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I. Introduction

A. Thermo-acoustic instability

Fig. 1 Land based gas turbine GE frame 9 combustor can with 5 burners severely damaged due to thermoacoustics
(courtesy of J.B.W. Kok)

Fig. 1 is an image of a land based gas turbine which has suffered catastrophic failure; the reason for said failure is

attributed to thermo-acoustic instability. In its essence, thermo-acoustic instability reduces to a feedback loop of sound

sources coupling with the combustion-chamber acoustics of the system. Under unfavourable circumstances, this leads to

self-sustained pressure pulsations. The sound sources which lead to thermo-acoustic instability are commonly referred

to as combustion noise. Combustion noise may be categorized in:

1) Direct combustion noise

2) Indirect combustion noise

Fig. 2 Feedback loop in self-sustained pressure pulsations
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Direct combustion noise arises from unsteady volumetric gas expansion/contraction in flames [1]. This leads to the

generation of acoustic waves, which is termed "direct combustion noise".

Indirect combustion noise refers to flow inhomogeneities interacting with a combustion chamber exit. Indirect

combustion noise is further categorized in:

• vorticity noise

• entropy noise

Vorticity noise refers to the interaction of vortices with the combustion chamber exit. Entropy noise, which is the

focus of this research assignment, refers to the interaction of entropy patches with the combustion chamber exit. An

entropy patch is a region in the flow where the thermodynamic state is locally appreciably different from the surrounding

flow. Entropy patches are thought to be a consequence of an unsteady rate of heat release, which would e.g. cause

temperature/density inhomogeneities in the main flow. Said patches are carried downstream atop the main flow, as these

exit, sound waves are generated [1].

Fig. 3 Sources of combustion noise for combustion chamber with a nozzle exit (figure taken from [1])

A part of these sound waves propagates downstream, whereas others are reflected back upstream. Upstream travelling

waves may induce further entropy patches upstream which, upon exiting the chamber: generate further sound waves

propagating back upstream.

Entropy noise is asserted to be an issue in aero-engines & gas-turbines [1]. Whereas vorticity noise is an established

problem in solid rocket motors (SRMs) [2–7].

Dowling and Mahmoudi [8] assert that combustion noise has been of increasing importance in recent years in

comparison to other noise sources, especially in aero-engines & land based gas turbines. This is in part attributed to

recent efforts to reduce aircraft noise, particularly jet noise reduction [9]. Nevertheless, combustion noise has also

seen an increasing interest as newer generation combustor systems burn more unsteadily, thus increasing the effects of

combustion noise [8]. Additionally, growing environmental concerns associated with aero-engines further emphasizes
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the growing research in combustion noise. This is best seen by some of the ACARE Flightpath 2050 goals; amongst

these is the goal to reduce 𝑁𝑂𝑥 emissions by 90% [10]. In order to achieve this, systems employing a lean premixed

combustion is often preferred. The disadvantage to using a lean premixed combustion is that it is more susceptible

to combustion noise as it burns in a more unsteady manner [8, 9] thus reinforcing the growing need to appropriately

address combustion noise.

B. Modeling approaches for entropy noise found in the literature

1. Matching-condition/Marble-Candel-like modeling

Marble & Candel [11] provide useful insights as to the acoustic disturbances generated by entropy patches through a

nozzle. Through their 1D modelling approach, they investigated the effects of entropy patches convected through compact

& extended nozzles. Compact nozzles refer to the case where the impinging disturbances are of wavelengths much

longer than the length of the nozzle. Conversely, extended nozzles, have a nozzle length longer than the wavelengths of

said disturbances. In both instances, it has been demonstrated that entropy patches play a key role in sound production.

Most interesting is their observation on the application of quasi-steady modelling. It has been shown that for compact

nozzles, that is to say, a nozzle whom’s length is small compared to the scale of the disturbance impinging upon it, the

acoustic disturbance may be modelled under quasi-steady assumptions. More specifically, Marble & Candel have stated

"When the scale of the disturbance impinging upon the nozzle is large in comparison with the nozzle length (that is, the

reduced frequency of the system is low), the response of the nozzle is well approximated by a quasi-steady analysis.

Though limited in the range of frequency over which it is applicable, the results which follow from this approximation

are simple and extremely useful. The idea is simply that, to disturbances of very long wavelength, the nozzle appears as

a discontinuity in the state of the medium supporting the propagation. The nozzle then provides matching conditions,

between uniform upstream and downstream states, which may be derived from conservation laws and the geometric

description of the nozzle." [11].

From a modeling perspective, the nozzle is reduced to a single point on an axis where the thermodynamic state

upstream & downstream of this point are different, the nozzle provides matching conditions between these states.

2. Inertial-effect/Ffowcs-Williams-Howe-like modeling

The work of Ffowcs Williams & Howe involves sound generation due to density inhomogeneities in low Mach

nozzle flows [12]. A 3D analytical model is developed to determine sound generation due to: the passage of an

entropy slug (a relatively large entropy patch) & a smaller spherical pellet. In their model, the acceleration of these

inhomogeneities are explicitly modeled, moreover, said models predict that "the radiated pressure levels are negligible

unless the source, which is attached to a fluid particle, is itself accelerating, e.g. through a region of non-uniform mean

flow, in which case the dominant radiation may be termed acoustic bremsstrahlung" [12]. Moreover, the argument
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made seems to be that "to elicit in detail the physical mechanisms responsible for the generation of sound" the inclusion

of acceleration/unsteadiness is fundamental.

3. Comment re state-of-the-art

In I.B.1 & I.B.2, two of the most seminal articles related to entropy noise have been summarized. In one case, Marble

& Candels’ quasi-steady analysis (where the nozzle provides matching-conditions) is applied to model entropy-patch

choked-nozzle interactions (ECNI), conversely, the work of Ffowcs Williams & Howe models acceleration and seems to

argue that acceleration of flow inhomogeneities is a fundamental mechanism for sound production. Moreover, majority

of the research conducted following these seminal articles involves nuanced versions of Marbel & Candels’ quasi-steady

analysis where, despite the use of a quasi-steady analysis, it is argued that the acceleration of entropy waves is the source

of entropy noise in combusting flows.

Clearly, there are inconsistencies in the field regarding the mechanism responsible for sound production in entropy noise.

The general argument that acceleration of entropy waves generates entropy noise implies, from a modeling perspective,

that modeling the acceleration term is paramount to capturing the physics of the problem. However, what is observed in

the literature, is the use of quasi-steady (matching-condition modeling), where acceleration is not explicitly modeled.

Moreover, one may note that the definition of an entropy wave is rather vague, and may argue that, for applications in a

combustion chamber, it is more intuitive to refer to these inhomogeneities as entropy patches which have a specified

shape and streamwise lengthscale.

C. Focus of the Study

Based on the inconsistencies discussed in I.B.3, but with a focus on choked-nozzle flow, the influence of an entropy

patch’s shape and more importantly its size on: the upstream-travelling acoustic response due to the passage of an

entropy patch is discussed in the presently reported work ∗. Moreover, the limits of the matching-condition & inertial

modeling (where inertial effects, i.e. acceleration, play a dominant role on the upstream acoustic response) regime are

established.

II. Theory
In this section, two models are developed for the prediction of the upstream acoustic response due to an entropy

patch interacting with a choked nozzle. The first model is a matching-conditions model inspired by Marbel & Candel

where acceleration is not modelled. The second model presented in this section is an inertial-effects model, where the

steady convective acceleration of entropy patches is explicitly modeled.
∗The presently reported work is an extended version of the paper published by AIAA, available at [13]
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A. Quasi-1-D Matching-conditions model

In the following, a model (inspired by the quasi-steady analysis of Marble & Candel [11]) is derived for the

upstream observed acoustic pressure response 𝑝′u, due to the interaction of an entropy patch of relative excess density

𝜌𝑒/𝜌̄ ≡ (𝜌 − 𝜌̄)/𝜌̄ with a choked nozzle. Here 𝜌 and 𝜌̄ are the density with and without the presence of an entropy

patch, respectively. The (unperturbed) base flow carrying the entropy patch is taken to be steady. One assumes that

𝜌𝑒/𝜌̄ is small enough, such that the entropy patch is carried by the base flow without affecting it. Upstream from the

nozzle, the flow is taken to be one-dimensional (1D); namely, the local flow variables vary only in the axial direction and

are taken to be locally uniform over a cross section at any particular axial position 𝑥. Furthermore, it is assumed that

the interaction-time scale of the entropy patch with the nozzle is significantly larger than the travel time of a material

element through the nozzle.

