The Automation of Grading Programming Exams in Computer Science

Education

KRISTUPAS CEPELIS, University of Twente, The Netherlands

This paper explores the automation of grading the programming exams to
lighten the load for the teachers while maintaining high grading accuracy.
The research involves two phases: a literature analysis and a prototyping
phase. During the first phase, this research will analyze potential ways to
automate the grading process, while also considering the potential draw-
backs each idea could bring. The analysis will be a foundation for the next
phase, which will involve creating a proof-of-concept grading system for the
first-year Python programming exams at the University of Twente. The ef-
fectiveness of this tool is evaluated by comparing the efficiency and accuracy
of automated grading with traditional manual grading. The developed pro-
totype demonstrated a strong positive correlation with the manual grading
results, though further refinements are needed to realize its full potential.

Additional Key Words and Phrases: Automated grading, Programming exams,
Computer Science, Grading efficiency, Grading accuracy, Grading automa-
tion, Teacher workload

1 INTRODUCTION

The popularization of computer science education provided a surge
of new additional students [1, 16], making handling the exams
harder and more time-consuming. Some computer science courses
require teachers to create exams that ask the students to write pro-
gramming code. This is necessary for the teachers to test whether
the students reached the required learning objectives. However, cre-
ating and grading those exams uses up lots of staff time [2]. This
raises the question of whether automating the grading of those
exams is feasible.

One of the current most popular grading methods is to have a team
of TAs (short for teaching assistants), consisting of people who have
already experienced the course in previous years. It works for some
exams, but it has been shown that the grading quality of TAs is
degraded due to their lack of teaching experience and misunder-
standing on how to tackle grading a student’s work [13]. Another
popular and more consistent method is for the teachers to grade
the exams themselves since they know the learning objectives they
are trying to teach best. However, this can be problematic, since
most programming exams have a lot of students and it will take
many hours and days for the teacher to go through all of them,
which introduces fatigue and makes it hard for the grader to make
consistent grading decisions [9].

In this research, attempts to lower the load from the graders by
automating the process of grading programming exams will be ana-
lyzed, and in the end, provide a proof-of-concept automated grading
system for the University of Twente (UT) to use in one of their

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

exams in the Technical Computer Science (TCS) and Business &
Information Technology (BIT) bachelor courses.

2 GOALS OF RESEARCH

This research aims to develop a prototype of an automated grading
system for the programming exams in TCS and BIT studies at the
University of Twente. The primary objective is to make the grad-
ing process more efficient while ensuring that the accuracy of the
grading remains on par with what teachers can offer. Achieving this
goal requires an analysis of existing methods and technologies to
identify the most suitable approach for automating the grading of
the programming exams for TCS and BIT studies. Additionally, to
analyze the accuracy of the automation tool, a real-world test will
be done using the data from the previous exam(s) held at the UT.

2.1 Research Question

The problem statement leads us to the research question:

How can the grading of first-year Python programming exams be
automated without sacrificing the accuracy of the grades?

This can be answered with these sub-questions:

(1) What existing methods and technologies exist to automate
the grading of programming questions in computer science
education?

(2) Which automation tool or approach is most suitable for au-
tomating the grading of exams in the first two modules of the
TCS and BIT studies at the University of Twente?

(3) To what extent does the automated grading tool produce
grades consistent with those of human graders?

3 RELEVANCE AND RELATED WORKS

Automation of academic exams has existed since the early 2000s,
but we have only begun to see more advanced ways to tackle this
challenge. Numerous studies analyze and provide a thorough lit-
erature review on all of the different methods one can achieve the
automation of grading the programming exams [4, 7, 8, 14, 17]. The
existing tools can be distributed into two categories: Semi-automatic
[3, 5, 19] and fully automatic [12, 15, 22].

Semi-automatic grading involves a human (usually a person who
created the exam) to make specific tests that the program will run on
the students’ exam answers which then gives the scores respectively
[3, 19]. This gives the most control to the grader since they get to
choose the most important section of the code to give a proper grade.
It also greatly reduces staff time and resources needed for checking
the exercises [5]. This tool is similar to unit tests that any software
engineer can use to test their implementations.

