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LTL-synthesis is the process of converting a linear temporal logic (LTL)

specification to a circuit. One way to synthesise a circuit is to convert the

specification to a parity game, and to convert the solution of the parity

game to a circuit. Because a parity game can admit many different solutions

the resulting circuit can also be different. Ideally this circuit is as small

as possible because smaller circuits are more efficient than bigger circuits.

One algorithm that solves parity games is tangle learning. A downside of

this algorithm is that it often finds worse solutions than other solvers. We

implement two algorithms that aim to increase the quality of solutions from

tangle learning and we benchmark the algorithms to verify whether or not

they actually find higher quality solutions. We also perform an analysis

comparing different parity games, and parity game solvers
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1 INTRODUCTION
During the yearly reactive synthesis competition (SYNTCOMP)

many researchers compete for the best reactive synthesis tool [5].

Reactive synthesis is the process of automatically generating a state

machine such that it satisfies a high-level specification [10]. One

type of specification is linear temporal logic (LTL). LTL is a branch of

logic that reasons about how a system changes over time. Interesting

applications of LTL include the verification of certain properties,

like whether something bad will never happen in a system (safety),

or whether something good will eventually happen in a system

(liveness) [1].

An LTL-specification can be translated to a controller. One ap-

proach to synthesise a controller from an LTL-specification is to

convert the specification to a parity game, and to convert the solu-

tion of the parity game to a controller. This method was deemed

infeasible until recently because there was no efficient method to

carry out the conversion [10].

In 2020 the parity game track was added to SYNTCOMP [5].

The goal of this track is to synthesise an AIGER circuit from a

parity game specification. In this track, there were three tools that

competed against each other. These tools are: ltlsynt, Strix, and Knor.

The fastest solver for this track was Knor, configured to use the

tangle learning algorithm for solving the parity game. Despite its

exceptional performance on the speed based metrics, the solver and

algorithm developed by Van Dijk did not convince in the quality

based metrics. It scored much lower than its competitors. This is

further supported by other benchmarks [10], which also show the

poor performance of tangle learning on providing good solutions.

An AIGER circuit is an and-inverter graph (AIG) presented in the

AIGER format [2]. An AIG is simply a circuit that consist of only

AND gates, and inverters. AIGER circuits have many practical appli-

cations. These applications include model checking and equivalence
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checking [4]. An AIGER circuit can also be converted into a physi-

cal circuit. Being able to find a better solution is important because

a better solution leads to a smaller AIGER circuit. Smaller AIGER

circuits are more efficient than bigger circuits, as the physical circuit

is faster, and consumes less power. Model checking and equivalence

checking also benefit from smaller circuits, as any algorithm can

run faster on a smaller circuit.

In this study we explore why tangle learning is unable to find

smaller strategies, and we propose possible modifications to the al-

gorithm. We also implement the proposed modifications and bench-

mark the effect they have on the size of resulting solutions. The

main research question we answer in this paper is: How can tangle
learning be modified such that it finds smaller solutions?
In section 2 (related work) we shortly discuss the previous re-

search that was conducted with regards to this topic. In section 3

(preliminaries) we provide some information on parity games and

tangle learning to familiarise the reader with these topics. We also

define some important terms that we will use in the rest of the paper.

In section 4 (methodology) we explain how we approached the prob-

lem. This section also provides the proposed modifications to tangle

learning, and some details on how to implement them. Section 5

(findings) is where we will show the results of our research. In this

section we also interpret the results, and explain their significance.

Section 6 (conclusion) is where we summarise our findings. This

is also the section in which we provide a concise answer to our

research question. Lastly, in section 7 (discussion and future work)
we provide some topics that we think are interesting to look into

further. We also discuss some shortcomings of this research, and

whether or not these will have impacted our results.

2 RELATED WORK
In 2018 Van Dijk published a paper in which he initially proposes

the tangle learning algorithm [7]. This paper details the implemen-

tation of the algorithm, how it works, and why it works. Van Dijk

later made some improvements to the algorithm. Some details on

the new version are found in the paper by Van der Veen [6]. In

the introduction the tool Knor was briefly mentioned. Knor is a

symbolic synthesis tool for HOA parity automata [10]. Knor uses

tangle learning to solve the parity game it generates from the HOA

automata. The paper by Van Dijk [10] provides more context on

Knor. Knor does not directly implement tangle learning, but instead

relies on Oink. Oink is a tool that provides multiple implementations

of modern parity game solvers, including multiple variants of tangle

learning. More information on Oink can be found in the papers by

Van Dijk from 2018 and 2024 [8, 9].

