
Extracting Modelling Information using Natural Language Processing
CRISTIAN PERLOG, University of Twente, The Netherlands

ABSTRACT
In the field of software engineering, testing has a high importance in ensur-
ing the reliability and the quality of software. One approach to testing is
Behavior-Driven Development, which uses natural language descriptions to
define software behavior. This research focuses on automating the process of
extracting essential elements from BDD scenarios using Natural Language
Processing (NLP) techniques. This study is built on previous research that
combines BDD and MBT to generate and execute test cases automatically
from BDD scenarios. It evaluates NLP tools and techniques, and develops a
tool used for extracting modelling information from BDD scenarios.

Additional Key Words and Phrases: Natural Language Processing, Behavior-
Driven Development, Software Testing, Automation, Model-Based Testing

1 INTRODUCTION
In previous research [13], a language called IBDD, along with a
hybrid grammar, was defined to support the transformation of BDD
scenarios into formal models, which can then be used in the next
phases of generating and executing test cases. However, the trans-
formation from BDD to IBDD is done manually. This research builds
upon that work by proposing a tool to automate this process, more
specifically, for extracting the modelling information from BDD
scenarios.

BDD:
Behavior-Driven Development (BDD) offers a framework for defin-
ing software behavior using domain-specific language in natural
language sentences/scenarios. One of the main goals of BDD is to
facilitate clear communication among stakeholders (both techni-
cal and business people) and ensure that the development process
aligns with business goals [10]. It achieves this by expressing both
the behavior and expected outcomes of the system. To translate
BDD scenarios to executable test cases, essential information—such
as variables, actions, and conditions—from the BDD scenarios needs
to be extracted. However, this process is currently done manually
[13], which takes considerable effort and is prone to errors due to
different interpretations of the scenarios.
NLP:

To address this challenge, this research proposes a tool that utilizes
Natural Language Processing (NLP) techniques to automate the
extraction of modeling information from BDD scenarios. NLP is a
field that focuses on providing a range of computational techniques
for processing data encoded in natural language [3]. Given that BDD
scenarios are written in natural language, NLP is well-suited for the
interpretation of these scenarios. The main goals of the proposed
tool in this research are to reduce the time and effort required for
this phase of test preparation and to improve the consistency and

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

accuracy of the resulting outputs. This automation could facilitate
direct integration into Model-Based Testing (MBT) frameworks.

Thus, themain research question is:
How can Natural Language Processing (NLP) techniques be em-
ployed to automate the extraction of core elements—actions, vari-
ables, and conditions—from BDD scenarios?

Overview:
The paper is organized as follows: Section 2 provides a literature
review of existing research on the application of NLP techniques
in the context of BDD, as well as integration of BDD and MBT
approaches in the context of automating the generation of test cases.
Section 3 gives a brief summary of what precisely is expected the
tool to be able to extract from BDD scenarios. Section 4 describes
the main NLP tools considered for this research, as well as the
rationale behind the final selection of NLTK. Section 5 details the
methodologies applied in building the tool. In Section 6, a high-level
architecture of the proposed tool is presented. Section 7 provides a
guide for using the tool. Section 8 presents an example usage of the
tool, and Section 9 discusses the evaluation of the tool’s effectiveness.
Finally, Section 10 concludes the paper and suggests directions for
future work.

2 LITERATURE REVIEW
This section will include a review of existing research on the applica-
tion of Natural Language Processing (NLP) techniques in the context
of Behavior-Driven Development (BDD). Previous studies have ex-
plored the use of NLP to bridge the gap between human-readable
BDD scenarios and formalized test specifications.

• For instance, Gupta et al. [7] explored generating multiple
conceptual models from BDD scenarios using NLP. Their ap-
proach parsed BDD scenarios to extract actions, variables, and
conditions, mapping these to UML diagrams such as use case,
class, activity, and state machine diagrams. This automated
model generation improved test specification, software qual-
ity, and communication among stakeholders by accurately
representing relationships and dependencies in user stories.

• Similarly, Soeken et al. [11] introduced a novel approach to as-
sisted BDD using NLP, which laid the groundwork for more
advanced automation tools. Their research focused on au-
tomating the initial stages of Behavior Driven Development
(BDD) by using natural language processing techniques to
extract design information from acceptance tests. A method-
ology was proposed, where the user enters into a dialogue
with the computer, which suggests code pieces extracted from
natural language sentences. Specifically, the focus was on gen-
erating UML models, such as sequence diagrams and class
diagrams. The approach was validated with a case study, and
it was a significant step towards an automatization of BDD.