A fully automatic grader is a tool that does not require as much

TScIT 41, July 5, 2024, Enschede, The Netherlands

human input as a semi-automatic tool would. They are more inde-
pendent and efficient [12]. Automatic grading uses some form of
machine learning to grade the answer that the student provided.
This can make the grading process even more efficient and save
staff time and resources [10, 15]. However, introducing machine
learning brings up issues, which require more human intervention
for editing the grades [10]. The rest of the research will focus on
tools requiring human input instead of relying on machine learning.

4 EXISTING TOOLS

After looking into the related works in this field, a theoretical sum-
mary of a few semi-automatic grading techniques can be made to
serve as a foundation and an inspiration for the prototype.

4.1 Output Testing

One of the most popular and simplest methods to test the code
is by looking at the output. This is a form of dynamic program
analysis since the analysis only happens after the code is executed
and run. A good example is a tool created by Harvard University
for an introductory computer science course called "Check50" [19].
This tool can be used to write specific tests to check the output of a
program for any programming language. This can help the student
know if they made a mistake by checking on many different outputs.
An example of this can be seen in Figure 1, where a check is written
to see if the student correctly implemented a function that calculates
the Pythagorean theorem using two variables a and b. However,
the tool does not go deeper than that, because it cannot read the
file’s source code that the student wrote. This means there is no
way to check for some learning objectives that may involve using
specific programming concepts like lazy evaluation, efficient loops,
recursion, etc.

Results for . generated by check5@ v3.3.11

checking that pythagorean.py exists...

running python3 pythagorean.py...
checking for output "S5\n"...

Fig. 1. Check50 tests for a Pythagorean theorem exercise

4.2 Source Code Analysis

Another way to tackle the grading of programming exercises is by
looking at the source code of the program [21]. This is a form of
static program analysis, where the code is never executed. One of
the most popular tools for static program analysis is CheckStyle,
which checks the style of the source code to see if the written code
adheres to the programming languages’ conventional standards.
This differs from grading an exam, but it covers and analyzes the
code in a similar technique, which could be adapted for grading an
exam.

Some studies attempted to use the source code analysis to grade
programming exercises [20, 21]. Another study used the source code

analysis to give feedback to the students about their exercises [18].

Kristupas Cepelis

In particular, the feedback involved checking if the student had
reached the course’s learning objectives. Evaluating the students’
understanding of the learning objectives provided by the course fits
well into the topic of automating the exams and it could be done
using a form of source code analysis.

Static code analysis can be implemented by parsing the student’s
program and converting it to an Abstract Syntax Tree (AST). This
could be used for checking if the code has any specific functions, im-
plementations, or techniques, which could be useful in the grading
process of an exam.

5 ANALYZING SAMPLE EXAMS

To analyze the design of the programming questions, a dataset with
a sample exam has been acquired from the UT with anonymous
data for research purposes. Exams at the UT aim to evaluate the
student’s knowledge by checking if they have successfully reached
the course’s learning objectives by using a format like Bloom’s
Taxonomy [11]. This can be done by ensuring that the exam uses
a format where each question can be graded against an Intended
Learning Outcome (ILO) [6]. ILOs are statements of what the stu-
dent is expected to have learned after they finish a specific study
unit. Table 1 shows all the ILOs that were relevant for the exam
of the Python introductory course. The grading rubric of the exam
questions highly collides with the ILOs that the question includes.

This dataset is used to represent how the exams should be graded,
thus for the remainder of this research, these obtained exams are
assumed to be a reference and point of comparison to checking the
grading results. The exams use the Python programming language
and the questions are split into three categories that each represent
knowledge required from the student to solve the problem correctly.
These levels help ensure the exam can differentiate between stu-
dents’ understanding of basic, intermediate, and more advanced
programming concepts. Table 2 provides insight into how the exam
distributes the points between different levels.

No. | Intended Learning Outcome (ILO)

Select and use appropriate primitive datatypes, includ-
ing their preconceived behaviors.

Develop statements for data transformations over prim-
2 | itive datatypes using the appropriate operators, includ-
ing typecasting of primitive types.

Express algorithmic solutions that use sequence and
selection structures.

Express algorithmic solutions that use repetition struc-
tures.

5 | Select and use appropriate linear data structures.

6 | Appropriate use of operands order.

7 | Select and use appropriate non-linear data structures.