This paper is not the first to cover the topic of reducing the size

of strategies from tangle learning. A previous paper by Dijkstra

attempted to reduce the size of the strategy by solving subgames

[3]. Dijkstra mentions that this approach was not fruitful, and that

more research was needed on the topic.
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3 PRELIMINARIES

3.1 Parity game
A parity game is a game that is played on a finite directed graph.

The game is played by two players, Odd and Even. A node on this

graph is associated with a player, and a value (priority). The players

move a shared token along the edges of the graph. The next move

is determined by the associated player of the current node of the

token. The players both take an infinite number of turns. The node

with the highest priority that is passed infinitely often determines

the winner. If the priority on that node is even, player Even wins. If

the priority is odd, player Odd wins [3, 6–9, 11]. More formally, a

parity game 𝐺 consists of a set of Nodes 𝑉 . The nodes belonging

to a certain player are denoted by 𝑉𝑒𝑣𝑒𝑛 or 𝑉𝑜𝑑𝑑 . The edges which

connect the nodes is given by the set 𝐸 ⊆ 𝑉 × 𝑉 . The successors
of a given node 𝑣 are given by 𝐸 (𝑣). After solving the game, the

strategy for a given node is given by the function 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 : 𝑉 → 𝑉 .

The set of all strategies is denoted by 𝑆 . Because we focus on the

applications of parity games in LTL-synthesis, and not just parity

games in general, this definition can be extended with an initial node

𝑉0. This node follows from the original specification, and represents

the initial state of the system.

3.2 Tangle learning
Many algorithms for solving parity games use the concept of attrac-

tors to find winning regions [7]. An attractor is a set of nodes, for

which a certain player can force a visit to some other set of nodes,

where the other set of nodes is a subset of the attractor. Tangle

learning is an attractor based algorithm that extends the regular

attractor with something known as a tangle attractor [6, 7]. A tangle

is a strongly connected component within the graph, where one

of the players has a strategy to win all cycles within the tangle.

A tangle from which the opponent cannot escape is known as a

dominion. The tangle attractor attracts the same nodes as a regular

attractor, with the addition of all nodes in a tangle, where the player

that does not win the tangle can only escape to the attractor. There

are multiple variants of tangle learning. This paper is based on a

variation called recursive tangle learning, which unlike normal tan-

gle learning is implemented to use recursion. Because the different

variations of tangle learning are still very similar to each other it

is expected that the results of this paper will generalise to also be

relevant to the other variations.

3.3 Solution quality
The solution to a parity game is not inherently better than another

solution. Some applications do require a solution to have certain

properties. Since this paper focuses on parity games in the process of

LTL-synthesis we define a better solution to be one that minimises

the size of the resulting controller. As mentioned in the introduction

a smaller circuit consumes less power, and is faster than a bigger

circuit. A downside to this metric is that it also depends on the

method of converting the solution to a circuit, which makes it hard

to compare between synthesis tools. Instead, we will use the amount

of nodes that can be reached from the initial node as a metric. In

general being able to reach fewer nodes from the initial node also

leads to a smaller circuit. This paper uses the metric of reachable

nodes as provided by the default configuration of Knor. We will

also provide the size of the generated AIGER circuit sometimes,

because two different strategies with the same size can still have a

different performance, and in the end this is the metric that is the

most important. For this metric we provide three different values,

namely the one that is provided by the default configuration of Knor,

and also the ones that we get when running Knor with parameters

–onehot and –sop [10]. In the default configuration Knor uses a

binary encoding to generate the AIG. With the parameter –onehot

Knor will use one-hot encoding, and with parameter –sop Knor will

use the sum of products format to generate the AIG.

4 METHODOLOGY
This research can be divided into two parts. The first part consists

of an analysis of parity games, and parity game solvers, and the

second part consists of implementations of multiple modifications

to tangle learning.

4.1 Analysis
The goal of the analysis was to get a broader understanding of parity

games, and parity game solvers. A secondary goal was to create

a small set of games that are interesting to use as a benchmark.

