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ABSTRACT
The increase in the amount of common, everyday objects that
contain embedded devices capable of processing data and commu-
nicating over a network gave rise to the paradigm called Internet of
Things (IoT). As these devices integrate into daily life, they become
indispensable for many different purposes ranging from home au-
tomation to industrial control systems. However, their increasing
presence also makes them prime targets for malicious actors seek-
ing to exploit any vulnerabilities these devices may exhibit. From
orchestrating large-scale botnet attacks to stealing sensitive data
or disrupting critical services, the motivations behind targeting
IoT devices are diverse and often financially driven. For the most
part, these target devices are not equipped with the best security
measures to stay resilient against attackers, thus making them easy
targets. One way of improving the security aspect of this system
would be to analyse the network traffic of these devices and scan for
and identify malicious attacks targeting them. Utilising the IoT-23
dataset, comprised of network traffic captures from various IoT
devices, alongside a Federated Learning approach, the objective is
to spot any anomalous traffic between these devices, which usually
indicates an attack is happening. The IoT-23 dataset is comprised
of 20 malware captures for IoT devices, and 3 captures for benign
traffic. This study compares two established federated learning al-
gorithms, FedAvg and FedProx, to determine their effectiveness
in anomaly detection for IoT devices. Two different setups were
tested, and it was found that for this dataset and the anomaly de-
tection task, FedAvg seems to perform better in terms of accuracy,
precision, recall and f-score on one of the setups, while on the other
setup, the performance of the two algorithms was more similar.
These results are analysed and conclusions are drawn.
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1 INTRODUCTION
The Internet of Things can be defined as a network of different
devices, ranging from household items to industrial machines, that
are connected to a singular network and can both process data and
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exchange information with each other, forming a sort of ecosystem.
The number of these devices is increasing at a rapid pace, as the
applications of IoT are extensive and diverse. From agriculture,
transportation and industrial manufacturing to household items
and wearable technology like smart watches, the impact of IoT in
our life cannot be underestimated. The IoT brings a large number of
advantages to the table, such as more data and a potential decrease
in costs and waste of resources, as well as more a accurate analysis,
and an improvement to efficiency and decision-making.

Because of this, it is not hard to infer that the IoT ecosystem has
become a victim of an increasing number of attacks in the last years
by malicious parties, in order to damage or stop critical services,
or to expose and get access to private information. Additionally, it
looks like this ascending trend is not likely to stop or slow down
in the near future. Consequently, the vital task of maintaining the
security and integrity of these devices is becoming harder and
harder, especially as their number keeps growing.

A way to make this environment safer comes with the help
of artificial intelligence technology capturing the network traffic
between these devices and performing a detailed network analysis
on it. Artificial intelligence approaches can usually benefit from the
large amount of data that these devices produce by learning how
they communicate and detecting unusual patterns in the traffic of
information, thus knowing if and when an edge device has become
infected or is being attacked.

Federated learning (FL) [17], has the objective of training a ma-
chine learning algorithm on multiple local datasets that belong to
local nodes, with no data samples being exchanged between them,
thus making it secure. What is being exchanged are the resulting pa-
rameters of the models (weights and biases) after training them, so
that a centralised entity, for example a server, can produce a global
model. The main advantage of this new method is maintaining the
privacy of the nodes, as the actual data never leaves the device.
This also means that, if this approach was applied in a real-world
application, the training would happen on real-world data, and not
on some publicly available dataset, so the results would be more
likely reflect reality. On the other hand, the main downside of this
approach is that recurrent communication is needed during the
training process, causing overhead [17]. This could of course be
subject to the influence of network conditions as well, which may
not always be ideal, especially in the case of IoT devices. Usually
only a part of the available devices will actually be capable of train-
ing the model effectively. This relatively novel approach was first
introduced by Google in 2016 [8] to predict the text input of users
on thousands of Android devices while not transferring any data
from them.