Table 1. List of Intended Learning Outcomes (ILOs)

The Automation of Grading Programming Exams in Computer Science Education

Skill Level | Points
Entry 10
Intermediate 20
Target 22
Total 52

Table 2. Exam Point distribution between skill levels

5.1 Entry Level Questions

Questions are designed to assess students’ foundational knowledge
and check their basic skills. They mostly focus on ensuring that stu-
dents grasp the fundamentals before they delve into more advanced
parts of the material. Questions at this level mostly involve straight-
forward problems like using conditional statements, operators, and
type-checking. The entry-level questions in the sample exams were
all multiple choice and none involved writing Python code, making
this part out of scope for the research.

5.2 Intermediate Level Questions

This level aims to assess the student’s ability to solve more complex
problems and check their proficiency in using programming con-
cepts beyond the basics. They usually involve a student working
with linear structures and loops while also combining the knowl-
edge from the entry level. Figure 2 shows one of the typical student
solutions for the intermediate-level exam question which asks to
calculate the average value of the elements in the list provided in
the function argument and return the number of elements that are
higher than the calculated average. The code uses if-statements, for-
loops, and type-checking to ensure that the correct type is passed
on. Specifically, this question uses the ILOs ranging from 1 to 6 from
the Table 1.

TSclT 41, July 5, 2024, Enschede, The Netherlands

of nested loops, nested conditional statements, and more complex
two or three-dimensional data structures like dictionaries, lists of
tuples, etc. Figure 3 shows a sample solution to one of the target
level exercises. This exercise asks the student to process two lists of
tuples into a dictionary with matching values. The concepts of such
exercise include using nested for-loops, if-statements, type checking,
two-dimensional data structures. Specifically, this question uses all
the ILOs except No.6 from the Table 1. The comments shown in
the figure are not required from the student.

def connect_key_value(key_data, value_data):
checking if any of the arguments is empty

if len(key_data) == @ or len(value_data) ==
print("Invalid argument")
return
checking if the arguments have the same length
if len(key_data) != len(value_data):
print("Invalid argument")
return

result = {}
traversing the first list (of tuples)
for code_argl, name_column in key_data:
traversing through the second list
for code_arg2, asso_data in value_data:
If the arguments match, add it!
if code_argl == code_arg2:
result[name_column] = asso_data

return result

Example answer:

k=[(1,"Title"),(2,"Author"),(3, "Publisher")]

v=[(1,"Think Python"),(2,"Allen Downey"),

(3,"Green Tea Press")]

The expected result of connect_key_value(k, v):

{"Title": "Think Python", "Author": "Allen Downey", "
Publisher": "Green Tea Press"}

def find_tall(list_of_heights):

error_msg = "Invalid Argument"
if len(list_of_heights) == 0:
print(error_msg)
return

for i in list_of_heights:
if not isinstance(i, int):
print(error_msg)
return

average = sum(list_of_heights)/len(list_of_heights)
count_of_tall = @
for x in list_of_heights:
if x > average:
count_of_tall = count_of_tall+1

return count_of_tall

Fig. 2. Typical Intermediate Level exercise

5.3 Target Level Questions

This level aims to test the student’s ability to solve more advanced
and challenging problems which require a thorough understand-
ing of the material. Exam questions of this level involve the usage

Fig. 3. Typical Target Level exercise

6 APPROACH OF AUTOMATION

The sample exams showed that the questions are simple functions
that require a specific implementation. With the assumption that
the exam questions will always be similar to the ones shown in
Figures 2 and 3, the creation of a new automated grading tool can
be approached.

6.1 Techniques

As seen in the provided sample data, the exams had 7 Intended
Learning Outcomes from which the exercises were made (See Table
1). Certain actions and depth of knowledge can be extracted from
these learning outcomes, which can later be used to assess the stu-
dent’s knowledge. This approach can be adapted in the automated
grading tool by splitting all the exam questions into a set of ILOs.
Then, multiple automatic grader agents can focus on specific ILOs
and check for them in the student’s answers. This can create struc-
ture and consistency that the automated grader needs to be accurate.
Some already existing methods provide insight into how this can
be implemented.