The analysis started out with all 288 games from the benchmark

from SYNTCOMP 2023 [5], and four of the solvers available in oink,

namely: Distraction Fixpoint Iteration (fpi), Priority promotion (npp),
Recursive Tangle Learning (rtl), and Zielonka’s recursive algorithm
(zlk). All parity games that were not realisable (the initial node

was won by player Odd) were discarded, as these games are not

interesting for reactive synthesis. We used the remaining 208 games

during the rest of the analysis.

For the first component of the analysis we ranked all parity games

based on the variance in solution quality between the different

solvers. Games with a high variance are likely to admit various

different solutions, and are therefore the most interesting when

benchmarking a new solver, or a variant of a solver. A game with

low variance is likely to have the same solution regardless of the

solvingmethod, and is therefore not interestingwhen benchmarking.

After this, we selected the twenty games with the highest variance

to use in the rest of the research as a benchmark, because these are

likely to be the most interesting.

For the second component of the analysis we ranked all selected

solvers based on their robustness. We define a robust solver as one

that is able to consistently provide similar quality solutions, regard-

less of the order of the input. Oink uses an input file to generate

the parity game. Changing the order in which the nodes appear in

the file does not change the game. It can still impact the order in

which the game is solved. Because the game is still the same after

shuffling the order of the nodes a solver should be able to provide

the same solution. In practice, changing the order can affect certain

parts of a solver, such as the order in which nodes are attracted.

This can impact the quality of the solution. It is important to know

whether a solver is robust or not, since a solver that is not robust

is very susceptible to the order of the input, and will therefore not

always generate a good solution, even if it is able to find one for that

particular game. The robustness of the solvers was measured by
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making each solver solve each one of the 208 realisable games ten

times with the order of the nodes shuffled each time, and summing

the variance of the results of each game. Next to that we summed

up the variance for the games that were previously selected as in-

teresting, because we expected that these have a relatively high

stake in the overall variance per solver. Important to note here is

that after randomly shuffling the order of the nodes in the input

Oink sorts them based on priority. This is done because many of

the solvers rely on the nodes to be in this order. Because of that it is

not possible to truly randomise the order.

4.2 Implementations
We measured the performance in terms of solution size for two new

algorithms, with the aim that they would find smaller solutions than

tangle learning. The implementation of the first algorithm, recursive

tangle attraction, was provided by our supervisor, Tom van Dijk.

The second algorithm, strategy rewriting, was implemented by us.

4.2.1 Recursive tangle attraction.
Recursive tangle attraction works by removing the head (highest

priority node) of a region and recursively entering the region and

solving this part of the game. The idea is that we will find new,

smaller tangles and attractors by doing this, whichmight also reduce

the total size of the solution. The implementation of this algorithm

can be found on GitHub
1
.

4.2.2 Strategy rewriting.
Strategy rewriting is based on the research by Dijkstra [3]. In his re-

search he attempts to find subgames, and solve these to find smaller

solutions. He proposes two types of algorithms to find subgames,

and states that solving subgames does not lead to smaller solutions.

He proposes a pruning algorithm, and a growing algorithm. Strategy

rewriting modifies his growing algorithm to reduce the size of an

existing subgame. Dijkstra’s growing algorithm starts out with a set

of nodes that is not a subgame. The algorithm then repeatedly looks

for nodes that can be added to the set, until a subgame is found.

Our algorithm has one key distinction. When our algorithm adds a

node to the set that will form the subgame, and that node belongs

to the player that wins the subgame, we update that nodes strategy

to a node that is also in the set, if possible. The node that was the

strategy might now not be reachable from the initial node anymore.

If that is the case, the size of the solution is reduced. Important to

note is that the algorithm does not guarantee that the new solution

is valid. To counteract this the new solution has to be verified, and

if it is not valid the old solution has to be used.

The main rewrite algorithm can be found in Algorithm 1. Before

this algorithm can be used the original game needs to be solved.