• Zameni et al. [13] proposed an intermediate language called
IBDD to bridge the gap between informal BDD scenarios and
formal Model-Based Testing (MBT) models. Their approach

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Cristian Perlog

translates IBDD scenarios into BDD Transition Systems (BD-
DTS), which are then converted into Symbolic Transition
Systems (STS) for generating test cases. This method ensures
that BDD scenarios can be automatically transformed into
precise test cases, improving the quality of software testing.

• In [14] a method was proposed to streamline the conversion
of BDD scenarios into test cases, thus reducing manual effort
and laying a foundation for automated testing. This study in-
troduced BDD Transition Systems (BDDTS) as formal models
that map BDD scenarios into Symbolic Transition Systems
(STS). The approach improves BDD further by enabling the
automated generation and execution of comprehensive test
cases, thereby bridging the gap between BDD scenarios and
executable tests.

3 EXPECTATIONS AND REQUIREMENTS
To have a better understanding of the tool extraction requirements,
a BDD scenario involving a real-world printer example (extracted
from [14]) and its expected outcome is provided:

Given a controller job is in the scheduled jobs. When the printer
starts printing the controller job And the printer completes printing
the controller job. Then the controller job is in the printed jobs

In section 4 from [13], the grammar of the IBDD language is
described in more detail. In practice, the following information is
expected to be extracted from the aforementioned BDD scenario:

• "Local Variable": "controller job"
• "Context Variables": ["scheduled jobs", "printed jobs", "printer"]
• "Given": {"Boolean Functions": ["is in the (controller job, sched-
uled jobs)"]}

• "When": {"Printer": ["starts printing (controller job)", "com-
pletes printing (controller job)"]}

• "Then": {"Boolean Functions": ["is in the (controller job, printed
jobs)"], "Actions": {}}

In short, the scenario consists of "Given", "When", and "Then"
clauses. "Given", and "Then" steps describe the expectations from the
system while the "When" step specifies the behavior of the system.

4 DESCRIPTION OF NLP TOOLS
In the process of automating the extraction of elements from BDD
scenarios, two prominent NLP tools were considered: spaCy and
NLTK. This section details the functionalities of each tool and ex-
plains the decision behind selecting NLTK for the tool development.

4.1 spaCy
spaCy [5] is a popular open-source NLP library designed for effi-
ciency and ease of use. It provides pre-trained models for various
languages and offers functionalities such as tokenization, part-of-
speech (POS) tagging, named entity recognition (NER), and depen-
dency parsing. Some of the key features of spaCy include:

• Ease of Use: spaCy’s user-friendly API makes it accessible
for both beginners and experienced developers.

• Pre-trainedModels: The library includes pre-trainedmodels
that deliver high accuracy for common NLP tasks.

• Speed: spaCy is optimized for performance, making it suit-
able for processing large volumes of text quickly.

4.2 NLTK
The Natural Language Toolkit (NLTK) [2] is a comprehensive library
for building NLP programs. It provides a wide range of tools for
text processing, including tokenization, POS tagging, stemming,
lemmatization, chunking, parsing, and semantic reasoning. The key
advantages of NLTK include:

• Flexibility and Customizability: NLTK offers a broader
range of functionalities and greater flexibility in customizing
the NLP pipeline to suit specific tasks.

• Educational Resources: NLTK is well-documented [1] and
widely used in academia (e.g.: [9] or [12]).

• Wide Range of Algorithms: The toolkit includes numerous
algorithms for different NLP tasks, allowing for experimenta-
tion and optimization.

4.3 Comparison of spaCy and NLTK
The decision to select NLTK over spaCy for this research was based
on the fact that it could give more control over the extraction process
and the ability to implement custom algorithms for parsing BDD
scenarios according to fit the requirements best. The following table
provides a comparison of the key features of spaCy and NLTK (see
Table 1).

Given the need for detailed analysis and manipulation of text for
accurately identifying and extracting actions, variables, and condi-
tions from BDD scenarios, NLTK’s extensive capabilities, especially
the support of various POS taggers, make it the preferred choice for
this research.

5 METHODOLOGIES
Firstly, a thorough literature review of the application of NLP tech-
niques in the context of BDD was conducted. It was identified that
there is a gap in the testing preparation phase, specifically that
the extraction of key elements from BDD scenarios is currently
performed manually. Subsequently, research was carried out to
understand the capabilities of NLP [3], as well as understanding
BDD, how its scenarios are written and the main goal of this agile
approach to software testing [10].