TScIT 41, July 5, 2024, Enschede, The Netherlands

These ILOs can be graded using source code analysis and output
testing, which were discussed in Section 4. Using the source code
analysis approach, the students’ source code can be converted into
an Abstract Syntax Tree, allowing the grader tool to find whether
the student solved the problem using any form of data structures,
conditional statements, loops, operators, type instance checking,
etc. All the mentioned ILOs in the Table 1 can be checked by navi-
gating the source code. For example, a learning outcome on which a
student has to express a solution using repetition structures can be
checked by determining if the code uses some looping mechanism
like a *for’ or a 'while’ loop. Figure 4 shows an AST of a function
with a simple if statement in Python for which it can easily be
seen what is inside that if statement. If there is an algorithm that
navigates the tree and visits each node, eventually it will find a ’For’
node for which it would prove that the student has indeed used
some repetition structure.

Constant: Higher than 4

Fig. 4. AST for a simple function with an ’if’ statement

Although the source code analysis can show whether the student
used a specific structure, there is no certainty that the implementa-
tion is correct. To tackle this, the sample exam rubric has test cases
that check whether the written answer matches the proper output
for some input examples. This can be automated by using dynamic
program testing to automatically check the output of the written
code for a set of inputs.

6.2 Grading Process

Using dynamic and static code analysis, each exam question could
be automated. The first steps will involve parsing the students’ code
using a tree visitor. Once all nodes are known, code checks can
be made to see if the student used any of the required code imple-
mentations that are mentioned in the rubric. This can range from
checking if the student has a loop to checking if the student has an
if statement that checks for a specific clause. Numerous checks can
be made using this, so the grader can choose how to approach this.
Once the code checks are made, the grader can move to dynamic
testing and check for the code outputs to see if the function returns

Kristupas Cepelis

the correct results for a given input. The inputs should be made in
a way that tests if the implementation is correct and they vary for
each question. These combined methods can thoroughly check each
student’s code and provide a result.

An example of practical usage of this approach can be explained for
the code in Figure 2 while also mentioning the ILOs from Table
1 that each grading step checks. The checks were made to follow
the ILOs made for this question, and also cover the grading criteria
that exist in the rubric from the dataset. The whole exercise gives
5.5 points in total:

(1) The program checks if the code includes an if (or an else)
statement which checks the length of the list. This is required
because the exercise mentions the need to check if the list is
not empty. This awards 0.5 points and checks ILOs 1 and 3.

(2) The program checks if the students’ code includes a statement
where they ensure that the elements inside the list are an
instance of an integer. This can be done by using a built-in
isintance check. This awards 0.5p and checks ILOs of 1, 2,
and 3.

(3) The program checks if the code includes an if (or an else)
statement which has both print and return statements in-
side the body. This is required because the exercise asks the
student to print to the user and stop the program when an
invalid input is given. This awards 0.5 points and checks ILO
3.

(4) The program uses a form of predetermined input cases to run
on the code the student provided. They can range from any
illegal input that could happen, to a variety of ’correct’ input
that checks if the logic of the code is fully implemented. If
every case passes, the student is awarded 4 or 0 points and
checks all ILOs 1 to 6.

(5) If the student did not get the full 4 points from the check
above, new checks are run. This is done by output testing by
giving values that may not break the code in case the student
did not check for invalid input/empty lists. If these tests pass,
they get 3.5 points. If the result is different by 1 value (this
can happen if the student used >= instead of >), they get 2
points. This tests ILOs 3 to 6.

Step 5 in this list was taken from the rubric and slightly modified to
fit this grading approach (more of that in Section 6.3). It needs to
be stated that the output tests have to be accurate and not have an
error in them. The grader is responsible for providing meaningful
and thorough tests for each question.

6.3 Changes in Rubric

To make the automation approach work, slight changes must be
made in the grading criteria. Sometimes the rubric asks to check
whether the code has a correct implementation of a feature that can
be made in multiple ways, thus making it unfeasible to automate
using the selected approach. As an example, for the code in Figure
2, the rubric asks to check if the sum is calculated correctly (so
that the average can work), however, a sum can be calculated in
multiple ways (i.e. using a sum() function or a loop). The student
can also use different variable names, so finding where the sum is

The Automation of Grading Programming Exams in Computer Science Education

being calculated is too complex. It would make the grading tests
too complicated and too specific, thus making them prone to error.
The implementation can also be correct, but with a slight error (like
using a >= instead of >), which shouldn’t punish the student too
hard. For these reasons, the rubric can be slightly adapted to be
more output-focused. The grading steps provided in the Grading
Process section are the same as in the rubric except for step 5. This
step is slightly adapted to fit the automation approach by combining
two criteria into output tests. It is also important to mention that
if it is known that the exam is going to be graded automatically
beforehand, the questions themselves can be created differently to
avoid situations like this.