This algorithm is not ran on the full game, but instead the subgame

that is created by removing all nodes that are not reachable from

the initial node in the solution. The parameter 𝑛𝑜𝑑𝑒𝑠 should be

equal to the initial node when the function is called. In line 13 of

the algorithm we update the strategy to a successor of the current

node, where the successor must have even parity. We only do this

if such a successor exists, and we have not previously changed the

1
https://github.com/trolando/oink/blob/01e86856842ec02aff897a00a34519502c9fd497/

src/rtl.cpp

strategy. This step is arbitrary, but in practice drastically reduces

the amount of invalid solutions given by this algorithm. This step

might also cause the resulting solution to be bigger than the one

that was initially found. In this case it is possible to use the initial

solution. We did not implement this, so that we can analyse how

often this occurs, and how much it impacts the size of the solution.

Because strategy rewriting is a post processing step, to be ex-

ecuted after the solver finds a strategy, it is not limited to tangle

learning, and can also be used with other solvers. For solvers that

already provide good solutions it will likely not have much effect,

or maybe even worsen the solution. When used with solvers that

provide relatively bad solutions the benefits will probably be com-

parable to those we find on tangle learning.

Algorithm 1 Strategy rewriting

1: function Rewrite(nodes)

2: hasNew← false

3: for node ∈ nodes do
4: if node ∈ 𝑉𝑜𝑑𝑑 then
5: newNodes← E(node) - nodes

6: if newNodes ≠ ∅ then
7: hasNew← true

8: end if
9: nodes← nodes ∪ newNodes

10: end if
11: if node ∈ 𝑉𝑒𝑣𝑒𝑛 then
12: if strategy(node) ∈ nodes then
13: continue
14: end if
15: strat← nodes ∩ E(node)

16: if strat = ∅ then
17: strat← { v ∈ E(node) | priority(v) % 2 = 0 }
18: end if
19: if strat = ∅ then
20: continue
21: end if
22: 𝑆𝑛𝑜𝑑𝑒 ← strat0

23: nodes← nodes ∪ strat

24: hasNew← true

25: end if
26: end for
27: if hasNew then
28: Rewrite(nodes)

29: end if
30: end function

3
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Table 1. The variance, minimum and maximum of the size of the solution per parity game

Game Variance Min Max Best solver(s)
1 full_arbiter_8.tlsf.ehoa 100856 1688 2451 fpi

2 generalized_buffer.tlsf.ehoa 28436 608 1048 fpi

3 genbuf2.tlsf.ehoa 28273 600 987 fpi

4 full_arbiter_7.tlsf.ehoa 24765 718 1153 fpi

5 full_arbiter_unreal3.tlsf.ehoa 13736 249 540 fpi

6 ltl2dba08.tlsf.ehoa 3613 239 405 rtl

7 full_arbiter_6.tlsf.ehoa 3018 319 465 fpi

8 lilydemo21.tlsf.ehoa 867 6 74 fpi, npp, zlk

9 full_arbiter_5.tlsf.ehoa 442 143 170 fpi

10 ltl2dpa03.tlsf.ehoa 220 56 95 rtl

11 lilydemo17.tlsf.ehoa 193 19 53 fpi, npp

12 lilydemo20.tlsf.ehoa 67 3 23 fpi, zlk

13 round_robin_arbiter_unreal3.tlsf.ehoa 67 58 78 fpi, zlk

14 full_arbiter.tlsf.ehoa 27 16 29 fpi

15 full_arbiter_unreal1.tlsf.ehoa 27 16 29 fpi

16 full_arbiter_unreal2.tlsf.ehoa 27 16 29 fpi

17 full_arbiter_4.tlsf.ehoa 21 66 78 fpi

18 ltl2dpa23.tlsf.ehoa 19 5 16 rtl

19 ltl2dpa24.tlsf.ehoa 19 5 16 rtl

20 SPIPureNext.tlsf.ehoa 18 38 49 rtl

Table 2. The variance of solution size per solver per game

Game Variance fpi Variance npp Variance rtl Variance zlk
1 full_arbiter_8.tlsf.ehoa 0 70 732 1049