Next, a small testing phase of the NLP tools NLTK [2] and spaCy
[5] was conducted, after which a final decision to choose NLTK was
made. Initially, a dataset of BDD scenarios was collected from books
[4, 10], research papers [13, 14] and some of them were generated
by ChatGPT [8]. These scenarios were used in testing the extraction
of modeling information.
After developing the initial functionality of extracting the mod-

elling information, the focus shifted to improving the functionality
to handle a bigger variety of BDD scenarios. Finally, an evaluation
was conducted to determine the tool’s effectiveness.

5.1 Dataset Collection and Annotation
The dataset for the research consists of BDD scenarios collected
from various sources [4, 8, 10]. This section describes the dataset
collection, annotation, and the preprocessing of scenarios.

2



Extracting Modelling Information using Natural Language Processing TScIT 41, July 5, 2024, Enschede, The Netherlands

Table 1. Comparison of spaCy and NLTK features

Feature spaCy NLTK
Ease of Use User-friendly API, accessible for both

beginners and experienced developers
More complex API, requires deeper un-
derstanding of NLP concepts

Pre-trained Models Includes high-accuracy pre-trained
models for various languages

Fewer pre-trained models, but supports
integration with external models

Speed Optimized for performance, suitable for
large text volumes

Slower performance due to extensive
functionalities and flexibility

Tokenization Efficient, accurate tokenization Highly customizable tokenization
POS Tagging High accuracy with pre-trained models Highly customizable, supports various

taggers
Named Entity Recognition (NER) High accuracy with pre-trained models Customizable, but requires more setup
Dependency Parsing Robust and efficient dependency pars-

ing
Customizable parsing with support for
different algorithms

Stemming and Lemmatization Basic support Comprehensive support with customiz-
able algorithms

Chunking and Parsing Limited chunking capabilities Advanced chunking and parsing with
support for custom grammars

Semantic Reasoning Limited support Extensive support for semantic analysis
and reasoning

5.1.1 Data Collection. The data collection process involved identi-
fying relevant sources of BDD scenarios, as well as collecting a big
variety of scenarios. The focus was on books that provided diverse
and comprehensive examples of BDD scenarios. Additionally, some
scenarios were generated using AI tools and then adapted to meet
specific requirements. Specifically, making sure that the ’Given’
part of the scenario specifies the required system state, that is a
precondition for the BDD scenario. The latter should describe the
action (or sequence of actions) performed by either the system or
the environment. Finally, the ’Then’ step describes the action(s) the
system performs after ’When’ and/or the final state of the system
[14].

5.1.2 Data Annotation. To facilitate the training and evaluation
of the NLP tool, the collected scenarios were annotated with the
expected modeling elements: actions, variables, and conditions. This
manual annotation process involved:

• Identifying Key Elements: Annotating each scenario with
location variables, context variables, boolean functions, actors
and the actors’ actions.

5.2 Scenario Preprocessing
Preprocessing the scenarios is essential to standardize the format
and remove noise. The preprocessing steps include:

• Text Normalization: Converting text to lowercase, remov-
ing punctuation, and standardizing whitespace.

• Tokenization: Splitting the text into tokens (words and punc-
tuation marks).

• POS Tagging: Assigning part-of-speech tags to each token
using NLTK’s POS tagger.

• Chunking: Grouping tokens into phrases based on their
POS tags to identify potential actions, variables, and boolean
functions.

5.3 Tool Development
The development of the tool involved the following phases:

5.3.1 Initial Functionality. The initial phase focused on creating
the basic functionality for extracting necessary data from the BDD
scenarios. This included developing methods for tokenization, POS
tagging, noun phrase extraction, boolean function extraction, and
section extraction (Given, When, Then).

5.3.2 Functionality Improvement. After the initial functionality was
implemented, the focus shifted to improving the extraction accuracy
and performance of the tool. This involved refining the algorithms
and NLP techniques to handle complex scenarios more effectively.

5.4 Evaluation
An evaluation phase (Section 7) was conducted to assess the tool’s
effectiveness. This involved testing the tool on a variety of BDD sce-
narios to measure its accuracy in extracting local variables, context
variables, actors (and their actions) and boolean functions.

6 HIGH-LEVEL ARCHITECTURE OF THE TOOL
The tool is designed to extract structured data from Behavior-Driven
Development (BDD) scenarios using Natural Language Processing
(NLP) techniques provided by NLTK and incorporating its possi-
bilities to fit the requirements. Here’s a high-level overview of its
architecture, showing the components:

(1) Input Module:
• Responsible for receiving BDD scenario text input from
the user.

• Provides an interface for continuous input until the user
decides to stop.

(2) Processing Module:

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Cristian Perlog

• Tokenization: Splits the input text into sentences and
words.