The local base flow Mach number 𝑀 is defined as:

𝑀 ≡ 𝑢

𝑐
(1)

where 𝑢 and 𝑐 are the local flow velocity and speed of sound, respectively. For a choked nozzle, 𝑀 upstream is contant,

and in this case, the upstream Mach number is set to 0.2. Hence, for the perturbations of the base flow velocity 𝑢′ and

speed of sound 𝑐′, upstream one has:

𝑀 =
𝑢

𝑐
= 0.2 (2)

Taking the natural logarithm and differentiating:

ln(𝑀) = ln(0.2) (3)

d ln(𝑢) − d ln(𝑐) = d ln(0.2) (4)

𝑐′

𝑐
=
𝑢′

𝑢
(5)

Assuming the fluid is a calorically perfect gas, one has

𝑐2 = 𝛾
𝑝

𝜌
(6)

Taking the natural logarithm and differentiating:

ln(𝑐2) = ln
(
𝛾
𝑝

𝜌

)
(7)
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2 ln(𝑐) = ln(𝛾) + ln(𝑝) − ln(𝜌) (8)

Assuming the formation of an entropy patch of relative excess density 𝜌𝑒/𝜌̄ at constant pressure (isobaric process), one

finds

d2 ln(𝑐) =����d ln(𝛾) +����d ln(𝑝) − d ln(𝜌) (9)

𝜌𝑒

𝜌̄
= −2

𝑐′

𝑐
(10)

Substituting Eqs. (5) & (1):
𝜌𝑒

𝜌̄
=
−2𝑢′

𝑀𝑐
(11)

𝑐𝜌𝑒

2𝜌̄
=
−𝑢′
𝑀

(12)

Rearranging for 𝑢′

𝑢′ =
1
2

(
𝜌𝑒

𝜌̄

)
𝑀𝑐 (13)

Taking the positive flow direction to be from upstream to downstream, and assuming a semi-infinitely long uniform

duct upstream from the nozzle with an upstream non-reflecting boundary condition, the acoustic pressure perturbation

𝑝′𝑢 observed upstream is

𝑝′𝑢 = 𝑝−𝑢 +��𝑝
+
𝑢 = −𝜌̄𝑐𝑢′ = 1

2

(
𝜌𝑒

𝜌̄

)
𝑀𝑐2𝜌 (14)

𝑝′𝑢 =
1
2

(
𝜌𝑒

𝜌̄

)
𝛾𝑝𝑀 (15)

where 𝑝 = 𝜌𝑐2/𝛾 is the static pressure of the flow at the nozzle inlet. This result will be referred to as the matching-

conditions model, in the remainder of the text. The relation 𝑝′𝑢 = −𝜌𝑐𝑢 will now be explained in more detail. The

relation is centred on d’Alembert’s solution to the one-dimensional wave equation. According to this solution, a pressure

perturbation may be written as:

𝑝′ =�����
𝑝+ (𝑥 − 𝑐𝑡) + 𝑝− (𝑥 + 𝑐𝑡) (16)

and similarly, a velocity perturbation:

𝑢′ =�����
𝑢+ (𝑥 − 𝑐𝑡) + 𝑢− (𝑥 + 𝑐𝑡) (17)
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Looking at the linearized one-dimensional momentum conservation equation:

𝜌̄
𝜕𝑢′

𝜕𝑡
= −𝜕𝑝′

𝜕𝑥
(18)

Applying the pressure & velocity perturbations to the linearized one-dimensional momentum equation yields

𝑝± = ±𝜌̄𝑐𝑢± (19)

which is what has been applied to derive the matching-condtions model.

B. Quasi-1-D point-mass model

Consider a sound source in the form of a fluctuating pressure discontinuity Δ𝑝 at position 𝑥 = 𝑥𝑠 in a duct of uniform

cross-section with a uniform 1D flow with Mach number 𝑀 . In the case of an isentropic flow the amplitudes of plane

acoustic pressure 𝑝± and density waves 𝜌±, are related as follows:

𝑝± = 𝑐2𝜌± (20)

where the superscripts + or − indicate a plane wave traveling in the positive or negative direction with respect to the

uniform 1D base flow. Taking 𝑝 = 𝑝(𝜌, 𝑠), the total differential is:

d𝑝 =

(
𝜕𝑝

𝜕𝜌

)
𝑠

d𝜌 +
(
𝜕𝑝

𝜕𝑠

)
𝜌

d𝑠 (21)

For an isentropic flow:

d𝑝 =

(
𝜕𝑝

𝜕𝜌

)
𝑠

d𝜌 +
�

�
�
��

(
𝜕𝑝

𝜕𝑠

)
𝜌

d𝑠 = d𝑝 = 𝑐2d𝜌 (22)

Moreover, recalling Eq. (19), for the acoustic velocity waves 𝑢±, one has

𝑢± = ± 𝑝±

𝜌̄𝑐
. (23)

As sketched in Fig. 4, two plane waves are generated on either side of the pressure discontinuity: 𝑝+𝑢 and 𝑝−
𝑑

, where

the subscripts 𝑢 and 𝑑 stand for up- and downstream, respectively. Assuming anechoic duct terminations, one can

express Δ𝑝 in terms of the acoustic pressure waves emanating from it:

Δ𝑝 = 𝑝+𝑑 − 𝑝−𝑢 . (24)

Across the pressure discontinuity, the mass flux 𝜌𝑢 is conserved:
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xx = xs

∆p

p−u p+d

Fig. 4 Fluctuating pressure discontinuity Δ𝑝 at 𝑥 = 𝑥𝑠, in a uniform 1D ducted flow. Plane acoustic pressure
waves: 𝑝−𝑢 and 𝑝+

𝑑
emanate from Δ𝑝 in the up- and downstream direction, respectively.

(𝜌𝑢)′𝑑 = (𝜌𝑢)′𝑢 (25)

where 𝜌 & u may be re-written as:

𝜌 = 𝜌̄ + 𝜌′ (26)

𝑢 = 𝑢̄ + 𝑢′ (27)

Applying this in general to the mass flux and neglecting second order perturbation terms:

(𝜌𝑢)′ = 𝜌̄𝑢̄ + 𝜌̄𝑢′ + 𝜌′𝑢̄ +��𝜌′𝑢′ (28)

Applying mass conservation across the pressure discontinuity (n.b. u & 𝜌 are at 𝑥 = 𝑥𝑠 , ergo: (𝑢/𝑐) = (𝑢/𝑐)𝑥=𝑥𝑠 = 𝑀𝑠):

𝜌̄𝑢+𝑑 + 𝜌+𝑑 𝑢̄ = 𝜌̄𝑢−𝑢 + 𝜌−𝑢 𝑢̄ (29)

Substituting Eqs. (20) and (23) into Eq. (29):

��̄𝜌

(
𝑝+
𝑑

𝑐��̄𝜌

)
+

(
𝑝+
𝑑

𝑐2

)
𝑢̄ = ��̄𝜌

(−𝑝−𝑢
𝑐��̄𝜌

)
+

(
𝑝−𝑢
𝑐2

)
𝑢̄ (30)

Carrying out some additional algebra:

𝑝+𝑑 (1 + 𝑀𝑠) = 𝑝−𝑢 (−1 + 𝑀𝑠) (31)

𝑝+𝑑 = −𝑝−𝑢
(

1 − 𝑀𝑠

1 + 𝑀𝑠

)
(32)

Recalling Eq. (24):

Δ𝑝 = −𝑝−𝑢
(

1 − 𝑀𝑠

1 + 𝑀𝑠

)
− 𝑝−𝑢 = −𝑝−𝑢

(
2

1 + 𝑀𝑠

)
(33)
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∆p

x = xs x

p−u p−d

p+d

x = xth

Fig. 5 Acoustic pressure waves emanating from a fluctuating pressure discontinuity Δ𝑝 located at 𝑥 = 𝑥𝑠 in the
converging part of a choked nozzle. As the nozzle is choked and the flow is 1D, one has sonic line at 𝑥 = 𝑥th, that is
to say, in the throat.