2 generalized_buffer.tlsf.ehoa 0 3624 495 1411

3 genbuf2.tlsf.ehoa 0 2515 727 981

4 full_arbiter_7.tlsf.ehoa 0 41 986 1271

5 full_arbiter_unreal3.tlsf.ehoa 0 2575 7042 7361

6 ltl2dba08.tlsf.ehoa 0 120 1831 33

7 full_arbiter_6.tlsf.ehoa 0 20 61 211

8 lilydemo21.tlsf.ehoa 0 416 0 416

9 full_arbiter_5.tlsf.ehoa 0 2 68 37

10 ltl2dpa03.tlsf.ehoa 0 33 65 13

11 lilydemo17.tlsf.ehoa 0 1 203 107

12 lilydemo20.tlsf.ehoa 0 2 32 0

13 round_robin_arbiter_unreal3.tlsf.ehoa 0 28 21 13

14 full_arbiter.tlsf.ehoa 0 3 10 4

15 full_arbiter_unreal1.tlsf.ehoa 0 3 12 10

16 full_arbiter_unreal2.tlsf.ehoa 0 3 12 10

17 full_arbiter_4.tlsf.ehoa 0 0 16 5

18 ltl2dpa23.tlsf.ehoa 0 22 8 0

19 ltl2dpa24.tlsf.ehoa 0 29 9 0

20 SPIPureNext.tlsf.ehoa 0 7 5 8

4
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Table 3. The sum of variance of the size of solutions per game, where the
order of the game was randomly sorted and solved ten times, per solver

Solver All games Selected games
fpi 0 0

npp 9745 9523

rtl 13150 12344

zlk 13062 12946

5 FINDINGS

5.1 Analysis
5.1.1 Variance.
Table 1 shows the twenty games with the most variance in solution

quality. The table also shows the minimum and maximum size of

the strategies given by the solvers, and the solver which had the

best (smallest) strategy. In case multiple solvers found the smallest

strategy all of those are listed. Interesting to note is that the variance

appears to be heavily dependent on the size of the game. Because

the first few games are much larger than the last few this implies

that even in this list the first few games are a lot more interesting

than the last few games. Another interesting finding is that out of

these twenty games there are five games on which rtl actually has

the best performance. Out of these five games three are from the

ltl2dpa family, and one is from ltl2dba family. We think that these

games probably have a certain property that makes rtl perform well

compared to other solvers. Because these games are closely related

we think that they might even share the same property. We were

not able to find what this property is.

Not visible in Table 1, but still interesting is that 119 out of 208

games showed no variance at all. Upon inspection most of these

games are relatively small in size, and therefore we think that they

do not admit many different solutions. The SYNTCOMP benchmark

was initially composed to measure the performance of the whole

reactive synthesis process, and not just to measure the performance

of different parity game solvers, so we could have expected that

some of the games it includes are not interesting for this purpose.

5.1.2 Randomness.
Table 3 shows how randomising the order of the nodes in the parity

game specification file impacts the results of the different solvers.

From the comparison between all realisable games and the twenty

selected games we can see that most of the variance comes from

the twenty selected games. Upon further inspection, using Table 2

we can see that there is one game that causes most of the variance.

This game is full_arbiter_unreal3.tlsf.ehoa. We were not able to find

a direct cause for this.

Interesting about this data is that better solvers appear to have a

lower variance in their results. This makes sense, since a solver that

is able to generally find good solutions cannot have much variance,

as that implies that it will also regularly find a bad solution.

5.2 Implementations
5.2.1 Recursive tangle attraction.
In Table 6 the results of recursive tangle attraction on the twenty

selected games are shown. Both the size of strategies, and the size of

Table 4. The amount of games on which recursive tangle attraction performs
worse, better and equal, compared to rtl

Comparison type Worse Better Equal
strategy size 12 6 190

circuit size binary 11 3 194

circuit size sop 12 6 190

circuit size one-hot 12 6 190

Table 5. The amount of games on which strategy rewriting performs worse,
better and equal, compared to rtl

Comparison type Worse Better Equal
strategy size 11 24 173

circuit size binary 24 33 151

circuit size sop 24 32 152

circuit size one-hot 26 31 151

the circuit after synthesis are shown. The initial size refers to the size

given by the original rtl implementation, while the new size refers

to the size with recursive tangle attraction. What can be seen here is

that there are no major differences between the initial size and the

new size. The only changes visible here are in ltl2dba08.tlsf.ehoa,

which has a slightly smaller circuit, and ltl2dpa03.tlsf.ehoa, which

is quite a bit bigger than before. Furthermore, Table 4 shows that

indeed the new algorithm often leads to the same strategy, and more

often leads to a worse strategy than a better strategy. We think that

this algorithm likely does not work because the previously removed

nodes still need to be solved, and are very likely to still end up in

the same region as they would have been in otherwise.