For the federation part of the project, the Flower framework was
used. This framework already implements several established fed-
erated learning algorithms. In this project, a multilayer perceptron
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(MLP) with one hidden layer is used. Due to the relatively low num-
ber of features that each packet had, a MLP was a more appropriate
choice for the model because it is less complex, shortening the run-
ning time of the training and also reducing the risk of overfitting.
Two setups are created for the data, and a number of simulations
are run with both FedProx and FedAvg on both setups. The results
from these simulations are then analysed and interpreted.

This paper will first provide a short review of similar works in the
field of federated learning, and some insight about the dataset that
was used. Then the methodology of the research will be explained
along with some details about the processing of the data. Finally,
the results from the experiments are shown and conclusions are
drawn from them.

2 RELATEDWORK
In order to search for literature related to this subject Google Scholar
was used.

The concept and potential applications of Federated Learning
have been thoroughly explored in previous papers [6, 18], with
many practical examples in diverse fields, such as industrial engi-
neering (for example creating a environmental monitoring frame
based on federated region learning [4]), healthcare, where this ap-
proach excels in regards to maintaining the privacy of the personal
data usually involved in this field (using health records, a federated
patient hashing framework that detects similar patients located in
different hospitals without sharing any patient-specific data using
FL was created [5]), as well as applications concerning mainly mo-
bile devices (ranging from trying to predict the next emoji that a
user will type [13], to predicting human behaviour using FL [16]).
Another recent paper [1], also on the topic of comparing federated
learning algorithms, came to the definite conclusion that no sin-
gle algorithm is completely superior to the others, with six main
algorithms (FedAvg, FedProx, FedYogi, FedAdam, SCAFFOLD, and
FedDyn) put to the test. Also on the topic of comparing algorithms,
[11] found that out of FedAvg, Federated Stochastic Variance Re-
duced Gradient, and CO-OP, FedAvg performed the best on the
MNIST dataset, even when partitioning the data in a non-iid (inde-
pendent and identically distributed) way. The same study showed
that FedAvg was not able to surpass a centralised approach if the
data was not iid.

For anomaly detection specifically, it has been shown before that
machine learning is very adequate in multiple studies [2, 10, 15],
with the former even comprising a review of a collection of tech-
niques of machine learning dedicated solely to this application.

Combining the two fields, an interesting paper [9] showed that
FL outperforms a centralised approach using the same deep learn-
ing algorithms in terms of accuracy when attempting to identify
attacks in the network traffic of IoT devices. The research was per-
formed on the ModBus dataset, using gated recurrent units (GRUs)
models with an ensembler (which also aids in improving the ac-
curacy rate by combining the predictions from different layers of
GRUs). The same paper also showed that the training time was
also greatly reduced when using the FL approach, which highlights

another advantage of this approach. Another interesting proof of
concept has been implemented for anomaly detection for smart
buildings using federated learning [14], and its performance has
been validated on three real-world datasets from the IoT production
system at General Electric Current smart building. One other paper
that comes to mind is a similar attempt on the IoT-23 dataset [12],
that used TensorFlow as it’s framework, and managed to reach 70%
accuracy for its global model. It implemented the basic version of
the FL algorithm (FedAvg) with 23 nodes (consequently each node
had one sample) and also used a Multi-Layer Perceptron (MLP)
as the model for each node. It is also worth mentioning that the
paper used a multi-class classification model instead of a binary
one. This paper plans to expand on those findings by comparing
multiple algorithms, as well as compare the accuracy with changed
parameters, such as number of nodes used.

In a previously mentioned paper [7], it is stated that FedProx is
expected to produce better results in terms of accuracy and con-
verging on non-iid data, which is the case for the second setup in
which the tests were running, as each client had it’s own "unique"
dataset on which it learned, leading in theory to global convergence
as each node can contribute meaningfully to improving the global
model.

