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ABSTRACT
OntoUML is an important ontology language, however, most of the
diagrams written in this language exist only as images within
published papers, rendering them impractical for research purposes.
Despite existing research on converting UML diagram images to
machine-processable formats, no studies address the conversion of
OntoUML images. In this paper, I present the OntoUML Image
Taxonomy Extractor (OITE), which detects OntoUML diagrams
using transfer learning. OITE employs image processing techniques
to translate OntoUML diagram images into the OntoUML
Vocabulary language. The system involves class recognition
through rectangle detection and OCR techniques to extract class
elements, followed by line recognition and relationship type
recognition to determine class relationships. Additionally, an
experiment using ChatGPT was conducted to explore the potential
of using visual large language models for this task. The results are
used to demonstrate the feasibility of using LLMs for simple
diagram translations, compare the performance of OITE and
ChatGPT, and highlight areas for further research in
ontology-driven conceptual modeling.

Keywords: OntoUML· Ontology-Driven Conceptual Modeling ·
Image Processing · Transfer Learning · Large Language Model

1 INTRODUCTION
1.1 Context
OntoUML is a conceptual modeling language that extends and
refines the Unified Modeling Language (UML) to represent the
ontological commitments of a domain. Unlike conventional UML
models, OntoUML captures not only the structural aspects of
systems but also their underlying ontological meta-properties,
making it particularly suitable for modeling complex systems
where importance is placed on clarity of semantics and on rigorous
analysis. OntoUML finds applications in various domains, such as
ontology engineering, conceptual modeling, knowledge
representation, and ontology-driven software engineering,
facilitating a deeper understanding of domain semantics and
supporting the development of semantically rich information
systems [9].

The language’s origins can be traced back to 2005, when Guizzardi
evaluated and re-designed a fragment of the UML 2.0 metamodel to
reflect the ontological micro theories of the Unified Foundational
Ontology (UFO) as a part of his Ph.D. thesis [8]. Since its
inception, through further research and development efforts,
OntoUML has been expanded and refined, and it has become one
of the most used ontology-driven conceptual modeling languages,

according to Verdonck and Gailly [21]. Additionally, an experiment
by Verdonck et al. found it to significantly improve the quality of
conceptual models without requiring additional effort when
compared to a classical conceptual modeling language [22].

1.2 Problem Statement
As OntoUML has grown in popularity, more researchers in the
conceptual modeling sphere have shown interest in working with
the language. Barcelos et al. have compiled a structured and
open-source catalog that contains OntoUML and UFO ontology
models, designed to support ontology-driven conceptual modeling
research [1]. While this catalog provides high-quality curated,
structured, and machine-processable data, it only includes 168
models at the time of writing. While that may be enough for some
researchers, in the fields of Artificial Intelligence, for example,
more data is required, which is currently only available in image
files of already published papers. Currently, these diagrams can be
used after they are manually re-created, which takes time and effort
from the researcher. In addition, this lack of usable data also slows
down the progress of OntoUML, as it hinders the development of
new algorithms and methods, such as specialized Machine Learning
Models, that could advance the field of conceptual modeling.

In this research, I aim to help overcome this lack of data by
exploring machine learning and image processing techniques to
convert OntoUML diagram images into machine-processable
formats, thus increasing their usability. To do this, I have
established the following research question:

To what extent can OntoUML diagram images be translated to
machine-processable formats, using machine learning and
image processing techniques, to improve their usability in the
field of ontology?

To help answer this question, I have compiled the following
sub-questions:

RQ1: To what extent can computer vision techniques effectively
detect OntoUML diagram images?

RQ2: What methodologies are suitable for converting OntoUML
diagram images into machine-processable formats through a
combination of image processing techniques and machine learning
algorithms?

RQ3: To what extent is the utilization of a visual large language
model viable for translating OntoUML images into
machine-processable formats?
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The following sections cover methodologies for classifying and
converting OntoUML diagram images, including related works, the
OntoUML Image Taxonomy Extractor (OITE) for classification
and conversion, performance comparison with ChatGPT for
conversion, and future research directions.

2 RELATEDWORKS
Having diagrams saved in non-processable formats is not exclusive
to the field of ontology, therefore there are a number of papers on
classifying and converting standard UML diagrams. Through
literature research, I could not identify any published work on
converting OntoUML images into machine-processable formats.
Because of the similarity between OntoUML and UML class
diagrams, many of the techniques discussed in UML models apply
to OntoUML as well. This section will cover the relevant ones.