6.4 The Developed Prototype

Based on the steps described in the sections above, a prototype was
developed as a proof-of-concept for this approach. An additional
consideration made during the development is to allow the person
writing the checks to provide feedback so that the student can know
why they got that specific amount of points. After the checks are
written, the analysis process can begin on the dataset. Once the tool
finishes grading, it exports the results into an Excel file, where the
grader can easily read and see them.

7 GRADING AN EXAM

To check whether the automated grader can grade with similar ac-
curacy as the human grading, the prototype was used to grade the
exam on the acquired dataset, discussed in the Analyzing Sample
Exams section. The exam involved a total of 135 students. As men-
tioned in the previous sections, the first 4 questions did not include
writing Python code, so these are discarded from this research.

7.1 Results of Manual Grading

When the exam took place, manual grading was conducted with
the help of TAs. Table 3 shows how many points were given for
each exam question on average, the standard deviation (s), and the
Median. For most exercises, the mean of the points is higher than
50% of the full points a student can get. The only two exceptions
are questions 9 and 10, which show a lower mean than the other
exam questions. This is because the last two questions jump from
the Intermediate to Target level difficulty, so a fall in the average
points is expected. The median value of 0 for Question 9 shows that
50% or more students got 0 points for that exercise, which shows
that most students did not provide a valid answer. The total average
point count combines into an average of 19,15 points, around 45%
of the maximum amount of points a student can get (42 points). The
standard deviation values show a good deviation from the mean,
showing that the student’s scores vary widely around the mean,
which suggests that the exam grading criteria are well-balanced for
this exam.

7.2 Results of Automated Grader

After writing automated tests for this exam, an automated grading
was initiated. The outcome of this automation tool is shown in the
Table 4, which shows the average points for each question, the
standard deviation (s), and the median. For the average points for

TSclT 41, July 5, 2024, Enschede, The Netherlands

Question Mean s Median

5 (5p) 3,18 1,85 3,5

6 (5,5p) 3,62 2,12 45

7 (6p) 3,33 2,38 4,25

8 (3,5p) 2,10 1,34 2,5

9 (10p) 2,75 4,14 0

10 (12p) 4,17 4,64 3
Total 19.15p - -

Table 3. Results of Manual Grading

each exercise, the mean is looking to be distributed higher than
50% of the total points a student can get, with the only exception
of the two harder Target Level questions, which have a lower mean.

Question Mean s Median

5 (5p) 3,52 1,53 3,5

6 (5,5p) 3,73 2,06 5

7 (6p) 3,50 2,15 4,5

8 (3,5p) 2,49 1,09 2,5

9 (10p) 2,85 4.24 0

10 (12p) 3,84 4,91 1
Total 19.93p - -

Table 4. Results of Automatic Grading

Sometimes the students’ code cannot be automatically graded due
to some errors which prevent the tool from running the code. For
this, we need to calculate the success rate. The Grader Success
Rate represents the percentage when the tool successfully analyzes
the code by running the tests, and concludes how many points it
should give. It also can succeed when the student does not provide
any code, or the code is too short to grade. In that case, the point
count is 0. The success rate is calculated by:

S Rate(7) Successful Grades x100 (1)
uccess Rate(%) =
Total Number of Submissions

This formula is applied to each question to determine the grader’s
success rate.

Table 5 shows the success rate of running the tool on this exam.
The average success rate of the grader is 76,49%. For the remaining
23,51% of the submissions, manual grading has to be conducted.
Table 5 also provides insight into the reasons why the tool fails
the grading. The error analysis has shown that each question on
average has around 27,17 Compile Errors and very few Runtime
Errors (4,34). Two biggest compile errors are found in the students’

TScIT 41, July 5, 2024, Enschede, The Netherlands

code: Indentation mismatch and Syntax errors. Another thing to
note is that the Target Level questions also have a lower grader
success rate, which can also be seen by the rise of the compile errors.
This is to be expected since the exercises are longer and require
more complicated code, thus it is more prone to human error.