• POS Tagging: Tags each word with its part of speech.
• Noun Phrase Extraction: Identifies and extracts noun
phrases from the sentences.

• Location Variable Extraction: Identifies the primary lo-
cation or entity involved in the scenario.

• Context Variable Extraction: Extracts context variables
that provide additional information about the scenario.

• Boolean Function Extraction: Extracts logical conditions
and boolean functions from the sentences.

• Actor and Action Extraction: Identifies actors and their
respective actions within the scenarios.

• SectionExtraction: Separately processes the ’Given’, ’When’,
and ’Then’ sections of the BDD scenarios to extract relevant
data.

(3) Data Aggregation Module:
• Aggregates and structures the extracted data into a (Python)
dictionary format [6].

• Combines and cleans data from different sections to form
a clear output.

(4) Output Module:
• Outputs the structured data to the console or saves it to a
JSON file.

• Supports generating unique filenames for each scenario if
saving to files.

7 HOW TO USE THE TOOL

7.1 Preparing The Environment
• Ensure having Python installed.
• Ensure having the required NLTK resources installed:

p ip i n s t a l l n l t k
python −m n l t k . downloader punkt

s topwords maxent_ne_chunker words
a v e r a g ed_p e r c e p t r on_ t a gg e r

7.2 Saving the Script
• Save the provided Python script to a file, e.g., bdd_extrac-
tor.py.

7.3 Run the Script
• Open a terminal or command prompt and navigate to the
directory containing bdd_extractor.py.

• Run the script with an optional output file argument in order
to save the output:

python bdd _ e x t r a c t o r . py −o
e x t r a c t e d _ d a t a . j s on

7.4 Interactive Input
• The script will prompt entering BDD scenarios one by one.
• Type a BDD scenario and press Enter. For example:

Given a controller job is in the scheduled
jobs and the controller job is a production job.

When the printer starts printing the controller
job and completes printing the controller job.
Then the controller job is in the printed jobs.

• Continue entering scenarios. Type stop to end the input loop.

7.5 Output
• If specified an output file (using the command [-o filename.json]),
the tool will save each scenario’s structured data to a new
JSON file with a unique name.

• If no output file is specified, the tool will print the structured
data to the console.

8 EXAMPLE USAGE

8.1 Running the Tool

python bdd _ e x t r a c t o r . py −o s c e n a r i o s . j s on

This command runs the program and creates a json file, where
the extracted data is going to be saved.

8.2 Entering Scenarios
Enter the BDD scenario (or type ’stop’ to quit): Given
a controller job is in the scheduled jobs and
the controller job is a production job. When
the printer starts printing the controller
job and completes printing the controller job.
Then the controller job is in the printed
jobs.
Enter the BDD scenario (or type ’stop’ to quit): Given
the printer controller is running. When the
operator restarts the printer controller. Then
the printed jobs clean up is executed.
Enter the BDD scenario (or type ’stop’ to quit): stop

8.3 Output
Two JSON files, scenarios_1.json and scenarios_2.json, will
be created, each containing the structured data for the respective
scenarios entered.

Below are the results of the scenario: Given a controller job
is in the scheduled jobs. When the printer starts print-
ing the controller job And the printer completes print-
ing the controller job. Then the controller job is in
the printed jobs.

• "Local Variable": "controller job"
• "Context Variables": ["scheduled jobs", "printed jobs"]
• "Given": {"Boolean Functions": ["is in the (controller job, sched-
uled jobs)"]}

• "When": {"printer": ["starts printing (the controller job)", "com-
pletes printing (the controller job)"]}

• "Then": {"Boolean Functions": ["is in the (controller job, printed
jobs)"], "Actions": {}}

8.4 Script Overview
Here’s a brief overview of the key functions in the script:

4



Extracting Modelling Information using Natural Language Processing TScIT 41, July 5, 2024, Enschede, The Netherlands

• extract_noun_phrases(words_pos): Extracts noun phrases
from a POS-tagged sentence. It looks for sequences of nouns
and adjectives and collects them into phrases.

• extract_boolean_functions(sentence): This function ex-
tracts boolean functions from a sentence by identifying aux-
iliary verbs and forming function phrases. It processes the
sentence to determine the start and end of functions, handling
parameters and ensuring that only meaningful functions are
extracted. More precisely, once an auxiliary verb is found, it
accumulates subsequent verbs, prepositions, particles, and
determiners to form a meaningful boolean expression. The
parameters are set using the extracted noun phrases from the
sentence.