2.1 Classification
While OntoUML diagram images can be extracted from papers
with specialized PDF tools, they are likely not the only images in
the paper. The following papers discuss classification of UML
diagrams, and can be used for developing a system which
recognizes OntoUML diagrams, so researchers do not have to
manually filter them.

A first research that describes a system that could be reused in this
research is that of Gosala et al. [7]. They used a Convolutional
Neural Network (CNN) to detect class diagrams by classifying
images into either UML class diagrams or not. After applying
regularization techniques to improve performance, their model
achieved an accuracy of 86.63%, which the authors claim is
because of the small size of their training set.

Due to the relatively small number of machine-processable labeled
OntoUML diagrams, it is favorable to explore techniques that do
not require a lot of training data. Tavares et al. explore the use of
transfer learning and data augmentation to classify six types of
UML diagrams using a relatively small dataset of 200 images per
diagram type [20]. In this context, transfer learning involves
leveraging a model, pre-trained on non-technical images, to
classify UML diagrams, adapting its learned features to the new
task, thereby reducing the need for a large dataset. In their research,
they used three widely known CNN architectures as their
pre-trained models and found that transfer learning contributes to
achieving good results even when using scarce data.

A different approach is employed by Ho-Quang et al., where they
propose 23 image-features for classifying UML class diagram
images [10]. They found that 19 of those features can be considered
as influential predictors for classifying UML class diagram images.
Additionally, they explored six classification algorithms and
through them the prediction rate achieves nearly 96% correctness
for UML class diagrams.

To address RQ1, transfer learning will be used to fine-tune an
existing classifier to recognize OntoUML diagrams, as fewer
images are needed to refine a model compared to training one. This
allows for the use of the catalog compiled by Barcelos et al. [1]
combined with data augmentation and thus reduces the requirement
for extensive data collection.

2.2 Conversion
After the image has been identified to be of an OntoUML diagram,
the next step is to convert it to a machine-processable format. The
following papers explore possible approaches.

The work of Karasneh and Chaudron proposes a system used for
extracting UML class models from images [13]. Their image
processing consists of four consecutive steps: First, the classes are
extracted through rectangle detection. Then, the attributes of each
class are identified using optical character recognition (OCR). The
third step involves detecting relationships between the classes using
various image processing techniques. Finally, the different kinds of
relationships are identified through shape recognition algorithms.
Once these steps are completed a XML file is created with the
gathered information. This method achieved high accuracy in
recognizing classes and relations (with the limitation of not being
able to detect polygonal relations), but sometimes it struggled to
recognize symbols which denote the type of the relation.

This problem is addressed in ReSECDI (Recognition of Semantic
Elements in Class Diagram Images) [4], the system for
automatically recognizing the semantic elements from UML class
diagram images proposed by Chen et al. [3]. They introduce a
double-recognition-approximation method to recognize relationship
types in their two-part approach. In addition, their method
introduces rectangle clustering to better recognize classes and their
elements, and polygonal line merging to allow it to detect all
relationships between classes. ReSECDI was tested using 30
images drawn by three popular UML tools and 50 diagrams
collected from the open-source communities, and achieved
promising performances [3].

In addressing RQ2, the approach proposed by Chen et al. [3] will
serve as the foundation for this research. However, adaptations are
necessary due to disparities between OntoUML and UML class
diagrams. Notably, classes in OntoUML incorporate stereotypes
within their name field, requiring further processing after the OCR
text extraction. Furthermore, the process of relationship detection
will have to be altered as certain relationships identified in class
diagrams lack semantic significance in OntoUML. Lastly, while
the system outlined by Chen et al. [3] stores extracted information
in a semantic design model, the present study will store it in
OntoUML Vocabulary, an implementation of the OntoUML
Metamodel in the Web Ontology Language (OWL) which supports
the serialization, exchange, and publishing of OntoUML models as
linked data [17].