Question | Grader Success Rate Errors (Out of 135)
Compile | Runtime

5 76.86% 28 3

6 79.85% 21 6

7 85.07% 15 5

8 76.11% 26 6

9 68.65% 37 5

10 72.38% 36 1
Average 76.49% 27.17 4.34

Table 5. Error Analysis of Automatic Grader

7.3 Manual vs Automated

After analyzing both manual and automatic approaches separately,
a comparison between the two results can be made. While looking
at Tables 3 and 4, it can be seen that the results are similar, but
not the same. One issue that was faced, is that the automatic grader
did not successfully grade all exams (see Table 5), so to reflect that
issue, the results of both automatic and manual analysis were paired,
which resulted in the removal of some manual analysis results for
this statistical analysis. Once the results are paired, they can be
normalized and analyzed statistically.

Table 6 shows the normalized comparisons between the two grad-
ing methods. Here it can be seen that the manual analysis received
an average normalized score of 0,5961, which shows that, on aver-
age, students scored 59,61% of the total possible points when graded
manually. Automatic grading shows a mean of 0,5606, meaning that
the students scored an average of 56,06% of the total possible points.
Standard deviations for both approaches show significant variability
in the scores, which shows the balance of the grading criteria for
both methods and suggests that the consistency of the automatic
grader remains similar to that of a manual approach. The medians
show that half of the students scored up to 75% of the total possible
points for manual grading, and up to 70% of the points for automatic

grading.

Grading Method Mean s Median
Manual 0,5961 0,414 0,75
Automatic 0,5606 0,401 0,7

Table 6. Comparison between grading methods (Normalized)

Kristupas Cepelis

To determine whether the differences between manual and auto-
matic grading are statistically significant, a paired sample t-test was
conducted. The paired sample t-test aims to compare the scores
from the manual and automatic grading methods for the same set
of students. This test assesses whether the mean difference between
these paired sets is significantly different. The resulting t-value is
then used to determine the p-value, from which a conclusion can
be made whether the mean difference between the two paired sets
is significantly different or not.

The results of the paired sample t-test have shown a value of ¢ =
4,311 and p = 0,000019. The p-value is lower than the conventional
threshold of 0.05, indicating that the null hypothesis is rejected
and that there is a statistically significant difference between the
manual and automatic grading approaches. This implies that the dif-
ferences observed in the mean scores are not due to randomness, but
it indicates a genuine difference in the grading methods of this exam.

Additionally, to understand the correlation between the manual and
automatic scores, a correlation analysis was performed. The Pearson
correlation coefficient (r) measures the strength and direction of
association between two continuous variables. It ranges from -1 to
1, showing either a positive or a negative correlation.

The correlation coefficient will measure how well the scores from
manual grading align with those from automatic grading. The cor-
relation coefficient (r) can be used to derive the p-value, which can
reject or support the null hypothesis which states that there is no
correlation between the two grading approaches.

The results showed a Pearson correlation coefficient r = 0,878
with an extremely low p-value of 4.13 x 1071%4. This high positive
correlation shows a strong linear relationship between the two sets
of scores. This means that students who scored high (or low) using
manual grading, also tended to score high (or low) during automatic
grading. The extremely low p-value rejects the null hypothesis
and concludes that there is a statistically significant correlation
between the two grading methods. The strong correlation supports
the reliability of the automatic grading system, suggesting that it can
consistently produce scores that align closely with manual grading.

8 CONCLUSION

In conclusion, the prototype of an automated grading system devel-
oped in this research shows promise as a reliable tool for grading
first-year Python programming exams. It was developed using out-
put testing and source code analysis and shows a positive correlation
between the accuracy of a manual grading approach. However, the
paired sample t-test suggests that the grading methods differ from
manual grading, which can mean that either the tool is not fully
developed to match the accuracy of the manual grading, or it could
mean that it performed better than the manual grading. For this,
further research is warranted.