𝑝−𝑢 = −1 + 𝑀𝑠

2
Δ𝑝 (34)

Similarly,

𝑝+𝑑 =
1 − 𝑀𝑠

2
Δ𝑝 (35)

where 𝑀𝑠 is the Mach number at the sound source position 𝑥𝑠 .

Moving forward it will be assumed that the above result obtained for a uniform cross-section duct can be applied in

the subsonic parts of a choked nozzle with varying cross-sectional area 𝐴 = 𝐴(𝑥). In this quasi-1D approximation 𝐴

varies slowly in the flow direction, namely,

𝐿nozzle
𝐴

d𝐴
d𝑥

<< 1. (36)

where 𝐿nozzle is the length of the nozzle.

The acoustic wave 𝑝+
𝑑

is partially reflected by the nozzle. Assuming quasi-steady behavior for this process, one

can apply Eq. (5) to an isentropic pressure perturbation and after some algebra obtain an expression for the reflection

coefficient which is defined as 𝑅 ≡ 𝑝−
𝑑
/𝑝+

𝑑
:

The reflection coefficient can be shown to be (see Appendix A)

𝑅 =
1 − 𝛾−1

2 𝑀𝑠

1 + 𝛾−1
2 𝑀𝑠

(37)

The pressure fluctuation 𝑝′𝑢 moving upstream from Δ𝑝 is

𝑝′𝑢 = 𝑝−𝑢 + 𝑅𝑝+𝑑 (38)
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Using Eqs. (34) and (35), one finds

𝑝′𝑢 = −Δ𝑝

2
((1 + 𝑀𝑠) − 𝑅 (1 − 𝑀𝑠)) . (39)

where 𝑀𝑠 is the Mach number at 𝑥 = 𝑥𝑠 . The acoustic power emitted upstream is

|Φ−
𝑠 | =

𝐴𝑠

𝜌𝑠𝑐𝑠
|𝑝′𝑢 |2 (1 − 𝑀𝑠)2 . (40)

At an upstream (observer) position 𝑥 = 𝑥ob, the observed acoustic-power flow |Φ−
ob |, is

|Φ−
ob | =

𝐴ob
𝜌ob𝑐ob

|𝑝′ob |
2 (1 − 𝑀ob)2 . (41)

Taking the energy transport to 𝑥 = 𝑥ob to be lossless, namely, that |Φ−
ob | = |Φ−

𝑠 |, one finds

|𝑝′ob | =

√︄
𝜌ob𝑐ob
𝜌𝑠𝑐𝑠

𝐴𝑠

𝐴ob
((1 + 𝑀𝑠) − 𝑅 (1 − 𝑀𝑠))

(
1 − 𝑀𝑠

1 − 𝑀ob

)
Δ𝑝

2
(42)

Assuming an entropy “point particle,” the excess mass is

𝑚𝑒 ≡
ˆ

𝑉𝑒

𝜌𝑒d3𝑥, (43)

where the volume integral is taken over the volume of the entropy patch 𝑉𝑒. By virtue of Newton’s second law, one has

that the walls of the nozzle have to exert a force 𝐹𝑥 on the flow to provide the acceleration of the “point particle”

𝐹𝑥 = 𝑚𝑒

(
𝑢

d𝑢
d𝑥

)
(44)

From Curle’s [14] analogy or Gutin’s [15] principle, one knows that an unsteady force of a wall on the fluid is a source

of sound. In this case, one may represent this dipolar sound source as the pressure discontinuity:

Δ𝑝 =
𝐹𝑥

𝐴𝑠

(45)

Substituting Eq. (45) in Eq. (42), yields

|𝑝′ob | =

√︄
𝜌ob𝑐ob
𝜌𝑠𝑐𝑠

1
𝐴ob𝐴𝑠

((1 + 𝑀𝑠) − 𝑅 (1 − 𝑀𝑠))
(

1 − 𝑀𝑠

1 − 𝑀ob

)
𝑚𝑒

2

(
𝑢

d𝑢
d𝑥

)
. (46)

Using Bernoulli’s principle and isentropic perfect gas relations, one may find the following relations (see Appendix B &

C) :
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√︂
𝜌ob𝑐ob
𝜌𝑠𝑐𝑠

=

(
1 + 𝛾−1

2 𝑀2
𝑠

1 + 𝛾−1
2 𝑀2

ob

) 𝛾+1
4(𝛾−1)

(47)

and

𝐴𝑠

𝐴th
=

1
𝑀𝑠

(
1 + 𝛾 − 1

𝛾 + 1
(𝑀2

𝑠 − 1)
) 𝛾+1

2(𝛾−1)
(48)

where 𝐴th = 4𝑆1𝑆th with 𝑆1 and 𝑆th the upstream half-duct height and the half height in the throat as defined in Fig. 6.

x

S1

Sth

Fig. 6 𝑆1 and 𝑆th are the upstream half-duct height and the half height in the throat, respectively.

The convective acceleration, (𝑢d𝑢/d𝑥 in Eqs. (44) and (45)) can be estimated from two-dimensional (plane)

numerical simulations of the stationary base flow (Appendix D). When such estimations are used in Eq. (45) the results

will be said to have been obtained using the hybrid or inertial model.

In Fig. 7, results of this hybrid point-mass model are shown. These results are obtained by computing Eq. (46).

The convective acceleration term 𝑢(𝜕𝑢/𝜕𝑥) is obtained numerically (hence why this model is referred to as hybrid).

Specifically, the dimensionless upstream observed acoustic response |𝑝′ob |𝑆
3
1/(𝑚𝑒𝑈

2
1 ) is shown as a function of the

dimensionless source position (𝑥𝑠 − 𝑥th)/𝑆1 in the convergent part of the nozzle upstream from the throat position 𝑥th.

The hybrid point-mass model results demonstrate sound is being produced throughout the nozzle, however, the majority

of sound production occurs is primarily generated close to the throat, at around (𝑥𝑠 − 𝑥th)/𝑆1 = −0.1.

III. Numerical simulations: methodology
Systematic studies of entropy-spot-choked-nozzle interaction were carried out using Hulshoff’s specialised two-

dimensional (plane) Euler Internal Aeroacoustics code (EIA) [16–18], which solves the compressible frictionless

governing (Euler) equations:

14



-0.5 -0.4 -0.3 -0.2 -0.1 0

0

0.5

1

1.5

2

2.5

Fig. 7 Dimensionless upstream observed acoustic response |𝑝′ob |𝑆
3
1/(𝑚𝑒𝑈

2
1 ) as a function of the dimensionless

source position (𝑥𝑠 − 𝑥th)/𝑆1 in the convergent part of the nozzle. The finely dotted and dashed vertical lines
indicate the position of the nozzle inlet and throat, respectively.

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 (49)

𝜕𝜌u
𝜕𝑡

+ ∇ · (𝜌uu + 𝑝1) = 𝜌F𝐸 (50)

𝜕𝐸𝑇

𝜕𝑡
+ ∇ · ((𝐸𝑇 + 𝑝)u) = 𝑄𝐸 (51)

where 𝐸𝑇 = 𝜌(𝑒 + |u|2/2) is the total energy density, 𝜌F𝐸 is an external momentum source density and 𝑄𝐸 is an

external energy source. The energy source term 𝑄𝐸 was used to generate entropy patches. In conjunction with the heat

capacity ratio 𝛾 = 1.4, the ideal gas law was used as an equation of state. It is noted that the external momentum source

F𝐸 can be used to generate vortices, as was done by Hulshoff et al. [17] and Hirschberg et al. [5–7]. Moreover, the

methodology applied here is essentially the same as was reported by Hirschberg et al. [6, 19]; which were:

1) Computational meshes were generated.