A different novel approach is proposed by Conrardy & Cabot [6].
They make use of popular Visual Large Language Models to
generate the formal representation of (UML) models from a given
pictures of whiteboard drawings. The best results were achieved by
Chat GPT-4V [14], however while they find them encouraging,
they conclude that the system still has limitations, which require a
human in the loop to overcome. To address RQ3, Chat GPT-4V
will be used to generate OntoUML vocabulary specifications from
OntoUML diagram images of increasing complexity. The viability
and accuracy of this approach will be assessed by analyzing the
generated specifications for any mistakes or inconsistencies.
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3 CLASSIFICATION
The following two sections describe the development of the
OntoUML Image Taxonomy Extractor (OITE). This system is
designed to classify and convert OntoUML diagram images into
machine-readable formats. The code for OITE, along with the
datasets used for training, is available on GitHub [11]. This section
outlines how OITE detects whether an image contains an
OntoUML diagram, covering the dataset compilation (Section 3.1),
the model used and its training process (Section 3.2), the system's
performance (Section 3.3), and proposed improvements and
different approaches (Section 3.4).

3.1 Gathering a dataset
To ensure the best performance of the system, it was crucial to
ensure the dataset represents the set of images found in papers
containing OntoUML diagrams. Three classes of images were
created for this purpose: OntoUML, UML Class diagram and
non-UML images. This selection was made to ensure that the
system can accurately detect the subtle differences between
OntoUML and UML Class Diagrams while separating all other
diagram types. To gather OntoUML images, I used the
OntoUML/UFO Catalog [1]. Since the model contains both UFO
and OntoUML models, I wrote a python script which extracts the
images from the original-diagrams folder of each model that has
OntoUML as representation style in its metadata.yaml file. This
resulted in 643 OntoUML diagrams. For the other two types of
image, I made use of the dataset of the Paper “Multiclass
Classification of Four Types of UML Diagrams from Images Using
Deep Learning” [18], as it contained 700 Class diagrams and 700
non-UML images. During the development, two datasets were
compiled using the aforementioned data.

Half of the first dataset is composed of the 643 OntoUML images,
and the other half comprised 321 randomly selected class diagrams
and 322 randomly selected non-UML images from the dataset by
Shcherban et al. [18]. The idea behind it was to have equal parts
OntoUML and non-OntoUML images. Further in the text it will be
referred to as the “binary dataset”.

The second dataset consists of the 643 OntoUML images, 643
randomly picked class diagrams and 643 randomly picked
non-UML images, taken from the same sources as the binary
dataset. In further sections this dataset will be referred to as the
3-class dataset. Data augmentation in the form of horizontal image
mirroring was applied to both datasets in order to increase their size
by 100%.

3.2 Model Training
As discussed in Section 2.1, I elected to use transfer learning as
limited training data is available. InceptionV3 [19] was chosen as
the base model to be fine-tuned, as Tavares et al. found it to have
the best performance when classifying UML diagrams between the
models they tested [20]. Following their example the first 175
layers have their weights frozen (meaning that they will not be
modified during training), while the remaining layers are left to
have their weights adjusted using the dataset. The Keras framework
[5] was used to obtain the InceptionV3 model, which was then
fine-tuned into two OntoUML classification models using both of
the compiled datasets. Both times the dataset was split in the
following manner: 20% of the model is taken as the test set,

afterwards 20% of the remaining data is reserved for validation
during training, with the remainder being used to train the model.

The first model was trained using the binary dataset, and will
therefore be referred to as the binary classifier. A
GlobalAveragePooling2D layer is added to the InceptionV3 model,
along with a single neuron dense layer which uses the sigmoid
activation function. This differs from the final layer used by
Tavares et al. [20], as this work’s model will be performing binary
classification (OntoUML or not) compared to their six class
classifier. For the same reason the model is trained using the
“binary crossentropy” function. The model is trained for 10 epochs,
employing early stopping, meaning that training will be concluded
early if performance on the chosen metric (in this case loss on the
validation set) stops improving during training.

The second model was trained using the 3-class dataset and will
therefore be referred to as the 3-class classifier. Similar to the
binary classifier, a GlobalAveragePooling2D layer is added,
however the final layer is a three neuron dense layer that uses the
softmax activation function. This model is also trained for 10
epochs, employing early stopping, however the “sparse categorical
crossentropy” loss function is used to account for the fact that the
model is working with more than two classes.

3.3 Results
For the binary classifier the best performance on the validation set
was achieved during the 10th epoch. Therefore, the model saved at
this checkpoint was selected and used for subsequent steps. It
achieved an accuracy of 83% on the test set. The confusion matrix,
presented in Figure 1, illustrates the model’s performance across
the different classes.

