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Cell segmentation is a crucial process in the biomedical field as the size,
shape or number of cells can provide a plethora of information for medical
diagnosis of many diseases[7]. However, cell segmentation can be a difficult
task to tackle owing to the irregular shapes and overlapping cells that lead to
poor boundary distinction. In addition to the difficulty in the segmentation
of cells, the availability of ground truth to train the model is a bottleneck due
to the the resource intensive process of creating labeled segmentation masks.
This paper implements an automatic cell segmentation model using Mask
R-CNN trained on microscopic cell images dataset. The Segment Anything
Model (SAM) will be used for interactive segmentation of images to produce
the ground truth to train the model. The primary objective of this study is
to analyse how SAM prompts can be used interactively in order to produce
accurate segmentation masks to use as ground truth to train segmentation
models like Mask R-CNN.
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tion, SAM, Mask R-CNN

1 INTRODUCTION
In recent times, the growth of AI has resulted in vast advancements
in many fields. In the biomedical field, a rather groundbreaking use
of AI is for cell segmentation. Cell segmentation is an essential step
in bio medical research for quantitative analysis of cells, disease
diagnosis, stem cell research and more[14]. Cell segmentation is
the process by which each instance of the cells, i.e. the region of
interest, is separated from the rest of the image. Using this, it is
possible to analyze the biological features of the cell, which pro-
vides great insight into cellular functions and interactions. Owing
to the complex nature of cell segmentation, caused by overlapping
cells and the difficulty in accurately detecting cell boundaries, cell
segmentation can be quite erroneous[4]. An error in cell segmenta-
tion can result in potential systematic errors in all the downstream
functions [6]. Hence, the accuracy of the cell segmentation is of
utmost importance.
There are multiple existing AI deep learning models like U-Net,

Mask R-CNN, DeepLab etc., which when given an image, outputs
the segmentation masks of the image. All these models require
large amounts of annotated data to train so that it can perform
with higher accuracy and precision on new data. The creation of
annotated data is time consuming and expensive [15], monetarily
and in terms of human resources. When training a segmentation
model for cell segmentation, it needs to be provided with ground
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truth segmentation masks for the model to learn what it needs
to predict. When creating the ground truth segmentation masks,
there are multiple challenges faced. The microscopic images have
overlapping cell boundaries, which poses challenges when creating
segmentation masks for each cell instance.

The Segment Anything Model (SAM) is an interactive segmenta-
tion model, that lets the user create segmentation masks for images
by specifying points and bounding boxes as prompts which guides
the algorithm to segment the region of interest.
In this research, SAM will be used to generate segmentation

masks for fluorescent microscopic cell images. The corresponding
bright field images and the created segmentation masks will then
be used as training and validation data to train the Mask R-CNN
model. The main focus of this research is to see how well the seg-
mentation masks created by SAM serves as ground truth to training
a segmentation model on bright field images. A main contribution
made by this paper is the dataset of segmentation masks and labels
that is created in this research.

2 LITERATURE REVIEW
Deep learning models often require large datasets in order for it to
achieve high performance. Large amount of data provides varied ex-
amples that would help the model generalise, preventing over fitting
of data[5]. Owing to the requirement to have a large dataset, there
has been research into creating them, such as the LIVECell dataset,
which is a high-quality dataset of manually annotated, label-free im-
ages of cells [3]. This includes around 1.6 million cells from various
cell types. However, even after training with more than 1.6 million
cell instances, the accuracy sometimes fail to reach saturation[15].
Expanding these datasets would mean more manual annotation of
cell images. However, manual creation of annotated datasets are
very resource intensive. When dealing with images that contain
a lot of cell instances, this process would take a lot of time. The
manual annotations will also be prone to subjectivity and it can also
be affected by fatigue and attention span of the annotator. This can
be prominent especially in cases where there are a lot of overlapping
cells and there are no distinct boundaries to segment each cell. In
this case, the ground truth masks are created based on the anno-
tator’s interpretation of where the boundary is. These challenges
makes the creation of accurate ground truth segmentation masks
hard, especially when made at a very large scale.