5.2.2 Strategy rewriting.
Table 7 shows the initial and new size of strategies and circuits,

generated using rtl, with and without strategy rewriting. What we

see here is that there are many cases in which strategy rewriting

performs better than plain rtl. The difference between results is

sometimes relatively small, such as with lilydemo20.tlsf.ehoa, but it

can also be relatively big, such as with lilydemo21.tlsf.ehoa. There is

also a case where strategy rewriting leads to a bigger solution and

circuit. This is ltl2dpa03.tlsf.ehoa. From the more general overview

provided by Table 5 we can see that especially the strategy size is

better with strategy rewriting. This is of course the main goal of

the algorithm, so it is not a surprise. What is interesting is that the

circuit size is different in more games than the games where the

strategy size is different. This implies that that there is also a subset

of games in which the solution is not improved, but merely changed

without reducing the strategy size. This table also shows that there

are still quite some cases where the new solution is worse than the

old one. As mentioned in section 4 it is possible to use the original

solution in this case. Something to note is that the verifier found all

new solutions found by our algorithm to be valid. This means that

out of 208 solutions none were invalid. Since the algorithm does not

guarantee that the solution is valid this is somewhat surprising.

5
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Table 6. The size of a solution and circuit with and without recursive tangle attraction

Solution size circuit size binary circuit size sop circuit size one-hot
Game Initial New Initial New Initial New Initial New

1 full_arbiter_8.tlsf.ehoa 2451 2451 238515 238515 71815 71815 84292 84292

2 generalized_buffer.tlsf.ehoa 1048 1048 56682 56682 6993 6993 10951 10951

3 genbuf2.tlsf.ehoa 987 987 47388 47388 6400 6400 9499 9499

4 full_arbiter_7.tlsf.ehoa 1153 1153 87741 87741 25843 25843 30877 30877

5 full_arbiter_unreal3.tlsf.ehoa 540 540 12450 12450 1705 1705 2702 2702

6 ltl2dba08.tlsf.ehoa 239 239 11411 11355 2509 2458 4297 4262
7 full_arbiter_6.tlsf.ehoa 465 465 25309 25309 7405 7405 8835 8835

8 lilydemo21.tlsf.ehoa 74 74 864 864 233 233 307 307

9 full_arbiter_5.tlsf.ehoa 170 170 4995 4995 1555 1555 1809 1809

10 ltl2dpa03.tlsf.ehoa 56 70 1424 1820 296 338 514 587
11 lilydemo17.tlsf.ehoa 53 53 740 740 185 185 241 241

12 lilydemo20.tlsf.ehoa 23 23 298 298 78 78 94 94

13 round_robin_arbiter_unreal3.tlsf.ehoa 78 78 1113 1113 289 289 357 357

14 full_arbiter.tlsf.ehoa 29 29 324 324 122 122 132 132

15 full_arbiter_unreal1.tlsf.ehoa 29 29 324 324 122 122 132 132

16 full_arbiter_unreal2.tlsf.ehoa 29 29 324 324 122 122 132 132

17 full_arbiter_4.tlsf.ehoa 78 78 2003 2003 614 614 731 731

18 ltl2dpa23.tlsf.ehoa 5 5 75 75 22 22 23 23

19 ltl2dpa24.tlsf.ehoa 5 5 75 75 22 22 23 23

20 SPIPureNext.tlsf.ehoa 38 38 386 386 85 85 135 135

Table 7. The size of a solution and circuit with and without strategy rewriting

Solution size circuit size binary circuit size sop circuit size one-hot
Game Initial New Initial New Initial New Initial New

1 full_arbiter_8.tlsf.ehoa 2451 1815 238515 130816 71815 49470 84292 53701
2 generalized_buffer.tlsf.ehoa 1048 1048 56682 56682 6993 6993 10951 10951

3 genbuf2.tlsf.ehoa 987 987 47388 47388 6400 6400 9499 9499

4 full_arbiter_7.tlsf.ehoa 1153 854 87741 48783 25843 15933 30877 17726
5 full_arbiter_unreal3.tlsf.ehoa 540 540 12450 12450 1705 1705 2702 2702