• extract_given(data): This function processes the ’Given’
section of the BDD scenario. It tokenizes the input data into
sentences, extracts noun phrases, and identifies boolean func-
tions. It also compiles a list of system variables (location
and/or context variables) and parameters relevant to the
’Given’ context. Both, the system variables and parameters
are the noun phrases present in the ’Given’ sentence/step.

• extract_when(data): This function processes the ’When’
section of the BDD scenario. The actors are extracted by
checking if the word is a noun or a pronoun and if no action
has been started yet. If so, this would be the current actor.
Next, once an actor is identified, the function looks for verbs
to find the actions. It compiles a dictionary of actors and their
actions, including any parameters involved.

• extract_then(data): This function processes the ’Then’
section of the BDD scenario. It extracts boolean functions and
actions, similar to the ’Given’ and ’When’ sections. It also
compiles system variables and parameters, ensuring a com-
prehensive representation of the expected outcomes. This is
done similarly, using the noun phrases.

• extract_bdd_scenario(data): This function combines the
processing of ’Given’, ’When’, and ’Then’ sections. It merges
noun phrases and location/context variables from ’Given’
and ’Then’, determines the location variable, and compiles a
complete structured representation of the BDD scenario. The
location variable is extracted by combining and counting the
noun phrases present in both the ’Given’ and ’Then’ steps.
If there are multiple such variables, the most frequent one
is selected. In the case multiple noun phrases have the same
frequency, the first noun phrase occurring in the ’Given’ step
is selected.

• main(): This function handles user input and output opera-
tions. It prompts the user to enter BDD scenarios, processes
them using the extraction functions, and saves the results
to JSON files. It manages the overall flow of the script and
ensures that scenarios are correctly processed and stored.

9 EVALUATION OF EFFECTIVENESS
This section presents the evaluation results of the BDD scenario
extraction tool, focusing on its effectiveness. The tool was tested
on 10 various BDD scenarios (see Appendix A) to measure its ac-
curacy in extracting local variables, context variables, and boolean

functions. Most of the tested BDD scenarios are extracted from [14],
being the most relevant to this research, while the other five [8, 10]
are different from the real-world printer examples, hence making it
a better testing set.

9.1 Scenarios and Results
After having tested the effectiveness of the tool based on the sce-
narios, below are shown the achieved results.

Fig. 1. Overall effectiveness of 10 different BDD scenarios

The overall effectiveness for each scenario is calculated using the
following formula:

Effectiveness of a BDD scenario =

(
Number of Correct Elements
Total Number of Elements

)
×100%

Here, an element is every item from the modelling information.
For example, context variables could be a list of multiple variables,
in which case, every variable would count as an element.

Tool’s Effectiveness =
∑
Overall Effectiveness of Each Scenario

Number of Scenarios
The overall effectiveness of the tool, calculated across the 10

scenarios, is 84.4%.

9.2 Detailed Analysis
The tool was evaluated based on its ability to accurately extract
local variables, context variables, and the required information from
each step of the BDD scenarios (’Given’, ’When’ and ’Then’). For
an element to be considered correct, all related information in the
annotated data (expected results) must correspond exactly to the
actual results provided by the tool. Specifically, the local variable
must match exactly, all data in the context variables list must be
identical, and for the boolean functions, both the function name
and its parameters must be correct. Lastly, for the ’Actions’, all

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Cristian Perlog

components—actor(s), action name(s), and their parameters—must
match precisely.

• Local Variable: Correct in 90% of scenarios (9/10)
• Context Variables: Correct in 70% of scenarios (7/10)
• Boolean Functions (Given): Correct in 90% of scenarios
(9/10)

• Actions (When): Correct in 80% of scenarios (8/10)
• Boolean Functions (Then): Correct in 57.14% of scenarios
(4/7), the remaining three scenarios did not have boolean
functions (in the ’Then’ step)

• Actions (Then): Correct in 66.6% of scenarios (2/3), the other
scenarios did not include any actions

Fig. 2. Results of each step of extracting the key elements

The results above show that the tool performed well in extracting
the ’Local Variable’, as well as the boolean functions in the ’Given’
step, with areas for improvement in extracting actions, context
variables, as well as boolean functions that are more complex, such
as those that have multiple noun phrases, or consisting of special
cases (discussed in next subsection).

9.3 Special Cases in BDD Scenarios
It is important to note that BDD scenarios can contain special cases
that may affect the extraction process:

• String Values: Scenarios may include specific string values
that need to be identified and extracted correctly. For example:
Given I am not yet playing When I start a
new game Then I should see "Welcome to Code-
breaker!" And I should see "Enter guess:"

As of the current state of the tool, these cases would
need either to be written in a different format, such that
it won’t contain string values (this example would be: ...
Then I should see the welcoming message And I should
see the guessing message), or be handled differently as
specific cases as an additional feature of the tool.