3 IOT-23 DATASET
The dataset used for this project was the publicly available IoT-
23 dataset [3] containing network traffic captures from Internet
of Things devices. As the name suggests, the dataset is made up
of 20 malware captures and 3 benign captures. This dataset was
published in January 2020, with the captures ranging from 2018
to 2019. This IoT network traffic was captured in the Stratosphere
Laboratory, AIC group, FEL, CTU University, Czech Republic. For
the malicious captures, a specific malware sample was executed on
a Raspberry Pi, while for the benign captures, the normal traffic
from three IoT devices (Amazon Echo, Soomfy smart Doorlock,
Philips Hue lamp) was used. Both malicious and benign scenarios
were run in a controlled environment with unrestricted internet
access to help emulate the real-life conditions of these devices.

Every capture mainly consists of the following files, along with
a README file:

• .pcap: this is the original .pcap file from the network traffic
capture, for which Wireshark was used.

• conn.log.labeled: this is the Zeek conn.log file obtained by
running the Zeek network analyser using the original .pcap
file. This conn.log.labeled file has the flows of the capture
network connection as a normal Zeek conn.log file with two
new additional columns for the labels. The labels were added
by a Python script according to a set of rules specific to each
capture.

For this project the latter file was used, as it includes the la-
bels for the packets, which are required when using this data for
machine learning, as well as avoiding the difficulties encountered
when processing and working with a .pcap file.
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In total, the dataset contains 325,307,990 Zeek flows, out of which
30,858,735 were benign, leaving 294,449,255 to be classified as mali-
cious, giving a ratio of approximately 9.5 malicious packets to every
benign one. This shows a notable imbalance in the dataset.

Furthermore, the size of some data samples exceeded available
working memory and contained millions of almost identical (mali-
cious) packets alongside thousands of benign ones. Consequently,
the dataset was divided into 15 smaller files: 12 files containing ma-
licious samples, each corresponding to a distinct type of attack, and
three benign samples, which were left intact due to their smaller
size. Each file had a similar size of around 500 KB, or around 3000
packets which were manually selected, to create an optimal distri-
bution that the model can learn the most from. This modification
does not only considerably speed up the training process but it
can also help the model generalise better, making the data less
imbalanced, as the packets from each attack type were sampled
to roughly resemble the distribution in the original scenario. The
other approach would have been to include the entire samples, but
training on millions of malicious samples while having only a few
thousand benign ones, as was the case for the majority of samples,
would likely have made the task of correctly identifying benign
traffic even more difficult.

3.1 Features
The IoT-23 dataset packets contain 23 features that describe the
network traffic flows. Each feature is listed in Table 1, along with a
short description:

During the preprocessing phase, some of these features were
removed to focus on the more relevant ones for the analysis, as is
explained in more detail below.

3.2 Data Preprocessing
The inclusion of the full, unaltered dataset in the model training
process would likely have negatively impacted the model’s general
accuracy. This is because highly imbalanced datasets can lead to
biased learning, where the model becomes overly tuned to the
majority class (in this case malicious flows) and underperforms on
the minority class (benign flows). This imbalance can cause the
model to exhibit poor generalisation on unseen data, resulting in
higher false positive rates and potentially overlooking benign traffic
entirely by erroneously classifying every packet as malicious.

The dataset originally had 23 columns for every flow, with 21
being features and the remaining two being the label and a more
detailed description of the label, as it is explained in the previous
subsection. Out of these 23 columns, 4 were removed when pro-
cessing the files, as either they were weakly correlated to the label
column, or there was so much data missing from them that keeping
them would have likely impacted the accuracy negatively or not at
all.
The columns that were removed are the following, along with the
reasons for their removal.

(1) ts - The timestamp was removed because the exact time of
the connection is not relevant to the classification task. The
model should focus on the nature of the connections rather
than when they occurred.