2) A steady choked-nozzle base flow was established.

3) Unsteady entropy-spot-choked-nozzle-interaction simulations were performed, with the steady choked-nozzle

base flow as an initial condition (IC). Namely, entropy patches (circular spots or rectangular slugs) were generated

atop the IC.

In this section, the above steps are briefly expanded upon in §III.A, §III.B, and III.C, respectively.
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Fig. 8 Geometry of the computational domain, with 𝑆1/𝑆th = 3, used for the presently-presented study.

A. Computational mesh generation and information regarding numerical accuracy

In this subsection, details regarding mesh generation for the convergent-divergent-nozzle configuration used are

provided. In Fig. 8, the computational domain’s geometry for the configuration is shown. Which consists, from left to

right, of: blocks 1 (green), 2 (red), 3 (yellow) and 4 (blue). Blocks 3 and 4 form a convergent-divergent nozzle with a

contraction ratio: 𝑆1/𝑆th = 3 (where 2𝑆1 is upstream channel height and 2𝑆th is the height at the nozzle throat), which,

for the choked-nozzle flows considered, corresponds to an upstream Mach number of 𝑀 = 0.20.

To perform entropy-patch choked-nozzle interaction simulations: entropy patches were generated locally on block 1,

in which it was ensured that cells produced during mesh-generation: had a square shape—to minimize small asymmetries

(this is not strictly necessary however, it provides a slightly more symmetric solution to within the truncation error when

using coarser meshes). The entropy patches were generated by application of a non-uniform external energy source 𝑄𝐸

(consult §III.C.2 for details) locally on this block. Block 2 served as a transition from the generation block to block 3.

This was done to gradually change the mesh geometry whilst keeping the cells as square as possible. Block 3 contained

the contraction part of the convergent-divergent nozzle (its inlet). The lower wall of the contraction in block 3 was

generated using the Henrici transformation [20] for the analytical model (with contraction length 𝐿contraction/𝑆1 = 1/2,

for more info the reader is invited to consult Ref. [21]). Finally, one had, downstream from the contraction, block 4: the

diverging part of said convergent-divergent nozzle (diffusor).

The number of points on the mesh was chosen to have a sufficient number of points (in each of the blocks) per spot

radius 𝑅𝑠 or half slug width 𝑊𝑠/2 of the entropy patch to ensure converged solutions. The spatial discretization used for

the entropy-patch-nozzle-interaction simulations was based on a second-order total-variation-diminishing (TVD) Roe

approximate Riemann solver with a van Leer limiter [22]. A five-stage Runge-Kutta time marching method was used for

time integration. Using three meshes with 36, 54 and 81 points per 𝑅𝑠/𝑆1 = 0.3, Hirschberg et al. [5–7] determined:

the estimated order-of-accuracy [23] to be 1.8 with a discretization error of approximately 1%. Ergo, for the purposes of

the presently-reported study, meshes: were generated with at least 36 points per length-scale of the entropy patch used
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to perform unsteady simulations. At this point it is noted that for the purposes of the presently reported work, an attempt

to perform solution verification was performed and is discussed in III.C.3.

The same number of points on the left-hand (inlet) boundary of block 1 were used on the right-hand boundary of

block 1 as well as the left- and right-hand boundaries of block 2. The change of a cell-surface area from cell to cell was

kept as small as possible. Moreover, the number of points on the sides of the individual blocks was kept divisible by four

to allow a three-level explicit multi-grid (EMG) method to be used to establish the base flow [16]. The initialization

procedure of the choked-nozzle base flow is briefly described in the following subsection.

B. Establishment of a steady choked-nozzle base flow

Before unsteady entropy-patch choked-nozzle interaction could be studied, a steady choked-nozzle base flow had to

be established on the computational domain (Fig. 8). Subsequently, this flow was used as an initial condition, atop

which entropy patches were generated to investigate sound production due to entropy-patch choked-nozzle interaction.

Generation of entropy patches and the applied boundary conditions for the unsteady simulations are discussed in §III.C.2.

In this subsection, the establishment of the base flow is described.

The boundary conditions [16], which were imposed to establish said base flow where:

• A “usoft” boundary condition on the upstream wall (on the left-hand-side of Fig. 8). This boundary condition

imposes:

– a desired normal time averaged inflow velocity 𝑈des,

– the local sound speed (which was set to 1 m · s−1),

– the local density (which is set to 1kg · m−3).

• Wall boundary conditions on the lower and upper walls of the channel (vanishing normal velocity).

• Connection boundary conditions on all the interfaces connecting the constituent blocks of the channel.

• A non-reflective boundary condition on the downstream domain boundary.

To determine the upstream inlet velocity, 𝑈des, for a choked nozzle, the isentropic quasi-one-dimensional relation

provided above was used Eq. (48). The equation was solved numerically to determine: which inlet Mach number needs

to be imposed to ensure the establishment of a steady choked-nozzle base flow.

All the individual blocks of the mesh were assigned initial values of: the density, 𝜌initial, the velocity uinitial = (𝑢, 𝑣)

and the pressure 𝑝initial. On blocks 1, 2 and 3 the following values were imposed: 𝜌initial = 1, uinitial = (𝑈des, 0) and

𝑝initial = 𝑐2𝜌initial/𝛾, where 𝛾 = 1.4 is the heat capacity for diatomic gas and 𝑐 is the sound speed. 𝑐 was set to 1 m · s−1

in the upstream blocks 1 and 2, by means of the “usoft” boundary condition [16]. On the downstream section of the mesh

(block 4): 𝜌initial = 1, uinitial = (1, 0) and 𝑝initial = 𝑐2𝜌initial/(2𝛾) were imposed. Consequently, the pressure in block 4

was lower by a factor two compared to the upstream blocks 1, 2, and 3. This ensured that no shock-wave was formed

downstream from the sonic line in the contraction, and that the ultimately-reached flow remained supersonic in block 4.
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Fig. 9 Steady choked-nozzle base flow established for 𝑆1/𝑆th = 3.
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The initial condition base flow (IC) to be used for unsteady entropy-patch choked-nozzle interaction simulations

was established using a three-level explicit multi-grid relaxation scheme. Spatial integration was performed using a

second-order total-variation-diminishing (TVD) Roe approximate Riemann solver with a van Leer limiter [16, 22].

Time marching was done using: a (5,2) Runge-Kutta scheme with a Courant number 𝐶𝑜 = 2 [16]. The resulting IC for

the contraction ratio 𝑆1/𝑆th = 3 and an upstream inlet Mach number 𝑀 = 0.20 is shown in Fig. 9.

C. Entropy-patch-nozzle-interaction simulations: boundary conditions and entropy-patch generation

In this subsection, the boundary conditions applied to carry out: unsteady entropy-patch choked-nozzle interaction

simulations are reported (§III.C.1). Moreover, entropy-patch generation is succinctly covered in §III.C.2.

1. Boundary conditions, pressure-probe positions and emission time

The boundary conditions [16] applied for the unsteady entropy-patch-nozzle-interaction simulations, were:

• An acoustically non-reflective condition on the upstream wall (left-hand-side boundary on Fig. 8)—it:

– mimics a connection to an infinite upstream channel,

– maintains the local average inflow velocity, density and sound speed imposed by the base flow as an initial

condition.

• A symmetry condition was applied on the dash-dotted boundary in Fig. 8.

• Connection boundary conditions on all the interfaces connecting the constituent blocks of the channel.

• Non-reflective boundary condition on the downstream end boundary (right-hand-side Fig. 8). Note: because a

choked-nozzle flow was considered, the choice of outflow boundary condition was not critical (information cannot

travel back upstream through a sonic line).

• Wall boundary conditions on the walls of the channel ( u · n = 0).