A solution to tackle this issue would be to use a smaller training
dataset. When using smaller datasets for training, manual creation
of segmentation masks would be easier. However using smaller
dataset could lead to over fitting due to the model memorising the
training data rather than learning the patterns. This can be solved
using transfer learning, in which the model is initially trained on a
large, varied dataset. And once the training is done, the knowledge
it infers from the large dataset can be fine-tuned to predict on the
smaller dataset[13].
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In addition to the dataset size, microscopic cell images poses
the challenge of accurate segmentation. Cell images are usually
made on different focal planes (z-stack levels), where some cells
are clearly visible in some focal planes whereas others are blurry.
This causes difficulties when creating segmentation masks for each
cell instance as some cells do not have clear boundaries in any
focal planes. When there are cells that are completely covering the
other cell, the boundary contrast is not evident in any z-stack level
causing inaccurate segmentation masks being created. This leads to
the following problem statement.

3 PROBLEM STATEMENT
In order for the existing image segmentation models to perform cell
segmentation, the models would need to be trained on cell images to
learn the features. Even when leveraging transfer learning to have
the ability to effectively train the model on a smaller dataset, the cell
images poses challenges when creating ground truth segmentation
masks. This results in the following research question:

3.1 Research question
Given the challenges of generating fully annotated training data for
automated cell segmentation models, how can interactive segmen-
tation be used to create accurate segmentation masks?
This can be answered with the following sub-questions:
(1) How can we implement interactive segmentation using SAM

to create segmentation masks from fluorescent cell images?
(2) How well do these segmentation masks serve as ground truth

when training basic segmentation models, like Mask R-CNN,
on bright field cell images?

4 BACKGROUND INFORMATION
In this paper, we are tackling the concern of segmentation tasks and
we will be using the Mask R-CNN model for this.

Segmentation tasks can be of two types, semantic segmentation
and instance segmentation.

4.1 Semantic segmentation
Semantic segmentation is the process of inferring labels for each
pixel in the image and classifying it to the right class[2]. The classes
are the regions of interest and the background. If there are multiple
occurrences of the same class in the given image, these will be all
classified within the same mask in semantic segmentation. Semantic
segmentation differs from object detection as it "allows the object
of interest to span multiple areas in the image at a pixel level"[12].

4.2 Instance segmentation
Instance segmentation, on the other hand, separates each occurrence
of a class and assigns a separate mask to each instance of the class[1].
Each pixel in the image is assigned a unique label depending on
what class instance it belongs to. There are multiple techniques
used for instance segmentation. One commonly used technique is
detection-based instance segmentation where object detection is
utilized first to detect the regions of interest, where bounding boxes
are generated around the object. The masks are then generated for
these regions. Instance segmentation is key in medical imaging as

it allows for detailed study of medical images to diagnose various
heath conditions[1].
An example of instance and semantic segmentation is shown in

Figure 1.

(a) Instance Segmentation

(b) Semantic segmentation

Fig. 1. Instance and Semantic Segmentation [1]

In this paper, the Mask R-CNN model will be trained to perform
automatic instance segmentation.

4.3 Mask R-CNN
The Mask R-CNN is an instance segmentation model. It is an exten-
sion of the Faster R-CNNmodel, which is a primarily used for object
detection. Alongside the object detection branch, Mask R-CNN has
a parallel segmentation branch, that produces segmentation masks
for the region of interest. The backbone model of Mask R-CNN
consists of the ResNet architecture to extract features of the image.
It also contains a Region Proposal Network (RPN), which predicts
the likelihood of an object in that region. The regions of interest
obtained from RPN is then passed through pooling layers to convert
all the regions to the same shape. These regions are then passed
through a fully connected network to predict the class labels and
bounding boxes. These layers are similar to the Faster R-CNNmodel.
Additional to these layers, Mask R-CNN has a mask head, a fully
convolutional network that predicts segmentation mask for each
area of interest[10]. With this architecture, Mask R-CNN efficiently
predicts labels, bounding boxes and segmentation masks for the
objects in an image.



4.4 Other models
During the initial phases of this research, the U-Net model was also
considered as a potential candidate for the model training. U-Net
is a biomedical image segmentation model, that is designed to use
convolutional networks for semantic segmentation of images[8].
While U-Net is more suitable for cell segmentation as it is a biomed-
ical segmentation model, it is mainly for the purpose of semantic
segmentation more than for instance segmentation. A sub-goal of
this research is mainly to train a model for instance segmentation.
Hence, if using the U-Net model, its architecture would need to be
modified. Mask R-CNN is specifically for instance segmentation.
Hence, by adapting Mask R-CNN on cell images, it can be trained to
predict instance level segmentation masks for cell images. Therefore,
Mask R-CNN was chosen to be the model that will be trained in this
research.