Field Description
ts Timestamp of the network connection, indicat-

ing the timewhen the connectionwas initiated.
uid Unique identifier for each connection, used to

distinguish between different network flows.
id.orig_h Origin host IP address, representing the source

of the network traffic.
id.orig_p Origin host port, indicating the port number

used by the source.
id.resp_h Responding host IP address, representing the

destination of the network traffic.
id.resp_p Responding host port, indicating the port num-

ber used by the destination.
proto Protocol used for the network connection (e.g.,

TCP, UDP).
service Service used in the connection (e.g., HTTP,

DNS).
duration Duration of the connection, measured from

initiation to termination.
orig_bytes Number of bytes sent from the originator to

the responder.
resp_bytes Number of bytes sent from the responder to

the originator.
conn_state Connection state, representing the status of the

network connection (e.g., established, closed).
local_orig Indicates whether the originating host is within

the local network.
local_resp Indicates whether the responding host is

within the local network.
missed_bytes Number of bytes missed or dropped during the

connection (packet loss).
history History of the connection states and events,

providing a sequence of state changes.
orig_pkts Number of packets sent from the originator to

the responder.
orig_ip_bytes Number of IP bytes sent from the originator to

the responder.
resp_pkts Number of packets sent from the responder to

the originator.
resp_ip_bytes Number of IP bytes sent from the responder to

the originator.
tunnel_parents If tunnelled, is the connection UID value.
label General label indicating whether the connec-

tion is benign or malicious.
detailed-label Detailed label providing more specific infor-

mation about the type of malicious activity, if
applicable.

Table 1: Descriptions of the packet features.

(2) uid - The unique identifier for each connection was removed
as it does not contribute to the classification of benign or
malicious traffic.
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(3) tunnel_parents - This feature was removed because it was
missing from so many flows that no useful information could
be extracted from it if it appeared.

(4) detailed_label - The detailed label was removed to simplify
the classification task into a binary problem (benign or ma-
licious). This helps to improve the model’s performance by
reducing the complexity of the labels.

The rest of the features were either encoded in categories if they
were categorical (for example the protocol field), or normalised if
numerical.

4 PROBLEM STATEMENT
Although there has been research done on this dataset and approach
before, some possibilities were still left unexplored.

This paper will compare the results of the FedAvg [8] and Fed-
Prox [7] approaches for the anomaly detection problem and provide
a broader perspective for this challenge on the IoT-23 dataset. The
results of these approaches will be analysed in order to ascertain
the effectiveness of each algorithm in comparison to the others
when using the same machine learning model for the nodes.

4.1 Research Question
The research question that will be answered is:
How do different federated learning approaches (FedAvg,
FedProx) compare to each other in terms of performance on
the IoT-23 dataset?

The proposed metric for measuring performance for each of
these algorithms will be the global accuracy. Other performance
metrics such as precision, recall, F1-score may also be of interest.

5 METHODS OF RESEARCH
5.1 Implementation
This project relied upon the Flower framework, as this was used
to simulate the clients and the server, as well as their communica-
tion. Python was chosen for the implementation, along with other
machine learning libraries, among which flwr, torch, pandas, and
sci_kit_learn are some of the most notable. The plots were pro-
duced using the matplotlib library. The MLP was the model used
for the nodes in the implementation, with 18 input nodes, a hidden
layer of 64 nodes, and 2 output nodes corresponding to the two
types of labels. Various configurations for the hidden layer were
experimented with, including configurations with 16, 32, 64, and
128 nodes. It was found that a hidden layer of 64 nodes yielded the
best accuracy. The model by itself consistently achieved relatively
good results of up to 99% accuracy, so it was deemed suitable to be
used by the nodes in a federated setting. Simulations were run on
the dataset in two ways: by giving each client one specific attack
type so they can contribute to the global model, or by shuffling
the data and dividing it evenly between the clients. The first setup
allowed each node to learn from a "unique" dataset, leading, in
theory, to an eventual global convergence, while the second was
aimed at a more general distribution. To help with the unbalanced
nature of the dataset, custom class weights were applied, making
the model rank the packets that are part of the minority class as
more important for tuning the loss function. For the experiments,

all the nodes used a 80-20 split for the data, meaning that 80% of the
data was assigned to the training set while the rest of 20% was used
for testing. The experiment was conducted on a machine running
Windows 10, equipped with 16 GB of RAM, 8 CPUs, and a 512 GB
SSD.