The acoustically non-reflective boundary conditions imposed on the upstream boundary of the computational domain

allow one to record the upstream-traveling acoustic response due to entropy-patch-nozzle interaction, without: the

interference of downstream-traveling spurious acoustic reflections. Indeed, if one had imposed boundary conditions

which reflect acoustic waves, it would have been significantly more difficult to separate the upstream-traveling acoustic

wave due to entropy-patch-nozzle interaction (the quantity of interest) & downstream traveling acoustic waves. The

latter are due to reflections formed during the entropy-patch-generation phase. This methodology allows one to neatly

separate the different events in time. Ergo, cogently separating the quantity of interest, in terms of time signal, from

signals which are not pertinent.

To record the quantity of interest, the upstream acoustic response, 𝑝′, a probe was placed at xprobe = (−2.75, 0.5)𝑆1

close to the computational domain’s upstream boundary (Fig. 10) to record: the pressure 𝑝probe = 𝑝probe (𝑡). The

acoustic response was determined using 𝑝′ = 𝑝probe (𝑡) − 𝑝probe (𝑡end). The simulations were run for a time sufficiently
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Fig. 10 Probe positions

long, to ensure that when 𝑡 = 𝑡end: one could assume that the flow field had returned to its stationary base-flow state.

The acoustic response was determined to be a plane wave, by means of two additional probes, which were placed at

(−2.75, 0.52)𝑆1 and (−2.75, 0.75)𝑆1 (indicated with the open circles in Fig. 10).

The travel time, 𝑡𝑡 , the time the acoustic wave took to reach the probe coming from the nozzle, was estimated as

follows:

𝑡𝑡 =
|xprobe − xth |
𝑐1 −𝑈1

(52)

where |xprobe − xth | = 7.25𝑆1 is the distance from the nozzle inlet (𝑥inlet = 4.5𝑆1) to the probe (𝑥probe = −2.75). Using

𝑡𝑡 , the retarded time is defined as follows:

𝑡𝑟 ≡ 𝑡 − 𝑡𝑡 (53)

The upstream-recorded acoustic response signals, obtained from entropy-patch-nozzle-interaction simulations, will be

presented as a function of 𝑡𝑟 in §IV.

2. Entropy-patch generation

To generate a fully mature entropy patch—i.e., a slug or spot like the ones shown in Fig. 11—the energy-source term 𝑄𝐸

in Eq. (51) was used. The entropy patch was generated by means of localized energy injection around a point, which

was convected with the base flow. The energy source 𝑄𝐸 was chosen to be the following a function of the user-set

characteristic length of the to-be-generated entropy patch 𝐿𝑠—i.e., the spot radius 𝑅𝑠 or the slug width 𝑊𝑠 .

𝑄𝐸 =


𝐴𝐸

2

(
1 + cos

(
𝜋

𝜁

𝐿𝑠

))
if 0 ≤ 𝜁 ≤ 𝐿𝑠

0 if 𝜁 > 𝐿𝑠

(54)

where 𝜁 is the distance from the source center, which moves with the flow. The amplitude 𝐴𝐸 is the following function

of time:
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(a) Fully-mature entropy slug generated with 𝑊𝑠/(2𝑆1 ) = 1.0

(b) Fully-mature entropy spot generated with 𝑅𝑠/𝑆1 = 1.0

(c) Fully-mature entropy slug generated with (𝑊𝑠/(2𝑆1 ) = 3.0)

(d) Fully-mature entropy spot generated with (𝑅𝑠/𝑆1 = 3.0)

Fig. 11 Entropy field with fully-mature entropy patches.

2𝐴𝐸

𝐴max
=



1 − cos
(

𝜋𝑡
𝜏start

)
if 0 ≤ 𝑡 ≤ 𝜏start

2 if 𝜏start < 𝑡 ≤ 𝜏start + 𝜏max

1 + cos
(
𝜋 (𝑡−(𝜏start+𝜏max ) )

𝜏end

)
if 𝜏start + 𝜏max < 𝑡 ≤ 𝜏start + 𝜏max + 𝜏end

0 for 𝜏start + 𝜏max + 𝜏end < 𝑡 < 𝑡end

(55)

where the following parameters were user-set:

• 𝐴max, the maximum amplitude.

• 𝜏start, the lapse of time during which generation is initiated and smoothly ramped up.

• 𝜏max, the lapse of time during which entropy-patch generation is done with the maximum global amplitude.

• 𝜏end, the time during which the generation process is smoothly ramped down.

• 𝑡end, the time at which entropy-patch generation ends.

I.e., entropy-patch generation comprises three phases, each of duration: 𝜏start, 𝜏max and 𝜏end.

3. Solution verification

As previously specified in the §III.A meshes were generated with at least 36 points per length scale of the entropy

patch on the basis of the works of Hirschberg et al. where very similar computational domain was used. Nevertheless, an
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attempt to determine convergence and estimate numerical error in the presently reported work was made. An attempt to es-

timate the error was made via Richardson extrapolation (the reader is encouraged to consult for more details Appendix E).

Solution verification was attempted for the case of a circular entropy spot of 𝑅𝑠/(2𝑆1) = 0.5 by generating three

meshes ℎ1, ℎ2, ℎ3 where ℎ2 is twice as fine compared to ℎ1, and ℎ3 being four times as fine compared to ℎ1 where ℎ1

was the original mesh generated containing 36 points per radius. Fig.12 shows the results of the recorded upstream

acoustic pressure due to the interaction of an entropy spot with a choked-nozzle as a function of the simulation time 𝑡 for

the three grids generated.

Fig. 12 Upstream acoustic response due to entropy patch choked-nozzle interaction

From the results of the "fine" mesh (refinement ratio of 4 with respect to the original mesh), one notices the

presence of transient phenomena (or resonance) in the recorded response. This is likely due to the fact that the

mesh is over-resolved for the specific simulation and therefore captures transient phenomena due to the unsteady

generation of an entropy spot in the computational domain. In this case, the transient being captured is a stand-

ing half-wave (𝜆/2), which is the lowest longitudinal mode for a closed-closed pipe. This proves challenging in

accurately estimating a value for the amplitude of the acoustic response, and consequently in accurately estimating

the numerical error. It is noted that by allowing the simulation to run for longer time-steps, it is possible to allow

transients to dissipate. However, as the Euler equations are highly non-dissipative in nature, this was not a viable approach.

In the process of solution verification, it became clear that it was possible to lower the number of points per radius
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whilst still achieving convergence. More specifically, it was found that a convergent solution for the investigated

problems could be obtained with as few as 18 points per radius of an entropy patch. This provides multiple benefits;

coarser meshes may be produced, which is beneficial in terms of expedience and computational resources. Additionally,

for the sake of solution verification, one avoids the problems of being over-resolved and thus transient phenomena are

not captured. To this end, a second attempt at estimating the numerical error was performed. The "coarse" mesh was

twice as coarse compared to the original mesh, and the "fine" mesh was twice as fine as the original mesh.

Fig. 13 Upstream acoustic response due to entropy patch choked-nozzle interaction

The results are shown in Fig.13. In this case the standing half-wave is not captured and enables an estimation of the

numerical accuracy. Implementing the Richardson extrapolation (see Appendix E) the estimated numerical error was of

0.007%. This error is remarkably small and rather unrealistic. To confirm the results, the observed order of accuracy 𝑝𝑜

was compared to the expected order of accuracy 𝑝. The expected order of accuracy is 𝑝 = 2 as the simulation uses a

second order spatial discretization. The expected order of accuracy 𝑝𝑜 is significantly different and as discussed in

Appendix E, the use of Richardson extrapolation is invalid.

