13.01 12.45
LSTM-XGBoost 1 hour 12.48 11.95
XGBoost 13.78 13.77

15 months
CNN-XGBoost 13.15 9.02
LSTM-XGBoost 3 days 12.60 8.73
XGBoost 12.65 8.67
CNN-XGBoost 11.87 7.82
LSTM-XGBoost 1 day 11.42 7.63
XGBoost 11.66 7.7
CNN-XGBoost 1.76 1.73
LSTM-XGBoost 1 hour 1.05 1.02
XGBoost 0.34 0.23

Table 3. Comparison between XGBoost and hybrid models for 11 and 15
months training size

then forecasts were performed on the prototypes and criticism in-
stances. The algorithmic approach for finding the instances was
explained in section 4. Table 4 displays the MAE and RMSE scores
when forecasting using the prototype and criticism data instances.

Business days Non-business days
Window size RMSE MAE RMSE MAE

11 Months 5.46 4.80 3.58 3.57
5.48 4.81 4.30 4.03

9 Months Prototype
(grey
rows)

5.60 4.76 3.23 3.23

5.89 5.07 3.72 3.65

6 Months 5.48 4.67 3.21 3.20
Criticism
(white
rows)

5.66 4.84 3.37 3.35

1 Month 5.21 4.45 3.27 3.27
5.56 4.88 3.31 3.30

1 Week 4.94 4.27 3.24 3.23
5.36 4.60 3.25 3.25

Table 4. Prototypes and criticism for 11-month training data for CNN-
XGBoost at different aggregated time intervals. The prototype values are
represented in grey and the criticism in white. The predicted prototype and
criticism results were compared with the days 16 January 2023 (business
day) and 22 January 2023 (non-business day).

The following list of observations can be made.
• The window difference between prototype and criticism is
smaller for non-business days. This means there is less data
discrepancy on weekends.

• For business days and 11-month aggregation, the difference
between prototype and criticism is small, Δ𝑅𝑀𝑆𝐸 = 0.02

and Δ𝑀𝐴𝐸 = 0.01. This narrow difference, and the fact that
the metrics scores are higher compared to the cells in non-
business days indicates that the data has high discrepancy
and proper representative points can not be found.

• For business days, the prototype-criticism difference widens
as you shrink the window size and is quite different even for
1-week data aggregation, Δ𝑅𝑀𝑆𝐸 = 0.42 and Δ𝑀𝐴𝐸 = 0.33.
This indicates that criticism dates can properly be found.

• For non-business days the 11-month aggregation should be
considered as the gap between prototype and criticism is high,
Δ𝑅𝑀𝑆𝐸 = 0.72 and Δ𝑀𝐴𝐸 = 0.46. A 9-month aggregation
has a Δ𝑅𝑀𝑆𝐸 = 0.49 and Δ𝑀𝐴𝐸 = 0.42 and the gap gets
narrower on smaller window sizes. This indicates that the
dates after the six month period have more discrepancy. This
was already witnessed in Figure 2 when a noticeable spike
occurred in September.

In a short summary, to analyze on business-day data, the train-
ing data should be narrowed down to at least nine months before
analyzing weak point links. This is different for non-business days
where a larger window size is encouraged.

The prototypes and criticism values are observed for 6-month
aggregation, Figure 7 displays a graph of prototype, criticism, and
1 August 2023 which was arbitrarily selected. As expected, the
prototype and date values are close to each other, while the criticism
points stand out. Extreme deviations are observed at 14:45, where
the criticism instance is 27.09kW, while the prototype and for the
selected date August 1, 2023, are 11.53kW and 7.44kW respectively.
The second highest criticism peak is for the hour 18:15 with the
value of 18.89kW compared to 4.28kW for the prototype and 2.06kW
for August. After observing the data of criticism, the 6-month data
frame was grouped by midnight and filtered by load energy values
greater than 10kW. This resulted in a single output, the DateTime
10 January 2023 with a load value of 12.51kW. The second largest

7

TScIT 37, July 8, 2022, Enschede, The Netherlands Aiman Abdul Wahab

value was 7.29kW in the seventh month, much later than when this
deviation first occured. All other entries for 10 January also present
relatively high values in comparison to the typical values for that
month. The data should be carefully investigated whether it was an
error, a one-time occurrence, or an uncaptured trend by the model.