5 METHODOLOGY
This section will explain how the research question will be answered.

5.1 Segment Anything Model
Segment Anything Model (SAM) is an interactive segmentation
model, in which the user can specify points, bounding boxes or a
combination of both to segment the region of interest from the rest
of the image. For each prompt, the user can also assign whether it
is part of the foreground or background of the image. The prompts
would be an array of coordinate points. For bounding boxes, these
are the (x,y) coordinates of the top left corner and the bottom right
corner. For the point prompts, it is an array of the (x,y) coordinates
of each point and a corresponding array of 0s and 1s, specifying
if the point is in the foreground or background of the image. An
example is shown in (a) in Figure 2. Using these prompts the model
will then produce segmentation masks, which can be further refined
by the user by giving in more prompts or adjusting the existing
prompts to guide the algorithm. Figure 2 shows how points can
be used as prompts to segment an instance of the cell from the
fluorescent image.

5.2 Training Mask R-CNN
Once the segmentation masks were created, they were used as
the ground truth and Mask R-CNN model was trained with pre-
trained weights, to create instance segmentation masks on bright
field images. The pre-trained weights used were the weights trained
on the COCO dataset. The COCO dataset, is a large scale object
detection and segmentation dataset[16]. The masks created by Mask
R-CNN model will be evaluated using evaluation metrics like IoU,
f1 score, mean average precision and label accuracy.
The basic methodology is visualised in Figure 3.

6 EXPERIMENT

6.1 Dataset
The dataset used in this research consists of plant cell microscopy
images. It contains bright field images of plant cells. The data is
spread over 5 days, there are 3 cell positions and there are 7 z-stack
level for each position. Each bright field image has a corresponding
fluorescent image. An example is shown in Figure 4. There are also

(a) Segmentation prompt

(b) Points and boxes on Fluorescent images

(c) Generated segmentation mask

Fig. 2. Interactive Segmentation

additional positions, which do not have data for all 5 days. These
are used as unseen data for evaluation of the model.

6.2 Creating segmentation masks
When creating the segmentation masks, there were two possible
ways in which the z-stack levels can be used to generate the seg-
mentation masks.

• Median of all the z-stacks: The median of each pixel intensity
across different z-stack levels will be taken to combine all the
z-stack levels. The segmentation masks will be created for
each cell instance in the combined z-stack image.

• Creating segmentation masks for each cell visible in each
z-stack: Segmentation mask will be created for each cell in-
stance in each z-stack level image. The visible cell in the
certain z-stack will be annotated. Once this is done, each



Fig. 3. Methodology

(a) Bright field image

(b) Fluorescent image

Fig. 4. Dataset

instance mask can then be combined to be a single mask dic-
tionary, where the bounding box of each cell is mapped to its
corresponding mask.

In order to decide which of these methods is more suitable for
the research, a small experiment was conducted in which both
the options were tried out. The dataset contained cell positions
xy01, xy14 and xy20. For the experiment, the images of Day 1 were
used. From the experiment, it was seen that for position xy14 and
most images of xy20, creating segmentation mask for the combined

median pixel image was more accurate. Hence, initially this was the
chosen method for creating segmentation masks for all the images.

6.2.1 Challenge of the segmentation. During later stages of mask
annotation, it was seen that this method did not work that well for
images that had a lot of overlapping cells. This was especially seen in
the position xy01. As shown in Figure 5, when taking the combined
median pixel image of position xy01, the boundaries of the cells
were not clear. Some images in position xy20 also had the same
issue. Hence, it was very difficult to create segmentation masks
for the cells in these images. Therefore, for these positions, the
method was changed to the other option, where each z-stack level
was inspected and the cells visible in that z-stack was annotated.
Since the z-stack shows the boundary of the cells more clearly, more
accurate segmentation masks could be created.

Fig. 5. Combined pixel image

Examples of generated segmentation masks for each position is
shown in Figure 6.

6.3 Label and bounding box generation
Since the Mask R-CNN model does object classification and seg-
mentation, the ground truth should consist of segmentation masks,
bounding boxes and labels for each cell. The labels would be ’Alive’
or ’Dead’ to denote alive and dead cells. These were classified based
on whether the cells were visible in the fluorescent images or not.
Cells that were visible in the bright field images but not in the fluo-
rescent ones, were labelled dead and the rest were labelled alive. The
bounding boxes were generated from the masks. Once the masks
were generated by SAM, opencv-python library was used to get the
bounding rectangle of the masks.