9 DISCUSSION

This research demonstrates the potential for automating the grad-
ing of programming exams. Still, several areas warrant discussion
and need future improvements and more research to enhance the

The Automation of Grading Programming Exams in Computer Science Education

approach.

The developed tool currently only works for Python exams, which
the UT does not have many of. A significant expansion could be
made if the approach can be adapted to other programming lan-
guages used in different exams. I think that the approach could
generally be similar to what was discussed in this research but
adapted for the characteristics of that programming language. This
would demonstrate the versatility and scalability of the system and
show that it can be used in more exams.

The success rate of the grader (Table 5) could be further researched
and improved. Sometimes the code cannot be compiled because of
a simple mistake in the students’ code, so a form of error correction
research could be conducted to analyze the issue further. This could
also be solved by making sure that the students submit the code
that correctly compiles during the exam. This would highly improve
the success rate of the automatic grading, which would lower the
needed staff time for manually checking those answers.

Using an automated tool creates some ethical implications that
should be addressed. This means the system must be designed to
eliminate any bias and ensure transparency in its results. It also
should protect the user data and have sufficient privacy measures in
place to safeguard the students’ sensitive information. Additionally,
establishing clear accountability mechanisms is essential so that
the students can easily dispute and address their grades in an exam
review session if needed.

It is also important to consider the potential for human error in
the manual grading dataset that was used in this research. The
research assumed that the manual grading matches how the exam
needs to be graded. However, the dataset may include some errors
that could contribute to the discrepancies observed in the statistical
analysis between the automated and manual grading. This could
even introduce the possibility that the automation tool produced
better grading results than the results seen in the dataset. A bigger
dataset and a more thorough analysis of manual grading practices
and potential errors could provide deeper insights and help refine
the automated grading system.

REFERENCES

[1] Tracy Camp, W Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Susanne
Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation CS: the growth
of computer science. ACM Inroads 8, 2 (2017), 44-50.

Yingjun Cao, Leo Porter, Soohyun Nam Liao, and Rick Ord. 2019. Paper or
online? A comparison of exam grading techniques. In Proceedings of the 2019 ACM
conference on innovation and technology in computer science education. 99-104.
[3] José Marilio Cardoso, Jodo Pascoal Faria, and Bruno Lima. 2017. Automatic
Assessment of Programming Assignments to Enable New Educational Paradigms.
https://api.semanticscholar.org/CorpusID:65001752

Carl Dreher, Torsten Reiners, and Heinz Dreher. 2011. Investigating Factors
Affecting the Uptake of Automated Assessment Technology. Journal of Information
Technology Education: Research 10, 1 (January 2011), 161-181. https://www.
learntechlib.org/p/111517

Hans Fangohr, Neil O’Brien, Anil Prabhakar, and Arti Kashyap. 2015. Teaching
Python programming with automatic assessment and feedback provision. arXiv
preprint arXiv:1509.03556 (2015).

Chris Greensted. 2014. Intended learning outcomes. EFMD Global Focus 8, 1
(2014), 20-25.

[2

[4

flas’

[5

—

G

=

TSclT 41, July 5, 2024, Enschede, The Netherlands

7

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppélé. 2010. Review

of recent systems for automatic assessment of programming assignments. In

Proceedings of the 10th Koli calling international conference on computing education

research. 86-93.

[8] Maria Kallia. 2017. Assessment in computer science courses: A literature review.
Royal Society (2017), 1-60.

[9] Joseph Klein and Liatukas El. 2003. Impairment of teacher efficiency during
extended sessions of test correction. European Journal of Teacher Education 26
(2003), 379 - 392. https://api.semanticscholar.org/CorpusID:145559783

[10] Rishabh Kothari, Burhanuddin Rangwala, and Kush Patel. 2023. Automatic Sub-

jective Answer Grading Software Using Machine Learning. 2023 7th International

Conference on Trends in Electronics and Informatics (ICOEI) (2023), 1006-1012.

https://api.semanticscholar.org/CorpusID:258869775

David R Krathwohl. 2002. A revision of Bloom’s taxonomy: An overview. Theory

into practice 41, 4 (2002), 212-218.

Stephan Krusche and Andreas Seitz. 2018. Artemis: An automatic assessment

management system for interactive learning. In Proceedings of the 49th ACM

technical symposium on computer science education. 284-289.