The MLP itself could also be modified through the tweaking
of its hyperparameters. These hyperparameters and their possible
values are shown below:

Hyperparameter Possible values
Hidden Size 8, 16, 32, 64, 128
Batch Size 16, 32, 64, 128
Learning Rate 0.01, 0.001, 0.0001, 0.00001

Table 2: Hyperparameters tried for the model

After some trial and error, as well as some heuristics, the values
for the hyperparameters were chosen as 64 for the number of nodes
in the hidden layer, a batch size of 128, along with a low learning
rate of 0.00001, as these seemed to give the best and most stable
results.

5.2 Methods
Two experimental setups were used. One where all the flows from
the attacks and the benign samples were shuffled and evenly split
between a number of clients, and a second one that aims to be
closer to the real life, where some nodes are likely only exposed to
one type of attack each, while some may only be exposed to benign
traffic. The nodes exposed to benign traffic had to include both a
benign sample and one random type of attack sample (otherwise
there would not have been anything to classify). A more detailed
justification for each setup can be found in the subsections below.

5.2.1 Setup 1: Shuffled and Evenly Split Flows. In this setup, all
network packets from both attack and benign samples were shuffled
and evenly split among a number of clients. This configuration is
closer to what can be expected from a centralised model.

Justification:
• More Balanced Representation: By shuffling and evenly dis-
tributing all packets, each client receives a somewhat bal-
anced mix of attack and benign traffic. This maximises the
chance that the local model trained on each client has a good
understanding of both types of traffic and of different types
of attacks.

• Generalisation: This setup should test the model’s ability to
generalise across different types of attacks and benign traffic,
providing a good baseline for classification.

• More Homogeneous Exposure: Since every client is exposed
to a diverse set of attack types and benign samples, this setup
helps in creating a more uniformly trained model, reducing
the risk of bias towards specific types of traffic.

5.2.2 Setup 2: Simulation with Specialised Nodes. In this setup,
some nodes were exposed to only one type of attack, while others
were exposed to benign traffic. Additionally, nodes exposed to be-
nign traffic included both benign samples and one random type of
attack sample to help them differentiate the traffic.
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Justification:
• Real-life Scenario Simulation: This setup more closely mim-
ics real-world conditions where different devices or nodes
might encounter specific types of attacks rather than a vari-
ety of them. This should test the model’s practical applica-
bility and resilience in real-life deployments.

• Specialisation: By exposing nodes to specific types of attacks,
their local models can specialise in identifying those attacks.
This can be particularly useful in environments where cer-
tain nodes are more likely to encounter specific threats. This
also means that each node’s contribution to the global model
will be more valuable.

• Diverse Learning: This setup helps in understanding how
well the global model can adapt to diverse conditions and
specialise in detecting particular threats while still being
able to identify benign traffic, giving some general insights
into the model’s flexibility and robustness.

These methods cover both a balanced and generalised scenario,
as well as a more specialised and realistic scenario. They also ensure
that the model is tested for classifying unseen data and specific at-
tack detection capabilities. Future research can perhaps experiment
more with the amount and the type of data available to each node
and document how the learning changes.

6 RESULTS
The main results of this paper are the global accuracy comparisons
between the FedAvg and FedProx federated learning algorithms
on the IoT-23 dataset. First, the uniform setup is shown with both
10 and 100 clients, which achieves some respectable, yet expected
results, proving the effectiveness of both algorithms in a controlled
environment. Then the results from the specialised setup are shown,
along with some interesting statistics, followed by a conclusion.
A more detailed breakdown of the expected results can be found
below.

6.1 Experimental Results
6.1.1 First setup. For the first setup, simulations were run with
both 10 clients and 100 clients, and the results were fairly similar,
with the accuracy usually spiking after the first few rounds of
federation, and plateauing or growing very slowly after, as was
expected. The plots of the accuracy for this setup with 10 clients
can be seen in Figure 1.