• Numbers and Symbols: Scenarios may contain numbers or
special symbols that need to be handled appropriately. For
example:
"Given the secret code is 1234. When I guess
1234. Then the mark should be ++++

In a similar way, this case would require a different ap-
proach in either the way the scenario is written, or, al-
ternatively, be handled separately.

• Ambiguous Words: Scenarios may contain words that can
function as both verbs and nouns, making it challenging to
extract the required data correctly. For example:
Then the controller job is in the waiting jobs.
Given a user has finished shopping.

Words like "waiting" and "shopping" can be both nouns
and verbs, depending on the context. These cases require
advanced parsing techniques to accurately determine
their roles within the scenarios. Therefore, the context
variables might be extracted incorrectly, because they
rely on the function used in extracting noun phrases.
This means that having ambiguous words in BDD sce-
narios is currently very likely to lower the effectiveness
of extracting context variables, as depicted in Figure 2.

9.4 Discussion
The evaluation results indicate that the tool performs well in extract-
ing the boolean functions in the ’Given’ step, with a 90% accuracy
rate. Similarly, the extraction of local variables is highly accurate,
achieving a 90% correctness rate across scenarios. However, the
extraction of context variables and the ’Then’ parts of the scenarios
demonstrate areas for improvement, with accuracies of 70% and
57.14% respectively. The extraction of actions within the ’Then’ step
also shows an average score of 66.6% for the scenarios that included
actions. Handling the "Then" parts of the scenarios still requires
further adjustments.
Another observation from the Figure 1 is that the tool does not

perform as well in more complex scenarios. More specifically, sce-
narios 1, 6, and 7, they all have boolean functions in the ’Then’
step, which have parameters formed out of more than one noun
phrase, which makes it more challenging to correctly extract them.
Scenarios 4 and 5 both make use of the ambiguous word ’waiting’,
which is incorrectly labeled by the POS tagging as a verb, while it
being an adjective describing the noun ’jobs’.
Special cases, such as ambiguous words, string values and sym-

bols, present additional challenges that need to be addressed. Future
work will focus on improving the tool’s ability to extract and handle
these elements with a better accuracy.

9.5 Summary
The preliminary evaluation of the BDD scenario extraction tool
demonstrates its potential effectiveness in automating the extraction
of modelling information from BDD scenarios. While the tool shows

6



Extracting Modelling Information using Natural Language Processing TScIT 41, July 5, 2024, Enschede, The Netherlands

promising results, particularly in extracting the boolean functions,
further refinement is needed to improve its accuracy in other areas.

10 CONCLUSION AND FUTURE WORK
The research presented in this paper proposes a method and tool
used for the purpose of automating the extraction of modelling
information from Behavior-Driven Development (BDD) scenarios
using Natural Language Processing (NLP) techniques. The primary
goal of the tool is to reduce manual effort and improve the consis-
tency and accuracy of test preparation, resulting in a more efficient
cycle of automating test case generation using BDD along MBT.

The tool uses NLTK to process and extract actions, variables, and
conditions from BDD scenarios, showing promising results in its
preliminary evaluation. The tool successfully identifies and extracts
key elements with a high degree of accuracy, particularly the local
variables, and the boolean functions that do not consist of many
noun phrases. However, the tool’s performance in handling the
context variables and actions, as well as special cases involving
ambiguous words, string values and symbols, still has room for
improvement.

Answer to the main research question:
How can Natural Language Processing (NLP) techniques be em-
ployed to automate the extraction of core elements—actions, vari-
ables, and conditions—from BDD scenarios?
The tool achieves this by making use of POS tagging and noun

phrase extraction to identify key elements. Boolean functions are
extracted by identification of the auxiliary verbs and logical phrases.
Next, the steps ’Given’, ’When’, ’Then’ are handled separately to
capture the structure of BDD scenarios accordingly. Then, the ex-
tracted data is aggregated into a structure suitable to be further used
in the testing phase.

Future Improvements:
The main area of future work for this research would be improving
the effectiveness of the tool in the process of extracting modelling
information from the BDD scenarios. That would require making
a better algorithm for recognizing and extracting noun phrases to
handle complex BDD scenarios better. Also, there is still needed to
handle special cases from BDD scenarios, such as those containing
string values, symbols and/or digits. The conditional logic could
also be improved to handle the extraction of boolean functions and
its parameters more accurately. The graphical use interface (GUI)
may also benefit from having the functionality of batch processing,
allowing the user to insert multiple BDD scenarios at once and/or
be able to upload files with scenarios.