Emily Marshman, Alexandru Maries, Ryan T Sayer, Charles Henderson, Edit

Yerushalmi, and Chandralekha Singh. 2020. Physics postgraduate teaching assis-

tants’ grading approaches: Conflicting goals and practices. European Journal of

Physics 41, 5 (2020), 055701.

[14] Marcus Messer, Neil CC Brown, Michael Kélling, and Miaojing Shi. 2024. Au-
tomated grading and feedback tools for programming education: A systematic
review. ACM Transactions on Computing Education 24, 1 (2024), 1-43.

[15] Nakka Narmada and Peeta Basa Pati. 2023. Autograding of Programming Skills.
2023 IEEE 8th International Conference for Convergence in Technology (I2CT) (2023),
1-6. https://api.semanticscholar.org/CorpusID:258870000

[16] National Academies of Sciences, Division on Engineering, Physical Sciences,
Computer Science, Telecommunications Board, Policy, Global Affairs, Board on
Higher Education, and Committee on the Growth of Computer Science Under-
graduate Enrollments. 2018. Assessing and responding to the growth of computer
science undergraduate enrollments. National Academies Press.

[17] José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. 2022. Automated assess-

ment in computer science education: A state-of-the-art review. ACM Transactions

on Computing Education (TOCE) 22, 3 (2022), 1-40.

Arthur Rump, Ansgar Fehnker, and Angelika Mader. 2021. Automated assessment

of learning objectives in programming assignments. In International Conference

on Intelligent Tutoring Systems. Springer, 299-309.

[19] Chad Sharp, Jelle van Assema, Brian Yu, Kareem Zidane, and David J. Malan.

2020. An Open-Source, API-Based Framework for Assessing the Correctness

of Code in CS50. In Proceedings of the 2020 ACM Conference on Innovation and

Technology in Computer Science Education (Trondheim, Norway) (ITiCSE "20).

Association for Computing Machinery, New York, NY, USA, 487-492. https:

//doi.org/10.1145/3341525.3387417

Zhikai Wang and Lei Xu. 2019. Grading programs based on hybrid analysis. In

Web Information Systems and Applications: 16th International Conference, WISA

2019, Qingdao, China, September 20-22, 2019, Proceedings 16. Springer, 626-637.

Susilo Veri Yulianto and Inggriani Liem. 2014. Automatic grader for programming

assignment using source code analyzer. In 2014 International Conference on Data

and Software Engineering (ICODSE). IEEE, 1-4.

Francisco A Zampirolli, Joao M Borovina Josko, Mirtha LF Venero, Guiou

Kobayashi, Francisco J Fraga, Denise Goya, and Heitor R Savegnago. 2021. An

experience of automated assessment in a large-scale introduction programming

course. Computer Applications in Engineering Education 29, 5 (2021), 1284-1299.

[11

[12

[13

(18

)
=

[21

[22

A DEVELOPED PROTOTYPE

The source code of the developed prototype can be found on GitHub
using this link: https://github.com/Kristupasc/AutoGrader

https://api.semanticscholar.org/CorpusID:65001752
https://www.learntechlib.org/p/111517
https://www.learntechlib.org/p/111517
https://api.semanticscholar.org/CorpusID:145559783
https://api.semanticscholar.org/CorpusID:258869775
https://api.semanticscholar.org/CorpusID:258870000
https://doi.org/10.1145/3341525.3387417
https://doi.org/10.1145/3341525.3387417
https://github.com/Kristupasc/AutoGrader

	Abstract
	1 Introduction
	2 Goals of Research
	2.1 Research Question

	3 Relevance and Related Works
	4 Existing Tools
	4.1 Output Testing
	4.2 Source Code Analysis

	5 Analyzing Sample Exams
	5.1 Entry Level Questions
	5.2 Intermediate Level Questions
	5.3 Target Level Questions

	6 Approach of Automation
	6.1 Techniques
	6.2 Grading Process
	6.3 Changes in Rubric
	6.4 The Developed Prototype

	7 Grading an Exam
	7.1 Results of Manual Grading
	7.2 Results of Automated Grader
	7.3 Manual vs Automated

	8 Conclusion
	9 Discussion
	References
	A Developed Prototype