A noticeable difference between the simulations with a different
number of clients is that the accuracy seems to be negatively cor-
related with the number of clients, which was to be expected, as
when there are fewer clients, each client has more data available to
train on, making the model learn more. The global model always
quickly converged at over 90% accuracy when using this setup with
10 clients regardless of the federation algorithm used.

With an increase in the number of clients a drop in accuracy is
also expected, as can be seen from the graphs below, with the final
accuracy after 200 rounds ranging from close to 60%, to around
80% in the better cases. The graphs show a strong indication of
growth after the first spike, likely leading to an eventual accuracy
convergence close to the simulation with fewer clients. This seems
to show that convergence occurs faster when using fewer clients.

Figure 1: Accuracy over time for the first setup with 10 clients
using FedAvg and FedProx, measured over 200 rounds of
federation.

The proximal 𝜇 value for FedProx did not seem to make any
meaningful difference to the results, probably because of the uni-
formity of the data of each client. The plots of the accuracy for the
same setup, this time with 100 clients, can be seen in Figure 2.

What is also visible in all the runs, notably in the case with 100
clients, is that the precision of the model is a lot greater than the
recall, in some extreme cases even by 30 percentage points. This
indicates that the model model misses many of the positive cases.
But, when it does classify a case as positive, the case is very likely to
be a real positive case. This difference between precision and recall
suggests that the model is conservative in its positive predictions. It
is unlikely to classify a packet as malicious, but when it does, it must
have been because of a good reason. This is not ideal, especially for
the task of identifying malicious packets in network traffic for IoT
devices, where missing any positive instances is highly undesirable.

6.1.2 Second setup. The experimental results for the second setup
reveal interesting patterns in the accuracy progression of the fed-
erated learning model across different simulations. In all cases,
the final accuracy of FedAvg did not drop below 70%, indicating a
generally good performance of the model.

A 𝜇 value of 1 was used for FedProx for these tests, as it seemed
to yield the best accuracy, but values of 0.001, 0.01 and 0.1 were
all tried (50 simulations each), as per the recommendation of the
paper introducing the FedProx algorithm [7].

In several simulations, the accuracy exhibited a steady increase,
similar to the expected behaviour. The accuracy improved rapidly
during the initial rounds, followed by a gradual stabilisation as
the model continued to aggregate updates from multiple clients.
This pattern suggests that the model effectively learned from the
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Figure 2: Accuracy over time for the first setup with 100
clients with FedAvg and FedProx, measured over 200 rounds
of federation.

data, progressively improving its performance with each round of
federation.

For some of the runs, the central model might receive parameters
from a subset of clients that have performed exceptionally well on
their local datasets. This can cause a temporary spike in accuracy.
However, as more rounds progress and more client updates are ag-
gregated, the central model parameters will start to reflect a broader
range of client data distributions, which might include more chal-
lenging data, leading to a drop in accuracy. What can also happen
is that some clients might have data that is easier for the model
to learn from, resulting in a spike in accuracy when these clients’
updates are incorporated. The spike could also indicate overfitting
to certain clients’ local data. As training progresses and more di-
verse data is incorporated, the model begins to generalise better,
leading to a drop in accuracy before it stabilises and continues to
grow again.

Both algorithms were allowed to run 50 times for 200 rounds
in order to get a conclusive result. During the 50 runs of training
with FedAvg, the model achieved varying levels of performance
across accuracy, precision, recall, and F-score metrics. The average
accuracy stood at 82.73%, with the peak reaching up to 93.42%
and the lowest being 70.26%. Precision averaged at 0.848, with a
maximum of 0.94 and a minimum of 0.77. Recall averaged 0.822,
ranging from 0.93 at its highest, to 0.67 at its lowest. The F-score,
which balances precision and recall, averaged 0.829, reached its
maximum at 0.93 and its minimum at 0.7. The accuracy plots of the
lowest and highest scoring runs of FedAvg can be seen in Figure 3.