Figure 1 Binary classifier confusion matrix

Figure 1 shows that 71 OntoUML images were classified as other,
and 26 of the “other” images were classified as OntoUML. After
going over the wrongly classified “other” images, I found that 18 of
the 26 were class diagrams and one closely resembled a sequence
diagram. This can be attributed to the close resemblance between
OntoUML and UML, making their distinction difficult for the
binary classifier.
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The suboptimal performance of the binary classifier led to the
implementation of the 3-Class classifier. After 10 epochs of
training, it could achieve 91% accuracy on the test set.

Figure 2 3-class classifier confusion matrix

The confusion matrix of this model can be found in Figure 2. It can
be inferred that most of the wrong classifications are once again
between class and OntoUML diagrams because of their similarity.
This is not considered a significant issue, as the conversion process
incorporates a step that further ensures the image is of an
OntoUML diagram, as discussed in Section 4.2.3.

3.4 Future Research
While the 3-class classifier achieved good performance,
improvements can always be found both in measured accuracy and
real-world performance. I elected to combine pre-existing datasets
for training due to time limitations. This means that the “other”
category consists of not non-UML diagrams, but also various
pictures not related to modeling. It would be beneficial for the
model’s real-world performance if a dataset was compiled from
images gathered from published papers that utilize OntoUML
diagrams. This would ensure a more concise representation of the
“other” images that can be found in these papers, which could
allow the model to better classify them. Additionally, it would be
interesting to explore the use of other pre-trained models for
transfer learning. Finally, unsupervised learning techniques, such as
autoencoders, may offer a viable approach for identifying the
distinctive characteristics found in OntoUML diagrams and
identifying instances where these features are absent.

4. CONVERSION
This section delves into the part of OITE designed for translating
OntoUML images into machine-processable formats. This paper
will primarily explore the extraction of syntactical information such
as classes and generalizations from the models, providing a
foundation for further research in the OntoUML domain.

Subsection 4.1 covers the preprocessing of the images, which
differs significantly to the one used for classification. Subsections
4.2 and 4.3 detail the process of class recognition and relationship
recognition, respectively, and Subsection 4.4 discusses how the
extracted data is converted into OntoUML Vocabulary. Finally,
Subsection 4.5 discusses how this part of OITE was tested and 4.6
discusses the possible improvements that can be made to it.

4.1 Preprocessing
The preprocessing stage, based on the methodology detailed by
Chen et al [3], is designed to prepare images for subsequent class
and relationship recognition. Unlike the preprocessing used for
classification, the resolution of the images is kept the same to
maintain maximum detail. Instead, images are converted to a single
channel (grayscale) format and Gaussian sharpening is applied to
enhance edges, thereby improving recognition in low-quality
images. Chen et al. employ the morphology operations of erosion
and dilation to reduce noise in the images and improve edge
detection. However, testing revealed that these methods did not
enhance edge detection, and significantly degraded the quality of
text within the images. Consequently, this step was omitted from
the preprocessing procedure. Finally, a review of the code supplied
with the paper by Chen et al. revealed a thresholding step, where all
pixels with values below 150 are turned white and those above 150
are turned black, resulting in a binary image which could enhance
the detection of edges. Testing indicated that thresholding improved
edge detection only in images created using specific software,
while in other cases, the sharpened grayscale image performed
better. Therefore, in the final system, the shape recognition process
described in the following sections is applied to both the sharpened
grayscale image and the binary one. The results from both
approaches are then compared, and the one yielding better results
(more recognitions) is selected.

4.2 Class Recognition
For class recognition, the approach was once again based on that
proposed by Chen et al. [3]. The following subsections will cover
the three main parts of class recognition and their limitations.

4.2.1 Rectangle Recognition
In OntoUML, classes are depicted as rectangles, therefore I adopted
a rectangle recognition algorithm to identify all such shapes within
an image. The ‘cv2.findContours’ function is used to extract the
outlines of all objects in the image. Afterwards, the
‘approxPolyDP’ function is used to approximate each contour
shape into a polygon with fewer vertices.

To isolate all rectangles, the algorithm selects approximated shapes
with four vertices, ensuring that their area is greater than 60 pixels
but less than half of the image area. To further validate these shapes
as rectangles, pairs of opposite sides and their diagonals are
compared to ensure they are within a specific threshold of each
other. Additionally, the angles between all sides are verified to be
approximately 90 degrees.
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Figure 3 Classes and relationships detected in OntoUML diagram image

This meticulous process enables OITE to accurately recognize all
class rectangles, as illustrated in Figure 3, which displays the
detected rectangles outlined in red in OntoUML diagram image.