6.4 Training the model
Once all the segmentation masks were made, the next step in the
research was to train the Mask R-CNN model. In order to train the
Mask R-CNN model, the dataset was first split into two sets, the
train set and the validation set. The images in position xy01 and
xy20 were used as the train set and the images in the position xy14
was used as the validation set. The image details, the segmentation
masks, bounding boxes and the labels were all stored in a JSON file
in the COCO format. The segmentation section in the annotation



(a) xy01 Mask

(b) xy14 Mask

(c) xy20 Mask

Fig. 6. Generated masks

part contains the size of the mask, which is 512 x 512, the size of
the mask and it also contains the segmentation mask encoded in
RLE format. In order to evaluate the model, the model’s prediction
on unseen data, which includes unseen positions, will be visualised.
Additionally, the model will also be evaluated on the following
evaluation metrics:

• Intersection over Union (IoU):

IoU =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

where 𝐴 is the predicted bounding box/mask and 𝐵 is the
ground truth bounding box/mask. IoU gives a good idea of
the overlap between the ground truth and the predicted boxes
and masks.

• Mean Average Precision (mAP):

mAP =
1
𝑁

𝑁∑︁
𝑖=1

AP𝑖

where 𝑁 is the number of classes and AP𝑖 is the average
precision for the 𝑖-th class. mAP is calculated over different
IoU thresholds between 0.5 and 1. mAP gives a good idea on
the accuracy of the model.

• F1 Score:

𝐹1 = 2 · Precision · Recall
Precision + Recall

where

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

• Label Accuracy:

Label Accuracy =
Number of Correct Predictions
Total Number of Predictions

6.4.1 Data pre-processing. The images, in its original format, is too
large to use as training data as it takes up a lot of GPU memory and
it also slows down the training process. Hence, the images were
resized to the dimension (512x512). Along with resizing the images,
the masks and bounding boxes were also resized correspondingly.
The images were then randomly flipped horizontally and vertically.
The transformations were also applied to the ground truth bounding
boxes and segmentation masks. The data that was initially stored
as a json file was transformed to a CoCo Dataset and DataLoader
was used in order to split the data into batches.

6.4.2 Training. Once the training data is defined, the model is initi-
atedwith pre-trained COCOweights and the ResNet50 fpn backbone.
The ResNet50 is a deep residual network that consists of residual
blocks, convolutional layers, pooling layers and fully connected lay-
ers that allows for training deeper networks for object detection[9].
Feature Pyramid Network (FPN) helps boost the capability of the
ResNet50 backbone by creating a multi-scale feature maps that help
detecting objects of different scales[11]. Combining ResNet50 with
FPN helps in creating multi-feature maps that can then be used by
the head, the region proposal network (RPN). The RPN takes in the
extracted features and predicts whether an object is present in a
region or not. ROI align is then used to extract fixed-size feature
maps that are then fed to the object detection head and the seg-
mentation head. The Adam optimizer was used in order to have a
stochastic gradient descent that adapts the learning rates for each
parameter. The initial learning rate was set to 0.0001. In order to
adjust the learning rate during training, ReduceLROnPlateau learn-
ing rate scheduler was used. GradScaler was also used for mixed
precision training to achieve performance speed up and maintain
the accuracy. The loss function used is the default loss function
for Mask R-CNN model, which is a multi-class loss function that
includes classification loss, bounding box regression loss and mask
loss. Classification loss is calculated using the cross-entropy loss,
bounding box regression loss uses the smooth L1 loss function and
the mask loss is calculated using the binary cross-entropy loss.



7 RESULTS

7.1 Prediction results
Once the model was trained, the trained model was used to predict
some segmentation masks on unseen data and unseen cell positions.
The results are shown in Figure 7.

(a) Prediction for day1c1t1xy15z20

(b) Prediction for day5c1t6xy37z14

Fig. 7. Predicted results

As seen in the image, most of the cells in the image are detected
and the labels for these are predicted correctly. However, there are
also false defections. There are some masks in areas on the image,
where there are no cells and some masks where only part of the
cell is included in the mask. This trend is generally seen in the cells
that overlap. One of the reasons for there to be segmentation masks
for cells not in the specific z-stack could be because of how the
training data is structured. In the training data, for each z-stack,
the corresponding segmentation mask was made to the combined

z-stack pixel image. These would also include cells that are not
clearly seen in the specific z-stack. Hence, this could be why the
predicted results show masks for cells not in the specific z-stack
level. The performance of the model can be better assessed using
evaluation metrics.

7.2 Evaluation metrics
The average of all the evaluation metrics over all the epochs are
shown in Table 1 for the bounding boxes and labels. The results for
the masks are shown in Table 2.