With a 𝜇 value of 1 and 50 samples, FedProx showed a broader
range of performance metrics. The average accuracy was 80.08%,

Figure 3: Plots of the highest and lowest accuracy runs
achieved with FedAvg over 200 rounds

with the highest accuracy reaching 93.21% and the lowest at 64.64%.
The precision was similarly varied, with an average precision of
0.83, a maximum of 0.94, and aminimum of 0.74. The recall averaged
0.8, peaking at 0.93 and dropping to 0.65. The F-score averaged 0.8,
with the highest at 0.93 and the lowest at 0.67. These results suggest
that while FedProx can also achieve a good performance, its metrics
are more variable and less consistent overall. The accuracy plots
of the lowest and highest scoring runs of FedProx can be seen in
Figure 4.

6.2 Interpretation and Analysis
With the first setup, the results were in line with what was expected,
with the accuracy jumping rapidly at the start for both FedProx
and FedAvg, and stabilising over the course of the 200 rounds. This
likely happens because the data is more evenly distributed and each
client can learn to generalise well at the start, since they probably
have a very similar distribution each, along with a similar testing
set. This demonstrates how both algorithms can work well if the
clients are provided with iid data.

Also in the first setup, a higher number of clients generally led
to a lower final accuracy, highlighting the importance of sufficient
data per client for effective local training. This shows that the
abundance of data of each client is a determining factor of the
success of federated environments. The high precision but low
recall observed in scenarios with more clients outlines a challenge
in achieving a balanced model that minimises both false positives
and especially false negatives, while maximising true positives.
Improving the recall is vital for applications like malicious packet
detection in IoT networks, where missing a malicious packet can
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Figure 4: Plots of the highest and lowest accuracy runs
achieved with FedProx over 200 rounds

have severe consequences, while classifying a benign packet as
malicious is not nearly as much of a concern.

For the second setup there is a more detailed comparison below:

Comparison
• Accuracy:
– FedAvg: Average accuracy of 82.38%, peak accuracy of
93.42%.

– FedProx: (𝜇 = 1) Average accuracy of 80.08%, with a peak
accuracy of 93.21%.

– Conclusion: FedAvg provides higher average accuracy
and more consistent performance compared to FedProx,
while the peak accuracy of the algorithms is comparable.

• Precision:
– FedAvg: Higher average precision at 0.848.
– FedProx: (𝜇 = 1) Average precision at 0.83.
– Conclusion: FedAvg has better average precision, indi-
cating better minimisation of false positives.

• Recall:
– FedAvg: Higher average recall at 0.822.
– FedProx: (𝜇 = 1) Average recall at 0.8.
– Conclusion: FedAvg demonstrates higher average recall,
suggesting it is more effective at capturing true positives.
This metric is very important when considering the task
of anomaly detection, as it would be best to reduce the
amount of false negatives as much as possible in this con-
text.

• F-score:
– FedAvg: Higher average F-score at 0.829.

– FedProx: (𝜇 = 1) Average F-score at 0.8.
– Conclusion: FedAvg shows a better overall balance be-
tween precision and recall.

While these results suggest that FedProx can achieve a similar
performance to FedAvg, it is less consistent and exhibits greater
variability. FedAvg consistently delivers slightly higher average
metrics across accuracy, precision, recall, and F-score, showing it
is a more reliable choice for achieving a good performance in this
context. Further experimentation is needed to fully understand
the behaviour of both algorithms under different conditions and
datasets. Further experimentation with varying client distributions
and data heterogeneity are needed to provide accurate insights into
the optimal conditions for each algorithm.

Something to note is how the recall is considerably lower than
the precision in the runs with poorer performance of both algo-
rithms. This means that in addition to having a worse accuracy, the
models also missed a lot of positive cases. Again, this behaviour is
disadvantageous for the anomaly detection task.