6 ltl2dba08.tlsf.ehoa 239 212 11411 10484 2509 2232 4297 3647
7 full_arbiter_6.tlsf.ehoa 465 343 25309 14259 7405 4772 8835 5325
8 lilydemo21.tlsf.ehoa 74 6 864 109 233 40 307 36
9 full_arbiter_5.tlsf.ehoa 170 158 4995 4702 1555 1530 1809 1766
10 ltl2dpa03.tlsf.ehoa 56 63 1424 1655 296 329 514 532
11 lilydemo17.tlsf.ehoa 53 53 740 740 185 185 241 241

12 lilydemo20.tlsf.ehoa 23 22 298 288 78 77 94 95
13 round_robin_arbiter_unreal3.tlsf.ehoa 78 78 1113 1113 289 289 357 357

14 full_arbiter.tlsf.ehoa 29 29 324 324 122 122 132 132

15 full_arbiter_unreal1.tlsf.ehoa 29 29 324 324 122 122 132 132

16 full_arbiter_unreal2.tlsf.ehoa 29 29 324 324 122 122 132 132

17 full_arbiter_4.tlsf.ehoa 78 66 2003 1586 614 497 731 586
18 ltl2dpa23.tlsf.ehoa 5 5 75 75 22 22 23 23

19 ltl2dpa24.tlsf.ehoa 5 5 75 75 22 22 23 23

20 SPIPureNext.tlsf.ehoa 38 38 386 386 85 85 135 135
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6 CONCLUSION
We explored different approaches to modify tangle learning to find

smaller solutions. First we performed an analysis of parity games,

and parity game solvers, and then we implemented two new algo-

rithms and benchmarked their effectiveness. During the analysis we

found that many of the games in the SYNTCOMP benchmark do not

seem to be interesting, as all solvers we tested with found a solution

of similar quality. Often the solvers even found a solution of exactly

the same quality. Based on our findings we selected a set of twenty

games, which we found the most likely to be interesting for our

research, and which might also be useful for other research which

benchmarks different parity game solvers. These games are shown

in Table 1. Next to that we found that most solvers find a different

solution on some parity games if the order in which the nodes ap-

pear in the input is shuffled. We reasoned that a good solver needs to

be resilient against reordering the nodes, while a bad solver can still

be resilient, but does not have to be. Based on our implementations

we found that recursively entering closed regions and attempting

to attract tangles there does not lead to smaller solutions. We think

this is because the nodes that were left out in the recursive search

will likely later still be attracted to the same region.

Lastly, we found that rewriting the strategies found by tangle

learning to find smaller subgames often decreases the size of the

solution. Because of the way we implemented this it is also possible

to find bigger or invalid solutions, but we found that this did not

happen often.

7 DISCUSSION AND FUTURE WORK
For the analysis part of this research we chose four solvers to make a

comparison. There are many more solvers available, and also many

more families of solvers. For a more complete overview of the topics

new research using more solvers would be required.

There are only a few relatively large games in the benchmark we

used. Most games consist of only a few hundred nodes, and some

are even as small as seven nodes. Because we show that games

with more nodes tend to have a higher amount of possible solutions

these are much more interesting for benchmarking the different

solvers. The current benchmark was merely chosen for convenience,

and future research could benefit from including more large games,

with at least a few thousand or more nodes. However, as previously

mentioned, the lack in variance formost games could also be because

we only used four solvers for our comparison.

We also argue that a good solver needs to be robust, so that

a change in the order of the nodes in the input does not impact

the quality of the solution. We focused mainly on ways to directly

improve the solutions that are found by tangle learning, but perhaps

another approach can be to improve the robustness of the solver.

Twice in this paper we mention that we found potentially inter-

esting occurrences, without being able to find out why that hap-

pens. These could also be interesting for future research. Firstly,

we mention in section 5 that we were not able to find out why tan-

gle learning appears to perform well on ltl2dba and ltl2dpa games.

Secondly, we found that the solutions to the full_arbiter_unreal3

game appear to vary a lot depending on the order of the nodes in

the input specification.

Based on the success of our strategy rewriting algorithm we sug-

gest a modified version for future research, that might work better.

This version works by employing a greedy algorithm, which goes

over all nodes that are won by player Even, and attempting all

possible strategies per node, and keeping the strategy that imme-

diately improves the current solution, without having to change

another strategy. This new method might decrease the size of the

solutions even more, since it goes over all nodes, while our current

implementation often only looks at a small part of the nodes.
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