4.2.2 Rectangle Clustering
Since a class can be represented by up to four rectangles, the next
step involves grouping together all rectangles that belong to the
same class. This is achieved by clustering rectangles whose
horizontal distances between their top-left corners are within 3-5
pixels and whose vertical distances, accounting for their height, are
also within 3-5 pixels. This approach also helps filter out the
rectangle, outlining the entire class.

Once the rectangles are grouped, they are sorted based on their
positions into top, middle, and potentially bottom sections. The top
section contains the class name and stereotype, the middle section
contains the fields, and the bottom section contains the functions, if
available. Finally, a new, more accurate outline of the entire class is
created by taking the top-left point and width of the top rectangle
and the combined heights of all the rectangles.

4.2.3 Text Recognition
Once all the rectangles containing the classes are clustered, their
top sections are cropped out and resized to three times their original
size to improve text recognition performance. Subsequently, optical
character recognition (OCR) is applied using the Python Tesseract
library to extract the textual information, including the class name,
stereotype, and potentially the package. Regular expressions are
then employed to detect and extract the stereotype and class name,
while the package name is removed.

To validate that the model being translated conforms to OntoUML
standards, the Levenshtein distance (also known as ‘edit distance’)
[2] of each identified stereotype is computed with respect to all
OntoUML class stereotypes. If any of the distances to OntoUML
class stereotypes are less than or equal to 2, the respective
stereotype is deemed to be one of the OntoUML standard
stereotypes. This serves as confirmation that the model adheres to
the OntoUML specification.

Furthermore, to maintain consistency with evolving OntoUML
standards, a record of old OntoUML stereotypes is retained. If any
of these outdated stereotypes are encountered during the translation
process, they are to be replaced with their corresponding updated
counterparts. This ensures the alignment of the translated model
with the latest OntoUML specifications.

4.2.4 Limitations
After testing the system, it has become evident that certain
limitations exist within it. Notably, when text within a rectangle is
positioned too close to the edge or when there are interruptions in
the continuous line defining the rectangle, the recognition process
encounters obstacles, leading to unrecognized parts of classes.
Another notable limitation arises when the text within a class is not
in English; the OCR attempts to transcribe it as English, resulting in
suboptimal outcomes. These limitations underline the need for
further refinement and optimization of the system, however,
addressing these issues is out of this work’s scope and is suggested
as a future work.

4.3 Relationship Recognition
When it comes to relationship recognition, the method outlined by
Chen et al. [3] was initially implemented, however, it consistently
failed to detect all relationships during testing. As a result, an
alternative approach was devised and implemented. While this
solution demonstrated better performance in testing, it also
introduced additional limitations. The implementation specifics and
constraints will be discussed in the following subsections.

4.3.1 Relationship Detection
The first step in relationship recognition consists of detecting the
relationships and the classes they connect. First, contour detection
is applied on an image from which the class rectangles have been
removed, leaving only the relationship lines visible. Afterwards, the
contours are approximated to polygons, thereby generating a set of
points in the image that could be utilized to redraw the
relationships. Finally, each point within a relationship is examined
to assess its proximity to a class rectangle. Those points found to be
in close proximity are designated as endpoints, and saved paired
with the corresponding class to which they were connected. As the
focus of this paper lies solely on generalization relationships, all
relationships that connect fewer than two classes can be discarded.
This exclusion criterion aligns with UML standards, as a class
cannot generalize itself. Furthermore, this approach helps in
filtering out falsely detected relationships stemming from other
elements in the model image, such as text within the diagrams or
cardinalities. An example illustrating detected relationships
(highlighted in blue) is depicted in Figure 3.

4.3.2 Relationship Type Recognition
Once relationships and the classes they connect are detected, the
next step is to determine the type of each relationship. To achieve
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this, an algorithm was developed to crop the rectangular area where
a relationship connects to a class, allowing for the analysis of the
relationship sign. As a result of a review of the images in the
OntoUML Catalog, two main factors were found to determine the
size of the relationship sign: the size of the image (higher resolution
images use more pixels to depict the sign), and the number of
classes (diagrams with more content tend to have smaller
relationship signs). Based on this information, the following
approach was adopted: the diagonal length of the image is
calculated, scaled, and adjusted inversely proportional to the square
root of the number of classes. This result is used as the diagonal of
the rectangle cropped at the connection points of each relationship
to a class. These rectangles are then cropped out from the image of
the diagram with removed class diagrams for analysis.

