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In a Wi-Fi-based industrial IoT (IIoT) network, there are sensors and devices
with different Quality of Service (QoS) requirements. In Wi-Fi, one of the
methods to achieve QoS requirements is rate control. Many existing algo-
rithms for rate control focus on achieving the highest possible performance.
However, in IIoT, it might be beneficial to sacrifice some performance for
lower energy consumption, therefore improving the lifespan of IIoT devices
and reducing the operation cost of the network. The improvement in energy
efficiency is particularly important in IoT networks because devices are
usually battery-constrained. This research proposes a deep reinforcement
learning (DRL) algorithm to improve energy efficiency while maintaining the
QoS requirements. The DRL algorithm adjusts the Modulation and Coding
Scheme (MCS) and transmission power to optimise for energy efficiency.
We show that the algorithm is able to reduce energy consumption while
maintaining QoS requirements.

Additional Key Words and Phrases: Energy Efficiency, Modulation Coding
Scheme, MCS, Industrial IoT-networks, IIoT, Rate Control, Quality of Service,
QoS, Deep Reinforcement Learning, DRL, NS3.

1 INTRODUCTION
Over the past decades, Industrial IoT (IIoT) has become increasingly
important, allowing for data collection, exchange, and analysis. This
can improve efficiency and productivity as it reduces the need for
labour.
One application of IIoT is real-time production monitoring in

a factory environment, allowing companies to identify defects or
deviations from their standards [3]. However, this is not the only
use case: IIoT powers Autonomous Mobile Robots (AMR), sensors,
and AMR video fusion, to name a few. (see figure 1) These various
use cases have divergent requirements. For example, AMRs typically
require low latency and a significant throughput rate, while moving.
On the other hand, sensors have vastly different requirements, only
requiring a small throughput and are often being power-constrained
[5]. As demonstrated by the examples, all these devices have differ-
ent Quality of Service (QoS) requirements which have to be taken
into account.

The IoT devices in an IIoT require connectivity to share informa-
tion. Many different types of networks are used for communication.
Some popular ones include Wi-Fi, LTE-M, NB-IoT, and Bluetooth
(LE) [2]. In this paper, we will focus on Wi-Fi.

In Wi-Fi networks, similarly to other types of wireless networks,
channel conditions can differ significantly from time to time. Wi-Fi
makes use of the very populated 2.4GHz, 5GHz and 6GHz bands.
Because of this, other sources of noise, such as Wi-Fi networks or
Bluetooth devices, can significantly impact the amount of noise on
these bands, which negatively influences the Signal to Noise Ratio
(SNR). To improve robustness against large amounts of noise in the
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Fig. 1. Wi-Fi IIoT use cases

channel, the Modulation and Coding Scheme (MCS) is used. MCS
represents the data rate at which the packet is transmitted. When
the channel experiences a high noise level, a low MCS will be used,
thus limiting the data rate but reducing packet loss. Commonly
used algorithms such as Minstrel and Thompson Sampling focus on
getting the highest performance from the channel [8, 11].
Although many algorithms exist for rate control, none focus

on energy efficiency while meeting QoS requirements. We seek
to address this gap by using Deep Reinforcement Learning (DRL),
a combination of Reinforcement Learning, where an agent learns
by trial and error, combined with Deep Learning, a type of neural
network, to allow the agent to decide based on unstructured input
data. DRL has the advantage of being able to adapt to different kinds
of IIoT networks and it has the potential to deal with the complex
decision-making in Wi-Fi. Our DRL algorithm uses a small neural
network with a small number of layers since a large network would
make the application more power-hungry.

In IIoT networks, energy-efficient devices offer significant benefits
by bringing costs down and keeping the operation more sustainable.
Although there has been quite some research into optimising rate
control in Wi-Fi-based industrial IoT for increased performance,
there has not been much research into doing this to reduce power
consumption.
This paper focuses on Wi-Fi-based industrial IoT networks and

proposes a solution to improve energy efficiency while maintaining
the QoS requirements. Our proposed algorithm aims to strike a
balance between energy efficiency and spectrum efficiency. In the
end, we analyse the results and discuss our findings.
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The main research question (RQ) that we address in this paper is:
How can Deep Reinforcement Learning (DRL) be effectively utilised
for rate control and transmission power control in Industrial IoT
networks to optimise energy efficiency while maintaining quality
of service (QoS) requirements?
We answer this research question with 2 smaller sub-questions:

• RQ1: How canDRL be effectively utilised forMCS selection in
industrial IoT to optimise energy efficiency while maintaining
the Quality of Service requirements?