Table 1. Bounding box and label metrics

mAP (%) f1 Score (%) IoU score (%) label accuracy (%)

38.2 27.3 85.5 84.8

Table 2. Segmentation masks metrics

mAP (%) f1 Score (%) IoU score (%)

0.098 0.86 87.02

The train and validation loss was also plotted and the result is
shown in Figure 8. The decreasing trend in the training loss indicates
that the model is learning well. However, the fluctuating validation
loss suggests that the model is not predicting well for unseen data.
The validation loss also increases at the end, where the training loss
keeps decreasing, which suggests that the model is over fitting to
the dataset. The visualised predicted results also corresponds to this
pattern as there are more cells segmentation masks being predicted
than cells in the images.

Fig. 8. Train and validation loss



Table 3. Model Performance Comparison Across Z-levels

Z-level mAP (%) f1 (%) IoU (%) label
accuracy

(%)bbox masks bbox masks bbox masks

z12 31.5 0.007 23.5 0.53 83.3 84.4 83.4
z14 35.2 0.004 25.8 0.30 84.51 85.40 82.3
z16 41.0 0.310 30.5 2.70 85.98 86.75 820
z18 39.7 0.106 35.3 1.40 85.43 87.64 80.6
z20 37.6 0.166 40.0 3.00 85.30 87.54 81.0
z22 32.3 0.050 36.5 1.60 84.93 86,26 83.0
z24 25.2 0.181 37.1 2.10 84.24 84.41 84.3

7.3 Evaluation metrics across z-stack levels
Across the different z-stack levels the bounding box metric values
shows a pattern similar to a bell curve. The initial z-stack levels
and the last z-stacks have a comparatively lower mAP and f1 score
whereas the z-stack levels in between have a higher value in these
metrics. This pattern is expected as the blur level tends to decrease
as we move towards the z-stack levels 18, 20 and it starts to again
move out of focus at z-stack level 22,24. It will be easier for the model
to predict the bounding boxes at z-18 and z-20 as the contours of
the cell will be more apparent in these focus levels. The peak at z-16
might be due to the fact that only very few cells are visible at this
z-stack level and hence not a lot of bounding boxes or masks will be
made at this focal length. At z-12 and z-14, almost none of the cells
are visible and at z-22 and z-24, cells are slightly visible, however,
the focus starts fading resulting in the pattern observed.
The performance of the masks across the different z-stack level

also shows a peak at z-16 and z-20, especially for f1 score. The mAP
for the masks also suggests a similar trend with peaks at z-16 and
z-20. This also corresponds to the pattern seen with the bounding
boxes. For the masks, there is a significant dip at z-18 and this
might because at z-18 we start seeing some boundaries, however,
these are not fully clear and hence when the model tries to create
segmentation masks for these cells, it produces inaccurate masks.

7.4 Explanation of the evaluation metrics
The precision and recall for the bounding boxes shows that the
recall is higher than the precision. This indicates that the model is
detecting cells, however a lot of false cells are also being detected.
The precision and recall for the masks, as seen in Figure 9, also
suggests the same. From visualising the predictions, it is also seen
that more masks are being created than the number of cells. In some
cases, non-cell objects are also being identified as cells. This also
results in the mAP of the masks being very low.

One of the reasons for the poor evaluation results for the masks
could be the manual segmentation masks created. Since the ground
truth was manually created, there is a possible chance that there
might be differences in the segmentation mask’s precision. For some
of the cells, especially in the case of overlapping boundaries, it was
not possible to segment it accurately and in these cases, the best
possible mask was made. As also seen in the model’s performance
over the different z-stack levels, the level of blur causes the contrast