As the primary objective is to determine whether the relationship is
a generalization, a triangle recognition algorithm was initially used
to analyze the resulting cropped images. This method, however, had
several limitations. Generalization signs sometimes had their tips
removed during the process of isolating classes, leading to missed
recognitions. Additionally, noise in the cropped area was
occasionally identified as a rectangle, resulting in false positives.

To enhance performance, an alternative approach was adopted.
During the testing of the other parts of the system, the cropping
algorithm was used to compile a dataset comprising 60 images for
each of three relationship categories: Generalization, Arrow, and
Tail. The Generalization category includes images of triangles at
the end of a generalization relationship, the Arrow category
contains images of association arrows, and the Tail category
consists of images of the tail end of a relationship (just a line
connecting to the class). The images were resized to 100x100 pixels
and augmented using the following techniques: each image was
rotated by 90, 180, and 270 degrees to account for relationships
connecting to classes on different sides, and the resulting set of four
images was horizontally mirrored. This augmentation increased the
dataset from 60 to 240 images per relationship category. A version
of the 3-Class Classifier used in OntoUML detection, modified to
handle 100x100 images, was then trained on this dataset. The
resulting model is utilized by OITE to classify the ends of detected
relationships, enabling the determination of their type and direction.

4.3.3 Limitations
An important limitation of this approach is its inability to handle
cases where the line is interrupted by elements such relationship
labels. However, testing using the OntoUML catalog indicated that
it is rare for generalizations to include labels and, consequently, the
system performed well in most instances. Additionally, due to a
lack of images for aggregation and composition relationships, the
model wasn't trained on these types, meaning they could be
misclassified as generalizations, which would lead to errors in
translation. Retraining the relationship detection model with a
comprehensive dataset, including all relationship types, would
enhance OITE’s ability to translate more complicated diagrams.

4.4 Conversion to OntoUML Vocabulary
Finally, all the data gathered from class and relationship recognition
is used to reconstruct the model in OntoUML Vocabulary. This is
done by translating the detected classes and relationships into
Resource Description Framework (RDF) triples using RDFLib, a

Python library for working with RDF data [16]. RDF is a standard
model for data interchange on the web, which encodes information
in triples of subject, predicate, and object [23]. These triples capture
the structure and connections of OntoUML models according to the
OntoUML Vocabulary standardization. The resulting RDF graph
provides a machine-readable format of the model, which can be
saved as a Turtle file for easy integration into various applications
and tools. This process ensures that the reconstructed model is
accessible and usable for further analysis and utilization in ontology
research.

4.5 Testing
For testing class detection and relationship recognition 10 random
diagrams were selected from the OntoUML catalog and both class
recognition and relationship detection were applied. Overall 83/92
classes were detected and 71/82 relationships were detected. The
types of mistakes were detailed in Sections 4.2.4 and 4.3.3, and a
table of the diagrams used for testing and the number of mistakes
for each diagram can be found on the Git repository [11].

To test the model used for relationship type recognition, 20% of the
dataset used for training were reserved for testing. The model
achieved 88.5% accuracy on this test set.

Figure 4 Relationship Type Classifier confusion matrix

The confusion matrix shown in Figure 4 highlights that the most
common error is that Line (Tail) is occasionally misclassified as
Generalization. Examination of misclassified instances revealed
that this was due to the presence of parts of generalization arrows
within the cropped images. To address this issue, the scaling factor
for determining the rectangle diameter prior to cropping can be
adjusted from 1/5th of the image diagonal to 1/10th.

4.6 Future Works
Besides future works already mentioned during this section, OITE
could have its performance enhanced by these two potential
improvements:

1. To improve class label’s recognition, a language detection
algorithm could be implemented to determine what
language the class names are in, which would allow for
more accurate OCR.
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2. Relationship detection could be enhanced by the addition
of an algorithm to split the relationships into the separate
lines that they are composed of, similar to that
implemented in the work of Chen et al.. This enables the
verification of whether two associations are the same
(when they are, e.g., divided by a label) or distinct.

5. LLM TRANSLATION
While the previous two sections focused on developing a tool for
translating OntoUML diagram images into computer-readable
formats, this one will examine the potential of utilizing existing
Large Language Models (LLMs) for this task. The following
subsections will cover the methodology of the experiment
conducted to assess this approach’s plausibility and present its
results.