• RQ2: Towhat extent can the algorithm fromRQ1 be improved
by transmission power control?

After first discussing the state-of-the-art and previous works in
section 2, we elaborate on the overall setup for the simulations in
section 3. Afterwards, we discuss the results in section 4 and future
work in section 5. Lastly, we conclude everything in section 6.

2 RELATED WORKS
In recent years, significant work has been done on the problem of
rate control in networks. Traditional approaches such as Minstrel
and Thompson Sampling focus on improving performance [8, 11].
Minstrel, for example, relies on an algorithm that dynamically ad-
justs the data rate based on acknowledgement feedback. Therefore,
estimates of future success are based solely on past success rates at
that data rate, while occasionally exploring new rates to adapt to
changing network conditions [8]. Minstrel and Thompson Sampling
both spend a significant amount of time on the exploration of the
network. Traditional rate control algorithms face difficulties adjust-
ing to changing channel conditions and predicting future states
[12].
DRL-based algorithms offer advantages by better adjusting to

changing channel conditions and predicting future states. There
has already been some research that discusses improving the per-
formance of Wi-Fi by rate control using DRL. In 2022, Lin et al.
[2022] proposed a DRL-based solution to improve performance on
congested Wi-Fi networks by adjusting the data rate [7]. This solu-
tion consistently outperforms Minstrel in terms of throughput. In
the same year, Ribeiro [2022] also concluded that they were able
to make an algorithm that greatly outperforms Minstrel, both in
terms of throughput and in terms of how fast it adapts to SNR vari-
ations [10]. Both of these papers show that significant performance
improvements can be made.
Most researchers have focused on improving throughput and

reducing packet loss in networks while developing rate control
algorithms. However, they did not focus on energy efficiency, which
can be quite important in IoT networks. The few researchers that
focused on energy efficiency looked at different types of networks. A
paper from A. Parsa et al. [2022] proposes an algorithm that utilises
DRL to improve energy efficiency in future-generation networks.
They were able to achieve approximately 1.5x the amount of bits
per Watt compared to the QL-AMC solution [9].

Other works discuss energy efficiency for IoT in mobile networks.
Al Homssi et al. [2018] have looked into 5G and found that a signifi-
cant amount of energy could be saved by implementing adaptive
control on the transmit power and rate while the device is in trans-
mission mode [1]. Similar research has been done for LTE where

Bruno et al. [2014] improved MCS selection using reinforcement
learning [4].
Although there are a lot of works that focus on rate control and

energy efficiency, now work has been proposed that focuses on
energy efficiency while meeting QoS requirements in WiFi-based
IoT networks. Therefore, we aim to employ DRL to develop an
energy-efficient rate and power control algorithm to meet diverse
QoS requirements in an Industrial IoT network.

3 METHODOLOGY
In order to test our deep reinforcement learning (DRL) algorithm, we
simulate an indoor factory environment with several IIoT devices,
because we believe this is a common use case scenario. This scenario
consists of different types of IoT devices randomly scattered through
the factory. We simulate this scenario using Network Simulator 3
(NS-3) and we use Python for our DRL agent.

Category Data Rate (Mbps)
Sensors 0.265
AMR AVG 1
Safety Controls 0.512
Automotive 4
AMR Video 10
AR / VR / XR 2

Table 1. Data Rates for Various IIoT Use Cases

3.1 Network Simulator 3 (NS-3)
NS-3 is used to simulate an IIoT network with several devices, which
have different QoS requirements. We have opted for 6 different types
of use cases. These 6 use cases can be seen in figure 1. For every
use case, we deploy 3 nodes. These nodes use bandwidth as can be
seen in Table 1. They receive data from the access point at this rate
for two-thirds of the time, using an exponential random variable
function. In total, there are 18 nodes connected to 1 access point. The
18 nodes are spread randomly around the access point, an example
of how this might look can be seen in Figure 2. The nodes will
communicate with the access point over Wi-Fi 4 5Ghz (802.11n).