Fig. 9. Precision and recall of

between the background and the cells to reduce, which leads to the
model not being able to segment the cells properly. This can also
cause the model to not be able to segment adjacent cells accurately
in out-of-focus images. The varying blur level can interfere with
the model’s ability to learn consistent features. The visualisation of
the prediction does suggest that the model predicts the cells well.
However the mask mAP is low, this could be due to the validation set
used. The validation set used to evaluate the model were the images
at the position xy14. As mentioned in the methodology, for position
xy14, the ground truth masks were created on the combined cell
images. The fluorescent images in this position had poor visibility
of any cells. Only very few cells were visible and hence only these
ones were segmented during the creation of the ground truth data.
However, when looking at each z-stack level, there are more cells in
the images than there exists the segmentation masks in the ground
truth. The model is trained on position xy01 and xy20 and for these
positions, the ground truth was created by going through each z-
stack level as the combined images for these positions included
all the cells and the cells were visible in the combined image but
the cell walls were not clearly distinguishable in the combined
image. Due to the model being trained on these positions, the model
predicts even the less visible cells in position xy14, when it is fed
in as the validation set. This causes there to be more predicted cell
segmentation masks than the number of segmentation masks in
the ground truth. Hence, the precision reduces as the number of FP
increases. This causes the mAP value for the mask to be very low.
The comparatively higher recall suggests that out of all the ground
truth masks, most of the masks are predicted by the model. This
is also substantiated by the IoU score as it suggests that the masks
that are being created do overlap to a great extent with the ground
truth masks and bounding boxes.

7.5 Comparison to baseline model
In order to further evaluate the performance of the model, we can
compare it with Yolov5-Seg. Yolov5-Seg is an instance segmentation
model that has been built on top of the standard Yolov5 architecture,
which is primarily used for object detection. When predicting the
validation set using Yolov5-Seg, we get the following evaluation



metrics results as shown in Table 4. As seen with the IoU score,
the model performs poorly in detecting and segmenting the cells.
The f1 score and accuracy metrics do have a higher value than
the metrics of the Mask R-CNN model. However, this is due to
the difference in the number of predictions made by Yolov5. Since
both these metrics leverage the number of predictions to a great
extent, there being less predictions in Yolov5, as seen in the image,
leads to the seen performance. The IoU scores indicates that the
predictions made by this baseline model does not segment the cells
well as there is minimal overlap with the ground truth masks. This
is also substantiated by Figure 10, where the detected component in
the image is not a cell. Comparatively, our model performs better
segmentation as seen in Figure 11. The trained Mask R-CNN model
has a segmentation IoU score of 87.02%. The label accuracy of YoLov5
is 0% as the elements in the image were never identified as cells,
due to the model not having seen cell images in its training data.
This comparison between the two models provides great insight
into the need for instance segmentation models trained specifically
on microscopic cell images for effective cell segmentation.

Table 4. Evaluation metrics for Yolov5 on microscopic cell images

IoU score (%) f1 Score (%) accuracy (%) label accuracy (%)

5.8 6.5 10.4 0

Fig. 10. Yolov5 prediction - day3c1t3xy14

8 CONCLUSION
In conclusion, answering the first research question involves using
SAM to effectively generate segmentation masks for the images.
This process requires a great amount of manual work as we need
to specify prompts for each cell in an image. These prompts would
need to be further adjusted to accurately segment each cell. Some
cells might just take one point coordinate and bounding box coor-
dinates to accurately segment the cell, whereas some might take
multiple point coordinates to segment the boundaries correctly. Ad-
ditionally, in the cases of overlapping cell boundaries, the creation

Fig. 11. Mask R-CNN prediction - day3c1t3xy14

of segmentation masks were challenging. Hence, SAM can be effec-
tively used to create segmentation masks to serve as ground truth
to cell instance segmentation models, given that the z-stack images
distinctly outlines the cell walls of each cell. However, it is not an
efficient method due to its resource intensive nature.

Answering the second research question, the generated segmen-
tation masks does serve as an basis for training a cell segmentation
model. However, it needs to be developed further to train a model
that predicts very accurate segmentation masks. The model detects
cells and it also creates segmentation masks for it. However, there
are also cells detected that are not in the image provided. Addition-
ally, some of the created masks have inaccurate cell wall boundaries
detected. The reasons for these inaccuracies are discussed in the ex-
planation of the evaluation metrics. The main reason for this could
be the quality of the ground truth and the size of the dataset. The
dataset might not be large enough for the model to generalise the
segmentation mask patterns. Hence, there would need to be further
experiment to answer this question better.

9 FUTURE WORK
In order to continue this research, the main aim would be to improve
the performance of the model. One way to do this would be to
work on the ground truth segmentation masks. The already existing
ones can be reviewed by an expert and made better. In addition
to this, expanding the dataset would enhance the performance of
the model. Hence, more ground truth segmentation masks need
to be created. Although this is a time consuming task, more data
would be beneficial for the performance of the model, especially
to prevent over fitting. There could be a team of people that work
on creating the segmentation masks, which would make the task
more feasible. Additionally, other models could also be trained to
do the same. U-Net architecture could be modified for it to perform
instance segmentation. Since it is a biomedical segmentation model,
it could perform better on microscopic cell images.
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