5.1 Methodology
This experiment is based on the one performed by Conrardy &
Cabot [6], where they tested a selection of LLMs to determine the
feasibility of using them to translate hand-drawn UML class
diagrams. In their experiment Conrardy & Cabot found that Chat
GPT performed best for translating the images, so for this one the
GPT4O model in the latest version of ChatGPT Plus [15] was used.
Four diagrams of increasing complexity from the OntoUML
catalog were selected for the test:

- Easy: Media object [5 classes, 2 generalizations]
- Medium: offline [7 classes, 3 generalizations]
- Hard: full_1_human_rights_problems [11 classes, 6

generalizations]
- Very Hard: user [18 classes, 4 generalizations]

The selected images can be found in the “Test Images” directory of
the git repository [11]. They were uploaded into ChatGPT along
with the following prompt:

“Can you turn this OntoUML diagram into the corresponding class
diagram in OntoUML vocabulary in turtle format? Only extract the
semantic information, like the classes(only names and stereotypes)
and generalization relationships. Make sure to not create false
relationships between classes which are both connected to the same
class but not each other.

“This is what the turtle syntax for a class should look like:
ontouml:{unique identifier} a ontouml:Class ;

ontouml:name “{name}”@en ;
ontouml:stereotype ontouml:{stereotype} .

This is what the correct syntax for a generalization should look
like:
ontouml: {unique identifier} a ontouml:Generalization ;

ontouml:general ontouml: {general class identifier} ;
ontouml:specific ontouml: {specific class identifier}

For the unique identifiers generate UUIDs.
Make sure you include all the generalization relationships.”

The prompt was derived from the short prompt used by Conrardy &
Cabot [6]. It defines the input (OntoUML diagram), desired output
(Diagram in OntoUML vocabulary in turtle format) and what

should be included (classes and generalizations). As Conrardy and
Cabot found the shortest prompt they used to perform the best, an
attempt was made to limit the prompt length, however an example
of the OntoUML Vocabulary syntax had to be included, as during
initial testing ChatGPT was not able to produce correct results
without it. The test was performed three times for each image as the
output of ChatGPT is not deterministic. Each conversion was
performed in an empty new conversation to ensure that no retained
context from the previous attempts would affect the current one.
For each attempt the number of mistakes was counted. A mistake is
every class that was missed during conversion, or generalizations
that were missed or invented by the LLM. In the next subsections,
the results of the experiment are displayed and discussed.

5.2 Results
The full results of the experiment can be found in Table 1.

Table 1 ChatGPT test

Image

Mistakes of ChatGPT Mistakes
of OITE

Attempt 1 Attempt 2 Attempt 3

Easy 0 0 0 0

Medium 0 0 0 0

Hard 2 4 2 2

Very
Hard

7 4 4 4

The table shows that the LLM was able to translate both the easy
and medium diagrams without making any mistakes in each
attempt. On the other hand, the model made at least 2 mistakes in
each of its attempts when translating the hard image. A recurring
mistake in each attempt was the 'skipping' of a class when it was
both the general class for one generalization, and the specific class
in another, as illustrated in Figure 5. In this example ChatGPT
would detect a generalization from A to B and from C to A, instead
of A to B and B to C. This causes the information that A is a
generalization of B to be lost, and thus constitutes a mistake.

Figure 5 Class “Skipping” Generalization

This behavior was also observed in similar situations in the Very
Hard example. Another mistake, found in the Hard example, was a
generalization relationship that was missed in each of the 3
attempts. This is likely due to the fact that the particular
relationship was rather long and was illustrated further away from
all the classes and other relationships, which were clustered in the
middle of the image. The additional two mistakes in attempt 2 were
caused by two normal relationships being confused for
generalizations.
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During the translation of the Very Hard image, the LLM made the
following four mistakes on every attempt: There were two cases of
class “skipping” and two generalizations that were not detected. On
the first attempt, two classes were not detected and, together with
the generalization between them, constituted three additional
mistakes.

Overall, ChatGPT performed well on simple diagrams, however it
started making mistakes on diagrams similar to the “hard” one in
this experiment. As complexity increased, so did the mistakes.
Another notable behavior was observed during other tests, where
ChatGPT would invent generalizations between classes with similar
names. An example of that was when during the translation of the
diagram “users” from the OntoUML Catalog, the LLM invented a
generalization between the classes “User” and “Management
Users” even though they are not directly connected in the original
diagram.