In conclusion, attempts at estimating the numerical error were unsuccessful, nevertheless by visual inspection of Figs.12

& 13 one my assert that convergence is indeed achieved. Moreover, the prior works of Hirschberg et al. [5–7] which

make use of the same methodology regarding mesh generation have successfully determined convergence and quantified

the numerical error.
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4. Effect of starting position of entropy patches

In this sub-section, the effects of the user-set starting position of the entropy patches is discussed. As previously

mentioned, entropy-patch generation comprises three phases, the total duration of this generation period is 15s. Based

on this, it is important to select an axial starting position such that the patch is given enough time to fully mature but at

the same time not too much time such that the spot numerically dissipates before arriving at the nozzle inlet. Given

that the spot is travelling with an axial velocity of 0.2m · s−1 and the generation period is 15s, the distance the patch

travels from before full maturity is, 3m which is also 3𝑆1 given 𝑆1 = 1m. Referring to Fig.10, the nozzle inlet is located

at 𝑥 = 4.5, this means that the minimum distance away from the inlet for entropy patch generation would be 𝑥 = 1.5.

Accounting for the fact that the entropy patches have an extent, the chosen starting point for entropy patch generation

was set to 𝑥 = 0. For very large entropy patches; namely, 𝐿𝑠/(2𝑆1) ≥ 1.5 the starting position was shifted upstream to

𝑥 = −2 to account for the larger extent of the patch.

The effect of the starting position of the entropy patch on the upstream acoustic response may be questioned. To

this end, an investigation on the effect of varying the starting position of an entropy spot has been performed. More

specifically, three simulations were performed for an entropy spot of 𝑅𝑠/(2𝑆1) = 0.5 where the starting position was

varied between 𝑥start = −2, 𝑥start = −1 & 𝑥start = 0. The results are presented in Fig.14 and clearly show that the effect of

the starting position of the entropy patch on the upstream acoustic response is in fact negligible.

Fig. 14 Effect of entropy patch starting position on ECNI
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(a) (b)

Fig. 15 The upstream acoustic response scaled by the matching-conditions-model prediction vs. retarded time,
for four patch sizes: (a) 𝑅𝑠/(2𝑆1) = 1.5 and 𝑊𝑠/(2𝑆1) = 3.0 & (b) 𝑅𝑠/(2𝑆1) = 0.5 and 𝑊𝑠/(2𝑆1) = 1.0.

(a) Entropy slug (b) Entropy spot

Fig. 16 The upstream acoustic response amplitude vs. the entropy patch’s normalized characteristic length.

IV. Numerical-simulation results and comparison to theory

A. Numerical-Simulation results compared to matching-conditions model

In Fig. 15, the upstream acoustic response 𝑝′, scaled by the matching-condtion model prediction (Eq. (15)), is plotted

as a function of time. To calculate the matching-conditions model prediction: the relative excess density (𝜌𝑒/𝜌̄)

was approximated by its amplitude |𝜌𝑒/𝜌̄ |max. Given that the entropy patches, which were generated, had negative

excess density: (𝜌𝑒/𝜌̄) ≃ −|𝜌𝑒/𝜌̄ |max was used. Moreover, in Fig. 15: results obtained with two entropy-patch

shapes—which were, an entropy slug (solid line) and spot (dashed line)—are compared. The results shown in

Fig. 15(a) were obtained with 𝑊𝑠/(2𝑆1) = 3.0 (Fig. 11(c)) and 𝑅𝑠/(2𝑆1) = 1.5 ((Fig. 11(d))). Whereas the results in

Figs. 15(b) where acquired using 𝑊𝑠/(2𝑆1) = 1.0 (Fig. 11(a)) and 𝑅𝑠/(2𝑆1) = 0.5 ((Fig. 11(b))). One observes that for

𝑅𝑠/𝑆1 = 𝑊𝑠/(2𝑆1) = 3.0 and 𝑊𝑠/(2𝑆1) = 1.0 the matching-conditions model yields: a remarkably good prediction

(especially for 𝑊𝑠/(2𝑆1) = 3.0) for the amplitude 𝑝′max, which is the local extremum in 𝑝′.

That said, in Fig. 15(b), one observes a marked deviation from the matching-conditions-model prediction for the

𝑅𝑠/(2𝑆1) = 0.5 case. What’s more, in Fig. 15(a), one observes a slight deviation of ca. 5%, between the matching-

conditions-model predictions for the slug and the spot, respectively. It should be noted that the matching-conditions

model is also quasi-1D in nature (§II.A), therefore, it cannot capture the effect of even subtle rounding of an entropy

25



patch’s edges. This leads to reason that the shape and the size of the entropy patch affect sound production due to

entropy-patch-nozzle interaction.

To confirm said reasoning: a series of cetris paribus simulations were carried out with various entropy-slug and -spot

sizes; namely, 𝑊𝑠/(2𝑆1) and 𝑅𝑠/(2𝑆1) were varied. The results are shown in Figs. 16(a) and 16(b) for entropy slugs

and spots, respectively. From data in Fig. 16 one gleans, matching-conditions modeling clearly captures the essence of

sound production due to entropy patch nozzle interaction—provided that the characteristic length of the patch 𝐿𝑠 , be it

𝑅𝑠 or 𝑊𝑠 , is about the same as or larger than the upstream-channel height. Ergo, in the case of a choked-nozzle flow for

which 𝐿𝑠/(2𝑆1) ≳ 1: entropy-patch-nozzle interaction is dominated by matching-conditions effects—going forward,

this will be referred to as the matching-conditions modeling regime.

B. Numerical-simulations result compared to inertial/hybrid model

For 𝐿𝑠/(2𝑆1) ≲ 1, the data in Fig. 16, indicates that matching-conditions effects no longer dominate. With

that in mind, it is reasoned that outside of said matching-conditions modeling regime, inertial effects start to play a

non-negligible role. Moreover, it is hypothesized that there is an inertial modeling regime. Specifically, a regime

where acceleration of the entropy patch through the choked nozzle plays an essential role in the establishment of the

upstream acoustic response. Furthermore, it is reasoned that said inertial regime would be most likely be attained

when one considers entropy patches of very small extent. In other words, if the entropy patch is quite small—namely,

point-particle like or in Ffowcs-Williams & Howe’s words: a “pellet”—the establishment of an upstream acoustic

response would be dominated by inertial effects. In particular, in said inertial-modeling regime, convective acceleration

would be the most consequential modeling ingredient.

To test the hypothesis re the existence of an inertial-modeling regime, the simulation results were compared to the

quasi-one-dimensional point-mass model (or the hybrid model) proposed in §II.B. To do so, estimating the excess mass

𝑚𝑒 carried by the entropy patch is needed—the reader is referred to Appendix F for more information on how this was

done—in an unsteady entropy-patch-nozzle simulation.

In Fig. 17, the simulation’s upstream acoustic-response amplitude 𝑝′max is compared to its associated hybrid-model

prediction 𝑝′hybrid. In particular, 𝑝′max/𝑝′hybrid is shown as a function of the estimated excess mass |𝑚𝑒 |/(𝑆3
1 𝜌̄) carried by

the entropy patch.

One observes that as |𝑚𝑒 | becomes smaller—i.e., the size of the patch becomes smaller—𝑝′max/𝑝′hybrid becomes order

one; that is to say, 𝑝′max/𝑝hybrid = O (1). This indicates, that there is indeed an inertial regime, and that it is reached,

when: sufficiently small entropy patches—i.e., for spots |𝑚𝑒 |/(𝑆3
1 𝜌̄) ≲ 10−2, which corresponds to 𝑅𝑠/(2𝑆1) = 0.1 &

for slugs |𝑚𝑒 |/(𝑆3
1 𝜌̄) ≲ 5 × 10−2, which corresponds 𝑊𝑠/(2𝑆1) = 0.2—generate the upstream acoustic response as they

are ingested by the choked nozzle.

The corollary to the data reflecting the existence of two clearly-distinct modeling regimes— namely, an inertial-
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Fig. 17 Comparison of the simulation’s upstream acoustic-response amplitude 𝑝′max to the associated hybrid-
model predictions 𝑝′hybrid vs. the estimated excess mass |𝑚𝑒 | carried by the entropy patch.

modeling regime for small enough entropy patches (𝑊𝑠/(2𝑆1) ≲ 0.2 & 𝑅𝑠/(2𝑆1) ≲ 0.1 ) and a matching-conditions

modeling regime for large enough patches (𝐿𝑠/(2𝑆1) ≳ 1)—is, that there is a regime between the aforementioned two

regimes. Moreover, it is posited: in said connecting regime a blend of matching-conditions and inertial effects play a

role in the generation of an upstream acoustic response due to entropy-patch-nozzle interaction. Going forward, this

posited regime will be referred to as: the blended-physical-effects regime.