While we run our simulation, we gather data about the state and
quality of the network. We do this in set time steps of 0.1 seconds.
We use 0.1 seconds in order to gather enough data about transmitted
and received packets within that time period while keeping the time
period as short as possible in order to be able to quickly react, should
the channel conditions change. In this time period, we keep track
of the following things: throughput, packet loss, SNR, and power
usage. Every round, we get a new set of settings from the agent. In
our observations, we filter packets based on if they are sent with
the same settings as put into this agent, in order to lower the noise
in the observations. For tracking the SNR, we take the SNR values
of every packet which is sent and received within the time slot. To
calculate the throughput, we track every packet that is sent at the
IP layer. In addition, we track every packet that is received at the
IP layer. At the end of the time step, we check how many packets
are (1) sent and received, (2) only sent, and (3) what the last sent
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Fig. 2. Possible setup of the access point and the nodes in NS-3 (Every
colour represents a different use case)

and received packet is. Since there is a significant chance that if
a packet is sent near the end of the current time slot, it will be
received in the next time slot, we cannot consider all sent but not
received packages ’lost’. To approximate the actual throughput, we
assume that the proportion of packets arriving and being lost after
the last successfully sent-and-received packet is roughly the same
as the ratio observed in the previous part of the time slot. Figure 3
shows an example of such a scenario. Packet 2 is sent during the
first time step, but arrives in the second. Therefore, we cannot use
the information for time step 1, since the second time step already
started and we cannot use it for the second time slot, since it was
sent using the settings of time slot 1. With this approach, we can
calculate the approximate throughput and packet loss of the channel
during a particular time slot.

Fig. 3. A packet sent in a certain time step can arrive in the next one.

The last metric that we aim to gather is energy efficiency. For
this, we use the NS-3 Energy Framework. This framework consists

of multiple classes that help simulate power- or battery-constrained
devices. In this research, we use this framework to calculate power
draw within a time slot. This allows us to request the total energy
usage every round in order to calculate the difference from the
previous round and report the energy used in that time step.

3.2 Python DDQN Agent
For the calculation of the MCS and transmit power, AI is used. We
use a Double Deep Q-Network (DDQN) agent, a Deep Reinforce-
ment Learning (DRL) solution. We use a model with 2 dense layers
containing 256 units each. Below in Table 2 the configuration for
the DRL agent is shown.

Parameter Value
Learning rate 0.005
Gamma 0.5
Epsilon 0.99
Epsilon decrement 0.998
Epsilon end (minimum) 0.01
Batch size 128
Memory size 5000
Replace target 25
Hidden layer activation function ReLU
Optimizer Adam

Table 2. Settings in the configuration of the DRL Agent

3.3 Interaction between Python and NS3
Every time slot or step starts with an action determined by the
agent based on the data of the previous observation. The simulator
executes this action and gathers data. This is sent to the Python
Open-Gym agent as the observation alongside the reward of the
action, which we discuss in greater detail in section 3.4.3. This
interaction is displayed in Figure 4. For interaction between the
NS3 simulation script and the Python script, we use the ns3gym [6]
library.

Fig. 4. Communication between Python and NS-3
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3.4 Markov Decision Process
As mentioned in section 1, we use rate control and adjust the trans-
mit power to improve throughput and reduce power consumption.
This problem can be modelled as a Markov Decision Process (MDP).
The agent aims to find a policy 𝜋 that maximises the cumulative
reward over time.

3.4.1 State. The state is represented by throughput, packet loss,
SNR, MCS, transmit power & energy consumption. The C++ NS-3
simulator file gathers all this information and sends it to the agent
using ns3gym [6].