There are several reasonable explanations as to why FedAvg
seems to be doing better than FedProx listed below:

(1) SimplerAggregationMethod: FedAvg uses a simplermethod
of aggregating updates from different clients. This simplicity
could have led to more a stable and faster convergence com-
pared to FedProx, which uses an additional regularisation
term that complicates the process.

(2) Homogeneity of the Data: If the data distribution across
clients is relatively homogeneous, the advantages of Fed-
Prox’s proximal term (designed to handle heterogeneous
data) may not be as noticeable. In these cases, the simpler
FedAvg method can perform equally well or even better due
to its less complex update rules. Some statistical tests, such
as the Kolmogorov-Smirnov test, could be performed, com-
paring the data of every client to the data of every other
client to get a better idea of the distributions of the packets
and their similarity. In this case, the data may have been
more similar than it seemed.

(3) Optimal Tuning of the Proximal Term: The proximal
term in FedProx should weaken the effects of data hetero-
geneity. However, this regularisation will sometimes hinder
learning if the strength is not optimally tuned. If the proximal
term is too strong or too weak, it may slow down the learn-
ing process, leading to lower accuracy compared to FedAvg.
Perhaps an optimal value for this term is found somewhere
between the values that were tried.

The exact reason of these performance figures is likely a combi-
nation of the explanations listed above. More experimenting with
this setup is needed in order to come to a clear conclusion.

6.3 Conclusion
This study investigated the performance of two federated learn-
ing algorithms, FedAvg and FedProx, in the context of anomaly
detection for IoT devices, using the IoT-23 dataset. The experiments
compared these algorithms under two different data distribution
setups: shuffled and evenly split flows, and unique attack types per
client.
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The first setup showed the importance of the initial conditions
of each client and the amount of data they have, as well as the
number of clients. Under favourable conditions, both algorithms
have shown that they can perform this task relatively well. This,
however, changed with the increase in the number of clients, as the
central model became slower and slower to incorporate the updates
from the clients, in addition to each client having less, and possibly
more varied data.

The experiments from the specialised setup seemed to show that,
although FedProx achieved a comparable accuracy, FedAvg was the
slightly better choice for this task on the IoT-23 dataset, in terms of
average accuracy, precision, f-score and recall, which is one of the
most important traits of this type of system, as not flagging a true
positive can have severe consequences in the real world. Part of the
reason why this simpler algorithm proved more effective is that,
although there are 12 types of attacks, most of them only contain
a combination of 3 or 4 common types of packets, thus making
even the attack-separated data more homogeneous than what was
thought previously, favouring a simpler approach. The simplicity
of FedAvg can produce a more stable and consistent performance
across different scenarios as well, which is why the results appeared
to be more consistent when using FedAvg.

The practical implications of these findings are significant when
deploying anomaly detection systems in real-world networks. The
first setup shows that a balanced and diverse training dataset will
quickly lead to a good model, though the number of clients needs to
be managed to ensure they all have a sufficient amount of data. The
second setup’s varied results shows the importance of understand-
ing the specific context and type of traffic a node will encounter.
Adjusting the training approach based on expected traffic patterns
should improve the performance of the models, as under real-life
conditions, the overwhelming majority of the traffic one random
node will encounter will be completely benign, with the occasional
presence of an anomalous packet.

Future work could explore additional federated learning algo-
rithms and their applicability for the IoT anomaly detection task,
not only on the IoT-23 dataset, but also on other, maybe larger,
more encompassing datasets. Additionally, the experiment could
have allowed the simulations to run for more rounds and more
runs could have been conducted to further confirm the results are
conclusive. An interesting modification would have allowed each
node to run a few epochs for every federation round to see how the
metrics change, although this would have serious consequences on
the processing time of the simulations. Letting the algorithms run
until convergence could have also been an option, but this would
have taken a significant amount of time. In addition, extending
the evaluation to include more complex models and real-world
IoT deployment scenarios would provide further insights into the
robustness and scalability of federated learning approaches in this
domain.
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