Addressing these areas, the tool would become more robust, accu-
rate and user-friendly. Therefore its utility in the cycle of software
testing would increase further.

ACKNOWLEDGMENTS
The author of the thesis would like to thank Petra van den Bos and
Tannaz Zameni for the assistance and supervision during the period
allocated for this research.

During the preparation of this work the author used ChatGPT
[8] in order to generate BDD scenarios, which were used in the
development/testing of the tool, as well as to improve the readability
of the work. After using this tool/service, the author reviewed and
edited the content as needed and takes full responsibility for the
content of the work.

REFERENCES
[1] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing

with Python. O’Reilly Media, Inc.
[2] Steven Bird, Edward Loper, and Ewan Klein. 2023. Natural Language Toolkit.

https://www.nltk.org/
[3] K.R. Chowdhary. 2020. Natural Language Processing. In Fundamentals of Artificial

Intelligence. Springer, New Delhi, 397–428. https://doi.org/10.1007/978-81-322-
3972-7_19

[4] Eric Evans. 2004. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional.

[5] Explosion. 2024. spaCy 101: Everything you need to know. https://spacy.io/
usage/spacy-101

[6] Python Software Foundation. 2024. Dictionaries. https://docs.python.org/3/
tutorial/datastructures.html#dictionaries.

[7] Abhimanyu Gupta, Geert Poels, and Palash Bera. 2023. Generating multiple
conceptual models from behavior-driven development scenarios. DATA KNOWL-
EDGE ENGINEERING 145, Article 102141 (2023), 29 pages. http://doi.org/10.1016/
j.datak.2023.102141

[8] OpenAI. 2024. ChatGPT. https://chat.openai.com/
[9] Krasen Samardzhiev, Andrew Gargett, and Danushka Bollegala. 2018. Learn-

ing Neural Word Salience Scores. In Proceedings of the Seventh Joint Conference
on Lexical and Computational Semantics, Malvina Nissim, Jonathan Berant, and
Alessandro Lenci (Eds.). Association for Computational Linguistics, New Orleans,
Louisiana, 33–42. https://doi.org/10.18653/v1/S18-2004

[10] J. F. Smart and J. Molak. 2023. BDD in Action: Behavior-driven development for the
whole software lifecycle. Simon and Schuster.

[11] Mathias Soeken, Robert Wille, and Rolf Drechsler. 2012. Assisted Behavior Driven
Development Using Natural Language Processing. In Objects, Models, Components,
Patterns, Carlo A. Furia and Sebastian Nanz (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 269–287. https://doi.org/10.1007/978-3-642-30561-0_19

[12] Jiawei Yao. 2019. Automated Sentiment Analysis of Text Data with NLTK. Journal
of Physics: Conference Series 1187, 5 (apr 2019), 052020. https://doi.org/10.1088/
1742-6596/1187/5/052020

[13] Tannaz Zameni, Petra van den Bos, Arend Rensink, and Jan Tretmans. 2024. An
Intermediate Language to Integrate Behavior-Driven Development Scenarios and
Model-Based Testing. https://api.semanticscholar.org/CorpusID:268377309

[14] Tannaz Zameni, Petra van Den Bos, Jan Tretmans, Johan Foederer, and Arend
Rensink. 2023. From BDD Scenarios to Test Case Generation. In 2023 IEEE In-
ternational Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 36–44. https://doi.org/10.1109/ICSTW58534.2023.00019

A APPENDIX
The appendix includes the 10 BDD scenarios used for testing the
effectiveness of the proposed tool, and for two of them the annotated
data (expected results) along with the extracted information by the
tool will be provided.

A.1 Scenario 1
Given a controller job is in the scheduled jobs.
When the printer starts printing the controller job and
the printer completes printing the controller job.
Then there is a printed output and the printed output
is a hard copy of the controller job.