3.4.2 Action. Based on the data received from NS-3, the agent
decides what to do. In our program, the agent can choose 3 actions
for the transmit power: decrease, keep the same, and increase. The
transmit power can be increased/decreased with steps of 1 with a
minimum of 10 and a maximum of 20. For the MCS the agent can
choose it directly, it can choose any value between 0 and 7.

In the beginning, the epsilon will be high (see Table 2), this means
that the actions of the agent are mostly random. Over time the
epsilon decreases, meaning that the neural network gets to decide a
larger percentage of the actions.

3.4.3 Reward. The reward function plays a crucial role in evaluat-
ing the performance of the AI agent. For this problem, we want the
agent to aim for the highest possible throughput while maintaining
a low packet loss ratio and energy usage. Therefore, we calculate the
reward by taking the throughput score and subtracting the packet
loss and energy scores. We defined the following reward function:

𝑅𝑒𝑤𝑎𝑟𝑑 = (𝑤𝑇 ·𝑇 ) − (𝑤𝑃 · 𝑃) − (𝑤𝐸 · 𝐸)

where:
• 𝑇 : Throughput
• 𝑃 : Packet Loss Ratio
• 𝐸: Energy Consumption
• 𝑤𝑇 ,𝑤𝑃 ,𝑤𝐸 : Weights for the throughput, packet-loss and en-
ergy consumption respectively.

In order to calculate the scores, the values for the throughput and
energy consumption are first normalised.

4 RESULTS & DISCUSSION
In order to analyse the performance of our DRL algorithm, we
take logs of the throughput, packet loss, transmit power, energy
consumption, signal-to-noise ratio (SNR), and reward. We plot these
values in Figure 5, 6, and 7 to show how our algorithm performs.

In Table 3 we display the weights we have used for the reward
function.

Weight Value
𝑤𝑇 1
𝑤𝑃 0.2
𝑤𝐸 1

Table 3. The weights for the reward function.

After simulating roughly 3000 steps, since there are 10 steps per
second this resulted in 300 seconds (in simulator time), we have
averaged our results per 5 steps.

The reward of our DRL agent is plotted against the time in Figure 5.
The figure shows that the agent’s reward stabilises after about 2000
steps (200 seconds). The initial instability is due to the exploration of
the environment by the DRL agent. The agent takes random actions
at the start to learn the environment, over time it uses the learned
information to make better decisions. In Figure 5 this can be seen
as the reward increases over time.
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Fig. 5. Plot of the reward against the time.

The increase in reward is also reflected in the increase in through-
put of the network, as seen in Figure 6. As the agent learns to make
better decisions, the throughput increases around the 150s mark. On
the other end, Figure 7 shows us that the energy consumption also
fluctuates at the start. We can see it stabilises around the 150s mark
to around 120J. This is because, with our chosen weights for the
reward function, the agent cares more for throughput improvement
(spectrum efficiency) than energy savings (energy efficiency).

4.1 Aggressive energy conservation
In order to examine the agent’s learning for energy efficiency, we
updated the weights for the reward function and increased the
importance of energy consumption, Table 4 shows the updated
weights. We ran the simulations with the same QoS requirements
and plotted the reward of the DRL agent as shown in Figure 8.
The increasing reward function indicates that the agent is learning,
however, this time the agent is trying to conserve more energy while
achieving less throughput indicating its response to the increased
energy efficiency requirement.
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Fig. 6. Plot of the throughput against the time.
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Fig. 7. Plot of the energy consumption against the time.

Weight Value
𝑤𝑇 1 (same as before)
𝑤𝑃 0.2 (same as before)
𝑤𝐸 3

Table 4. The weights for the reward function.

Figure 9 shows the throughput achieved in the network by the DRL
agent in the aggressive energy efficiency case. We can notice that

the throughput of the network has reduced, however, if we look at
the energy efficiency in Figure 10, there is a considerable energy
efficiency gain achieved by the agent.
From the results, we can see that there is a trade-off between

energy efficiency and spectrum efficiency in an IoT network and the
DRL agent is able to capture this trade-off. By optimally setting up
the weights of the reward function of the DRL agent, this trade-off
can be exploited depending on the requirements in the underlying
IoT network.
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Fig. 8. Plot of the reward against the time when using an aggressive energy-
conserving reward function.