Fig. 7. 24-hour plot of prototypes, criticism, and the date 1 August 2023 for
6-month data training.

Lastly, we will investigate how poorly a model performs when
forecasting on days of criticism.

The date 24 July 2023 is used in this example, the reason is that it
has values aligning closer to the criticism instances. For example, at
2 AM when the value for this particular date is 1.86kW, the criticism
instance is 1.80kW, and the prototype is 2.98kW. This is just one
example of suspicion, the data was analyzed for multiple rows and
compared to the criticism value. For the previous week, the data
was missing and thus not used in the comparison. Standard training,
validation, and forecasting were performed for the dates 24 January
2023, 10 January 2023, and 3 January 2023, the results are presented
in Table 5.

Metrics 2023-07-24 2023-07-10 2023-07-03 |Δ2−3 | Δ2−4 |Δ3−4 |
RMSE 7.99 5.85 6.01 2.14 1.98 0.16
MAE 7.21 4.62 4.81 2.59 2.40 0.19

Table 5. 1-day forecasts RMSE and MAE computation for the date of criti-
cism ’2023-07-24’ and the preceding 2 and 3 weeks

As observed, it performed significantly worse on forecasting the
24th as compared to the preceding two and three weeks. Forecasting
for the criticism date had an RMSE = 7.99 and an MAE = 7.21,
unlike the preceeding two and three weeks with RMSE and MAE
scores of 5.85, 4.62, and 6.01, 4.81 respectively. The error difference
between the criticism date and the preceding weeks was also much
higher than that of the preceding two and three weeks, Δ2−3 = 2.14,
Δ2−4 = 1.98, and Δ3−4 = 0.16 where 2 represents the date July 24th,
3 represents the date July 10th, and 4 the date July 3rd. Thus, the
selected date represents a valid criticism and the model might have
failed to train on such patterns.

6 CONCLUSION
The aim of this research was to investigate the effectiveness of dif-
ferent machine learning models in time-series analysis. It included

an in-depth comparison between two popular gradient boosting
algorithms CatBoost and XGBoost exploring their performance
for different lags. The accuracy improved as the window span de-
creased indicating stronger correlations with nearer entries. XG-
Boost provided better results as compared to CatBoost. Besides
that, it was effectively shown that accuracy levels improve when
incorporating them in hybrid models. This was determined by ex-
tensive analysis of the base results, XGBoost, with the other two
models LSTM-XGBoost and CNN-XGBoost by comparing them in
different categories, where the hybrid models surpassed most of
them. CNN-XGBoost was also shown to be one of the better hybrid
models. The results raised suspiscion that all models had difficulties
in capturing specific trends. This suspicion was confirmed when an-
alyzing the prototypes and criticism for business and non-business
days. The analysis demonstrated that the model was able to capture
non-business day trends better than business day ones. Additionally,
the model showed a better ability to generalize on smaller windows
for business days. There was a noticeable difference in accuracy
when forecasting a day aligning with the ’prototype’ as compared
to the ’criticism’. The tool achieved its purpose in making the hy-
brid model more comprehensible. It also showcased the points of
criticism which could potentially help stakeholders better tune their
models to capture the missing trends.

Both sub questions have been thoroughly answered. Subquestion
1 was answered by showing that CNN-XGBoost resulted in minor
improvements in most cases. Subquestion 2 was answered by pro-
viding an example on how prototypes and criticism helped catch
weak forecasting patterns by the model.

6.1 Future work
Simplistic architectures were chosen when constructing the neural
network models, the accuracy difference between our base model
and the hybrid one could be improved by considering a more com-
plex structure.While trade-offs regarding accuracy and training time
were addressed, more investigations can be made in determining
whether the hybrid model is more suited when taking computational
costs in consideration. The MMD-critic model can be further investi-
gated for its effectiveness in helping stakeholders improve a model’s
accuracy with an example on how the accuracy was increased after
incorporating additional tuning due to this tool.