For anyone interested in re-creating the experiment, a GPT model
was created using the prompt employed in the experiment, allowing
users to upload images of OntoUML diagrams for translation [12].

5.3 Comparison With OITE
The diagrams utilized to test ChatGPT were also translated using
OITE, as shown in the last column of Table 1. While both methods
yielded similar results, the errors differed between the two
approaches.

ChatGPT did not exhibit the limitations observed in OITE. The
LLM was able to consistently identify classes where the text
overlaps with the class rectangle, which OITE struggled with due to
the limitations of rectangle detection. Additionally, ChatGPT was
able to correctly detect Portuguese text within class images, while
OITE attempted to read it as English, resulting in the loss of special
characters. When it comes to relationship recognition, ChatGPT
demonstrates the ability to separate relationship lines that overlap
each other, unlike OITE.

While ChatGPT excelled in the mentioned items, it also had its own
limitations, as discussed in Section 5.2. These limitations are
exacerbated by the fact that ChatGPT operates as a ‘black box’ to
the user. Consequently, users have no way of understanding why it
“skips’’ classes in generalizations or misses generalizations entirely,
making performance improvements a challenge. Furthermore, it is
important to note that utilizing ChatGPT’s visual capabilities has a
financial cost associated with it, either through a subscription to
ChatGPT Plus or through the use of its paid API.

5.4 Future Works
This experiment demonstrates that using LLMs to translate images
of OntoUML diagrams into machine-readable formats is feasible.
ChatGPT successfully translated simple diagrams autonomously,
while further testing showed that the translation of more complex
diagrams was possible through a human-in-the-loop approach,
where a person reviewed ChatGPT’s output and asked it to correct
it in the case of mistakes. Additional prompt engineering might be
able to prevent the issue of class “skipping” in the initial prompt, as
ChatGPT can correct it when asked to in further prompts.

Additionally, given the different limitations of ChatGPT and OITE,
a promising future direction would be to develop a hybrid approach
that leverages the strengths of each. For instance, OITE could
generate a machine-readable Turtle file, which ChatGPT could then
verify against the diagram image and correct any mistakes. This
hybrid method presents a valuable opportunity for future research
and improvement in ontology translation.

6. CONCLUSION
This study explored translating OntoUML diagram images into
machine-processable formats using machine learning and image
processing techniques to enhance their usability in ontology. It
covers the development and testing of the OntoUML Image
Taxonomy Extractor (OITE), which classifies and converts
OntoUML diagram images, and an experiment using ChatGPT to
assess its feasibility for this task.

Transfer learning with the InceptionV3 model was effective for
detecting OntoUML diagram images, achieving 83% accuracy with
the binary classifier and 91% with the 3-class classifier. However,
distinguishing OntoUML from UML class diagrams was
challenging because of their visual similarity, indicating a need for
more specialized datasets or the implementation of additional
functionality.

Most of the tested methodologies for converting OntoUML
diagram images proved suitable. Preprocessing by converting
images to gray scale and applying Gaussian sharpening enhanced
edge detection. Class identification was achieved through rectangle
recognition and clustering, followed by text extraction using OCR
and regular expression check. For relationship detection, contour
detection was used and a 3-class classifier determined the
relationship types. While functional, this approach had limitations
affecting overall effectiveness. The gathered data was then
translated into OntoUML Vocabulary with the help of RDF,
resulting in a machine-processable model.

The use of a visual large language model like ChatGPT4V has
proved viable for translating OntoUML images into
machine-processable formats. ChatGPT performed well with
simple and medium-complexity diagrams, but its accuracy
diminished with more complex diagrams, suggesting the need for a
human-in-the-loop approach for higher complexity.

Comparing OITE to the LLM revealed that, although their
performance levels were similar, the types of their mistakes
differed. To maximize performance, a hybrid approach is proposed
combining OITE’s initial translation with ChatGPT used for
validation and correction.

Overall, this research offers valuable insights and lays a foundation
for future advancements in translating OntoUML diagrams, aiming
to benefit the field of ontology.

During the preparation of this work, the author utilized ChatGPT to
generate ideas, assist with writing the text, and aid in some code
generation. The author carefully reviewed and edited the content as
necessary, taking full responsibility for the final version of the work.
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