Expected Results:

{
"Local Variable": "controller job",
"Context Variables": [
"scheduled jobs", "printer", "printed output", "hard copy"

7

https://www.nltk.org/
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://spacy.io/usage/spacy-101
https://spacy.io/usage/spacy-101
https://docs.python.org/3/tutorial/datastructures.html##dictionaries
https://docs.python.org/3/tutorial/datastructures.html##dictionaries
http://doi.org/10.1016/j.datak.2023.102141
http://doi.org/10.1016/j.datak.2023.102141
https://chat.openai.com/
https://doi.org/10.18653/v1/S18-2004
https://doi.org/10.1007/978-3-642-30561-0_19
https://doi.org/10.1088/1742-6596/1187/5/052020
https://doi.org/10.1088/1742-6596/1187/5/052020
https://api.semanticscholar.org/CorpusID:268377309
https://doi.org/10.1109/ICSTW58534.2023.00019


TScIT 41, July 5, 2024, Enschede, The Netherlands Cristian Perlog

],
"Given": {

"Boolean Functions": [
"is in the (controller job, scheduled jobs)"

]
},
"When": {
"printer": [

"starts printing (the controller job)",
"completes printing (the controller job)"

]
},
"Then": {
"Boolean Functions": [

"is a (printed output)",
"is a (printed output, hard copy of the controller job)"
]

}
}

Actual Results:
{
"Local Variable": "controller job",
"Context Variables": [
"printer", "hard copy", "printed output", "scheduled jobs"
],
"Given": {
"Boolean Functions": [

"is in the (controller job, scheduled jobs)"
]

},
"When": {
"printer": [

"starts printing (the controller job)",
"completes printing (the controller job)"

]
},
"Then": {
"Boolean Functions": [

"is a (printed output)",
"is a (printed output, hard copy, controller job)"

],
"Actions": {}

}
}

A.2 Scenario 2
Given a controller job is printing.
When the operator pauses the printing of the controller.
Then the controller job is paused.

Expected Results:
{
"Local Variable": "controller job",
"Context Variables": ["controller", "operator",
"printing"],
"Given": {

"Boolean Functions": [
"is printing (controller job)"

]
},
"When": {

"operator": [
"pauses (the printing of the controller)"

]
},
"Then": {

"Boolean Functions": [
"is paused (controller job)"

],
"Actions": {}

}
}

Actual Results:

{
"Local Variable": "controller job",
"Context Variables": ["controller", "operator",
"printing"],
"Given": {

"Boolean Functions": [
"is printing (controller job)"

]
},
"When": {

"Actions": {
"operator": [

"pauses (the printing of the controller)"
]

}
},
"Then": {

"Boolean Functions": [
"is paused (controller job)"

],
"Actions": {}

}
}

A.3 Scenario 3
Given a controller job is paused.
When the operator resumes printing the controller job.
Then the controller job is printing.

A.4 Scenario 4
Given a controller job is paused.
When the operator moves the controller job to the
waiting jobs before the printer completes printing.
Then the controller job is in the waiting jobs and the
controller job is not in the printed jobs.

8



Extracting Modelling Information using Natural Language Processing TScIT 41, July 5, 2024, Enschede, The Netherlands

A.5 Scenario 5
Given a controller job is in the waiting jobs.
When the operator moves the controller job to the
scheduled jobs.
Then the controller job is in the scheduled jobs.

A.6 Scenario 6
Given a user has forgotten their password.
When the user requests a password reset.
Then the user receives an email with instructions to
reset their password.

A.7 Scenario 7
Given a user has finished shopping.
When the user continues to checkout.
Then there is a printed output and the printed output
is a hard copy of the controller.

A.8 Scenario 8
Given a user has completed their purchase.
When the user submits their order.
Then the user receives a confirmation email.

A.9 Scenario 9
Given the customer is unauthenticated.
When they choose to collect their order.
Then they should be asked to supply contact details.

A.10 Scenario 10
Given the kettle has water.
When I turn the kettle on.
Then the water should boil.

9


	Abstract
	1 Introduction
	2 Literature Review
	3 Expectations and Requirements
	4 Description of NLP Tools
	4.1 spaCy
	4.2 NLTK
	4.3 Comparison of spaCy and NLTK

	5 Methodologies
	5.1 Dataset Collection and Annotation
	5.2 Scenario Preprocessing
	5.3 Tool Development
	5.4 Evaluation

	6 High-Level Architecture of the Tool
	7 How to Use the Tool
	7.1 Preparing The Environment
	7.2 Saving the Script
	7.3 Run the Script
	7.4 Interactive Input
	7.5 Output

	8 Example Usage
	8.1 Running the Tool
	8.2 Entering Scenarios
	8.3 Output
	8.4 Script Overview

	9 Evaluation of Effectiveness
	9.1 Scenarios and Results
	9.2 Detailed Analysis
	9.3 Special Cases in BDD Scenarios
	9.4 Discussion
	9.5 Summary

	10 Conclusion and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Scenario 1
	A.2 Scenario 2
	A.3 Scenario 3
	A.4 Scenario 4
	A.5 Scenario 5
	A.6 Scenario 6
	A.7 Scenario 7
	A.8 Scenario 8
	A.9 Scenario 9
	A.10 Scenario 10