A APPENDIX
During the preparation of this work the author used Grammarly
and Overleaf in order to assist in highlighting spelling mistakes and
unclear sentences. After using these tools, the author reviewed and
edited the content as needed and takes full responsibility for the
content of the work.

B REFERENCES
[1] Chenrui Zhang, Zhonghua Chen, and Jing Zhou. Research on short-term load

forecasting using k-means clustering and catboost integrating time series features.
2020 39th Chinese Control Conference (CCC), pages 6099–6104, 2020.

[2] Xianjin Yang and Zhonghua Chen. A hybrid short-term load forecasting model
based on catboost and lstm. In 2021 6th International Conference on Intelligent
Computing and Signal Processing (ICSP), pages 328–332, 2021.

[3] Junliang Fan, Xiukang Wang, Lifeng Wu, Hanmi Zhou, Fucang Zhang, Xiang
Yu, Xianghui Lu, and Youzhen Xiang. Comparison of support vector machine
and extreme gradient boosting for predicting daily global solar radiation using

8

Comparative study of the state of the art of machine learning-based models for load forecasting TScIT 37, July 8, 2022, Enschede, The Netherlands

temperature and precipitation in humid subtropical climates: A case study in
china. Energy Conversion and Management, 164:102–111, 2018.

[4] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you
need, 2021.

[5] Razak Olu-Ajayi, Hafiz Alaka, Ismail Sulaimon, Funlade Sunmola, and Saheed
Ajayi. Building energy consumption prediction for residential buildings using deep
learning and other machine learning techniques. Journal of Building Engineering,
45:103406, 2022.

[6] Hyojeoung Kim, Sujin Park, Hee-Jun Park, Heung-Gu Son, and Sahm Kim. So-
lar radiation forecasting based on the hybrid cnn-catboost model. IEEE Access,
11:13492–13500, 2023.

[7] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough,
learn to criticize! criticism for interpretability. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[8] Ing. Petr NÁVRAT. Iec62056 obis codes, 2024. Accessed: 2024-06-30.
[9] KNMI. Netherlands seismic and acoustic network, 1993. Royal Netherlands

Meteorological Institute (KNMI). Other/Seismic Network. Digital Object Identifier
(DOI): 10.21944/e970fd34-23b9-3411-b366-e4f72877d2c5.

[10] TensorFlow. Time series forecasting. https://www.tensorflow.org/tutorials/
structured_data/time_series. Last updated: 2023-06-29, Accessed: 2024-06-29.

[11] Anand Singh Rajawat, Omair Mohammed, Rabindra Nath Shaw, and Ankush
Ghosh. Chapter six - renewable energy system for industrial internet of things
model using fusion-ai. In Rabindra Nath Shaw, Ankush Ghosh, Saad Mekhilef, and
Valentina Emilia Balas, editors, Applications of AI and IOT in Renewable Energy,
pages 107–128. Academic Press, 2022.

[12] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

[13] Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Os-
troumova Prokhorenkova, and Aleksandr Vorobev. Fighting biases with dynamic
boosting. CoRR, abs/1706.09516, 2017.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

[15] Christoph Molnar. Interpretable Machine Learning. Lulu.com, 2020.
[16] L.O. Hall, X. Liu, K.W. Bowyer, and R. Banfield. Why are neural networks some-

times much more accurate than decision trees: an analysis on a bio-informatics
problem. In SMC’03 Conference Proceedings. 2003 IEEE International Conference on
Systems, Man and Cybernetics. Conference Theme - System Security and Assurance
(Cat. No.03CH37483), volume 3, pages 2851–2856 vol.3, 2003.

9

https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series

	Abstract
	1 Introduction
	2 METHODOLOGIES
	2.1 Business and data understanding

	3 Architectural description of various models
	4 Prototypes & Crticisim
	5 Results and Discussion
	5.1 Metrics comparison between XGBoost & CatBoost
	5.2 Metrics comparison XGBoost & Hybrid models
	5.3 Metric comparison between Prototypes & Criticism

	6 Conclusion
	6.1 Future work

	A Appendix
	B References