4.2 Discussion
Even though our DRL agent was not able to provide optimal results
regarding the MCS selection and transmit power values in given
scenarios, we believe our research offers significant contributions.
We show that it is possible to save energy using this method, while
still meeting QoS requirements. However, more work is needed to
refine the parameters for the DRL agent, to achieve better results.

Additionally, we show that the DRL agent is capable of learning
how to balance throughput and energy efficiency based on the
reward function. This can be used to optimise the agent for specific
IIoT networks.

One aspect worth mentioning is that when we use transmit power
directly as a measurement of energy consumption, the agent’s re-
ward stabilised more quickly, and also was more stable near the end
than when using direct energy consumption measurements. This
can be explained by looking at the data coming from the simulator.
Transmit power seems to be a stable value compared to energy con-
sumption, which seems to be more noisy. The energy consumption
measurements take the actual power draw, which is dependent on
the transmit power but also the fraction of the time the node or AP
was in transmission mode versus, for example, idle mode. There
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Fig. 9. Plot of the throughput against the time when using an aggressive
energy-conserving reward function.
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Fig. 10. Plot of the energy consumption against the time when using an
aggressive energy-conserving reward function.

are situations where measuring the actual energy usage can make
it more difficult for the DRL agent to learn. For example, in our
log data, we found scenarios where the agent chose to reduce the
transmission power (and keep the MCS the same) but the energy
consumption went up. This was, among other things, due to more
packets being sent. However, only using transmit power can fail to
show improvement in some scenarios. For example, we have state
1 where we use MCS 0 with a transmit power of 16, and in state 2,
we use MCS 7 with a transmit power of 16. If we send 10 packets in

both slots and all of them arrive, state 2 probably was more efficient
since the node was in transmission mode for a shorter period of the
time step.
Since the DRL agent was deployed on the Access Point (AP), it

does not consider every node individually, but rather the whole
network at once. It may be beneficial to treat the nodes individually
to maintain different MCS and transmit power values per node
because every node is at a different distance from the AP and has
a different data rate. This could reduce energy consumption while
maintaining QoS requirements since closer nodes can use lower
transmit powers.

5 FUTURE WORK
Our approach to improving throughput and energy efficiency in
IIoT networks has shown promising results, however, more work is
needed in order to further optimise the network performance even
more.

In addition, we have only tested down-link scenarios, whereas it
is more realistic to also include up-link in the scenarios, however,
due to time constraints we have not been able to include it in this
research.
As mentioned before in section 4.2, the agent changes the MCS

and transmit power for the network as a whole in order to optimise
the network. Future work is needed to see if it would be beneficial to
treat every node separately. However, this requires a more complex
algorithm and is therefore not included in our research.
Lastly, we have not been able to spend enough time optimising

the parameters for the DDQN agent and the weights of the reward
function. Optimising these might offer significant improvements in
the throughput and power savings.

6 CONCLUSIONS
The increase in IIoT networks in recent years has made it increas-
ingly important to develop ways to lower energy consumption in
IIoT networks. Therefore, this research proposes a Deep Reinforce-
ment Learning (DRL)-based algorithm designed to improve energy
efficiency in an Industrial IoT network by leveraging rate control
and adjusting the transmit power.
We developed an algorithm that adjusts rate control and trans-

mit power. We show that it can achieve QoS requirements while
conserving energy. In addition, we show that we can adjust it to
different network requirements, by changing the weights of the
reward function.
Although these results indicate that it is possible to optimise

for IIoT networks using a DRL-based algorithm in order to gain a
reduction in energy consumption while maintaining throughput
requirements, more research is needed to further optimise the algo-
rithm.

A DECLARATION OF USAGE OF AI AND AI-ASSISTED
TECHNOLOGIES

During the preparation of this work, the author used Grammarly in
order to reduce spelling and grammar mistakes. During the research
itself, the author used ChatGPT to improve the understanding of the
NS3 documentation and small sections of the theory. After using
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these tools/services, the author reviewed and edited the content as
needed and takes full responsibility for the content of the publica-
tion.
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