This leads to conclude: in the case of entropy-patch choked-nozzle interaction size and shape do matter.

C. Preliminary results re effect of amplitude contained within entropy patches

In addition to the investigations presented above, the effect of varying the maximum amplitude 𝐴max contained

within an entropy patch on the models’ prediction was investigated. Two distinct cases were investigated:

• 𝐴max varied for 𝑅𝑠/(2𝑆1) = 0.05

• 𝐴max varied for 𝑅𝑠/(2𝑆1) = 1.5

𝐴max was varied in order of magnitudes of the original user-set amplitude.

• For 𝑅𝑠/(2𝑆1) = 1.5, 𝐴max assumed values of 0.003, 0.03, 0.3

• For 𝑅𝑠/(2𝑆1) = 0.05, 𝐴max assumed values 0.002, 0.003, 0.03, 0.3

where 𝐴max = 0.03 was the original amplitude chosen for all unsteady ECNI simulations.
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The preliminary results of these simulations were subsequently compared to the matching-conditions & inertial

model to evaluate whether the amplitude contained within an entropy patch is influential on the model prediction.

Fig. 18 Effect of amplitude variation on matching-conditions model prediction for entropy spot 𝑅𝑠/𝑆1 = 0.1

Fig.18 shows the results of varying the maximum amplitude contained within an entropy spot 𝑅𝑠/(2𝑆1) = 0.05.

The results are rather remarkable, as they clearly show that the maximum amplitude contained within an entropy patch

is undoubtedly influential on the matching-conditions model prediction. For the case 𝐴max = 0.003 a solid prediction

(approximately 70%) for the upstream acoustic response by the matching-conditions model is obtained. This is despite

the fact that 𝑅𝑠/(2𝑆1) = 0.05 is clearly outside of the matching-conditions modelling priorly established.

Similarly, the results presented in Fig.19 confirm that indeed the amplitude is consequential to the matching-

conditions model prediction. In both cases, one may point out, that as the maximum amplitude contained within an

entropy spot decreases, the matching-conditions model yields a better prediction of the upstream acoustic response due

to entropy patch choked-nozzle interactions.

The effect of varying the amplitude is also evaluated with respect to the inertial model. The results of varied-amplitude

unsteady ECNI simulations for spots 𝑅𝑠/(2𝑆1) = 0.05 are compared to the inertial model. This procedure is not done

for the spot 𝑅𝑠/(2𝑆1) = 1.5 as in this case the spot is too large and does not fully fit in the computational domain, in that

regard, determining the excess mass for such a spot is rather difficult. The results of the comparison with the inertial

model are presented in Fig.20. The preliminary results again confirm that the maximum amplitude contained within

an entropy spot clearly have an influence on the model prediction of the upstream acoustic response. However, in the

case of the inertial model, as the amplitude decreases, a worse prediction for the acoustic response is obtained. This

contradicts the observations for the matching-conditions model. In both cases, what can indubitably be said is: the

maximum amplitude contained within entropy spots plays an effect in the upstream acoustic responses predicted by both

the matching-conditions model and the inertial model.
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Fig. 19 Effect of amplitude variation on matching-conditions model prediction for entropy spot 𝑅𝑠/𝑆1 = 3.0

Fig. 20 Effect of amplitude variation on inertial model prediction for entropy spot 𝑅𝑠/(2𝑆1) = 0.05

V. Conclusion
Analysis of dedicated numerical simulations presented in this paper shows that, in the case choked-nozzle flows when

the characteristic length of the entropy patch 𝐿𝑠 is roughly the same as or larger than the upstream channel height:

sound production due to entropy-patch-nozzle interaction is clearly dominated by matching-conditions effects. Ergo, if

𝐿𝑠/(2𝑆1) ≳ 1 the entropy-patch-nozzle interaction is said to be in the matching-conditions-modeling regime. Sound

production due to the passage of two types of entropy patches moving through a nozzle atop a steady-choked-nozzle

flow were investigated; namely, rectangular slugs and circular spots. All the slugs had a height equal to that of the

channel upstream from the choked nozzle. In both cases, the size of the patches was varied by changing its characteristic

length (the width of the slug 𝑊𝑠 or the radius of the spot 𝑅𝑠). The presented analysis indicates that for small enough
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entropy patches, 𝑅𝑠/(2𝑆1) ≲ 0.1 and 𝑊𝑠/(2𝑆1) ≲ 0.2 , inertial effects govern the production of the upstream acoustic

response. It is proposed that this regime be referred to as the inertial-modeling regime. In addition, the data reflect that

the aforementioned regimes are clearly-distinct. Ergo, it is posited that: there is a regime between said two regimes,

which is proposed to be called: the blended-physical-effects regime. In the later regime, it is hypothesized that: a

blend of matching-conditions and inertial effects play a role in the generation of an upstream acoustic response due to

entropy-patch-nozzle interaction.

Moreover, preliminary results on the maximum amplitude contained within entropy spots highlight the marked

influence of said amplitude on matching-conditions & inertial modelling predictions. These results show that the

matching-conditions model yields better predictions for the upstream acoustic response as the maximum amplitude

contained within an entropy spot decreases. This is the case at least for spots with a characteristic length of

𝑅𝑠/(2𝑆1) = 0.05 & 𝑅𝑠/(2𝑆1) = 1.5. Conversely, the inertial model seems to yield better predictions when the maximum

amplitude contained within an entropy spot increases; at least for an entropy spot of extent 𝑅𝑠/(2𝑆1) = 0.05.
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A. Derivation of Reflection coefficient
Recalling some fundamental equations:

𝑐′

𝑐
=
𝑢′

𝑢
(56)

𝑝′ = 𝑐2𝜌′ = 𝑝+ + 𝑝− (57)

𝑢′ = (𝑝+ + 𝑝−) 1
𝜌𝑐

(58)

𝑐2 = 𝛾
𝑝

𝜌
(59)

Taking the natural logarithm of Eq. (59) and differentiating yields:

2
𝑐′

𝑐
=

𝑝′

𝑝
− 𝜌′

𝜌
=

𝑝′

𝑝
− 𝑝′

𝜌𝑐2 =
𝑝′

𝑝

(
1 − 1

𝛾

)
(60)

Dividing both sides by 2 and re-writing the term inside the brackets:

𝑐′

𝑐
=

𝑝′

2𝑝

(
1 − 1

𝛾

)
=

𝑝′

2𝑝

(
𝛾 − 1
𝛾

)
(61)

Rewriting the pressure perturbation in terms of an upstream and downstream component gives:

𝑝′

2𝑝

(
𝛾 − 1
𝛾

)
=

𝑝+ + 𝑝−

2𝑝

(
𝛾 − 1
𝛾

)
(62)

Using the Mach number:
𝑝+ + 𝑝−

2𝑝

(
𝛾 − 1
𝛾

)
=

𝑝+ + 𝑝−

𝛾𝑝𝑀
(63)

Multiplying both sides by 𝛾𝑝:

(𝑝+ + 𝑝−) (𝛾 − 1)
2

=
1
𝑀

(𝑝+ − 𝑝−) (64)

Rewriting to include the definition of 𝑅:

𝑝+ (1 + 𝑅) 𝛾 − 1
2

=
𝑝+

𝑀
(1 − 𝑅) (65)

Dividing both sides by 𝑝+ and moving 𝑀 to the other side:

(1 + 𝑅) (𝛾 − 1)
2

𝑀 = 1 − 𝑅 (66)

31



Expanding the LHS:
𝛾 − 1

2
𝑀 + 𝛾 − 1

2
𝑀𝑅 = 1 − 𝑅 (67)

Factoring out R:

𝑅

(
1 + 𝛾 − 1

2
𝑀

)
= 1 − 𝛾 − 1

2
𝑀 (68)

and finally solving for R yields:

𝑅 =
1 − 𝛾−1

2 𝑀𝑠

1 + 𝛾−1
2 𝑀𝑠

(69)

B. Derivation of Eq. (47)

For a calorically perfect gas, one has:

dℎ = 𝐶𝑝dT =
1
𝜌

d𝑝 (70)

which may be re-written as:

𝐶𝑝d𝑇 = 𝑅𝑇
d𝑝
𝑝

(71)

Rearranging to solve for d𝑇/𝑇 :
d𝑇
𝑇

=
𝛾 − 1
𝛾

d𝑝
𝑝

(72)

The equation of state is:

𝑝 = 𝜌𝑅𝑇 (73)

taking the natural logarithm and differentiating:

d𝑝
𝑝

=
d𝜌
𝜌

+ d𝑇
𝑇

(74)

Substituting 72 into the above expression yields:

d𝜌
𝜌

=
d𝑇
𝑇

(
𝛾

𝛾 − 1

)
− d𝑇

𝑇
=

(
1

𝛾 − 1

)
d𝑇
𝑇

(75)

Integration yields:

𝑙𝑛

(
𝜌0
𝜌

)
= 𝑙𝑛

((
𝑇0
𝑇

1
𝛾−1

))
(76)

which can be written as:
𝜌0
𝜌

=

(
𝑇0
𝑇

) 1
𝛾−1

(77)
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What can also be shown, using the definition of the speed of sound for a calorically perfect gas is:

𝑐0
𝑐

=

√︂
𝑇0
𝑇

(78)

which, using the isentropic relation for the total temperature can be re-written as follows:

𝑐0𝑐 =

√︂
𝑇0
𝑇

=

((
1 + 𝛾 − 1

2

)
𝑀2

)1/2
(79)

Knowing all of this, deriving Eq. (47) is rather straight-forward:

𝜌𝑜𝑏

𝜌𝑠

𝑐𝑜𝑏

𝑐𝑠
=

(
𝑇𝑜𝑏

𝑇𝑠

) 1
𝛾−1

(
𝑇𝑜𝑏

𝑇𝑠

)1/2
(80)

=
𝑇𝑜𝑏

𝑇𝑠

𝛾+1
2(𝛾−1)

=

(
1 + 𝛾−1

2 𝑀2
𝑠

1 + 𝛾−1
2 𝑀2

𝑜𝑏

) 𝛾+1
2(𝛾−1)

(81)

√︂
𝜌ob𝑐ob
𝜌𝑠𝑐𝑠

=

(
1 + 𝛾−1

2 𝑀2
𝑠

1 + 𝛾−1
2 𝑀2

ob

) 𝛾+1
4(𝛾−1)

(82)

C. Derivation of Eq. (48)

The derivation follows from the generalised isentropic relations presented here for convenience:

𝑝0
𝑝

=

[
1 + 𝛾 − 1

2
𝑀2

] 𝛾

𝛾−1

(83)

𝜌0
𝜌

=

[
1 + 𝛾 − 1

2
𝑀2

] 1
𝛾−1

(84)

𝑐0
𝑐

=

[
1 + 𝛾 − 1

2
𝑀2

] 1
2

(85)

𝑇0
𝑇

=

[
1 + 𝛾 − 1

2
𝑀2

]
(86)

as well as the sonic conditions (indicated by the superscript *) for a choked flow which are obtained by imposing

𝑀 = 1 in the isentropic relations:
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𝑝∗

𝑝0
=

[
2

𝛾 + 1

] 𝛾

𝛾−1

(87)

𝜌∗

𝜌0
=

[
2

𝛾 + 1

] 1
𝛾−1

(88)

𝑐∗

𝑐
=

[
2

𝛾 + 1

] 1
2

(89)

𝑇∗

𝑇0
=

(
2

𝛾 + 1

)
(90)

From mass conservation, it holds that:

𝐴

𝐴∗ =
𝜌∗

𝜌

𝑉∗

𝑉
=

𝜌∗

𝜌0

𝜌0
𝜌

𝑉∗

𝑉
(91)

Combining the appropriate isentropic and sonic conditions yields:

𝐴

𝐴∗ =
𝐴

𝐴𝑡ℎ

=
1
𝑀

[
2

𝛾 + 1

(
1 + 𝛾 − 1

2
𝑀2

)] 𝛾+1
2(𝛾−1)

(92)

which with algebra may be re-written into the desired form:

𝐴𝑠

𝐴th
=

1
𝑀𝑠

(
1 + 𝛾 − 1

𝛾 + 1
(𝑀2

𝑠 − 1)
) 𝛾+1

2(𝛾−1)
(93)

D. Hybrid point-mass model: convective acceleration estimation
As was alluded to in section II.B, one can estimate the convective acceleration term 𝑢d𝑢/d𝑥 in Eq. (46) from the

stationary base flow simulation result. To do this the Paraview functions “plot over line” and “spreadsheet view” were

used to extract the velocity data along the line between points (𝑥in, 0.99𝑆1) and (𝑥th, 0.99𝑆1) as sketched in Fig. 21.

The extraction line is sketched in Fig. 21 as a black arrow in the streamwise direction. The spatial coordinates and

velocity data are exported as comma separated value files using the “export spreadsheet” functionality in Paraview’s

“spreadsheet view.” The values were extracted form a hundred equidistant points each separated by a distance Δ𝑋 . The

data were loaded into Matlab with the “readscv” function, and two arrays X and U with horizontal coordinates and

velocity were defined. The convective acceleration array A𝑐 was then estimated, as follows:

𝐴𝑐,𝑖 = 𝑈𝑖

𝑈𝑖 −𝑈𝑖−1
Δ𝑋

(94)
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x = xin x
x = xth

(xin, 0.99S1) (xth, 0.99S1)

y

Fig. 21 Sketch of line over which coordinates and velocity data were extracted with Paraview.

where the subscript 𝑖 represent the 𝑖th array element.

E. Richardson Extrapolation
The following information is obtained from [23]. Assuming one has a method which is p-th order accurate, a value

for the solution may be written as:

𝑓𝑑 = 𝑓𝑒 + 𝑔ℎ𝑝 +𝑂 (ℎ𝑝+1) (95)

where 𝑓𝑒 is the exact solution, 𝑔 is a function of the gradients of the continuos solution and ℎ is the step size. Considering

a mesh spacing ratio between a fine mesh ℎ1 and a coarser mesh ℎ2:

𝑟 =
ℎ2
ℎ1

(96)

Replacing ℎ1 by ℎ Eq.95 may be written for the solution of both meshes:

𝑓1 = 𝑓𝑒 + 𝑔ℎ𝑝 +𝑂 (ℎ𝑝+1) (97)

𝑓2 = 𝑓𝑒 + 𝑔(𝑟ℎ) 𝑝 +𝑂 ((𝑟ℎ) 𝑝+1) (98)

(99)

Neglecting higher order terms, an estimate for the exact solution may be obtained:

𝑓𝑒 = 𝑓1 +
𝑓1 − 𝑓2
𝑟 𝑝 − 1

(100)
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such that an estimate of the discretisation error may be obtained:

𝜖 = 𝑓𝑒 − 𝑓1 =
𝑓1 − 𝑓2
𝑟 𝑝 − 1

(101)

One must note that the above only applies if the meshes ℎ1 & ℎ2 lie in the asymptotic region of the discretisation.

In order to confirm the following, the observed order of accuracy 𝑝𝑜 should be equal to the expected order of accuracy

𝑝. This may be determined via a third mesh ℎ3 where ℎ3 = 𝑟ℎ2. This may be used to solve for 𝑝𝑜:

𝑝𝑜 =

ln
(
𝑓3− 𝑓2
𝑓2− 𝑓1

)
ln(𝑟) (102)

If 𝑝𝑜 differs significantly from p then the use of Richardson extrapolation is invalid.

F. Excess-mass estimation
In this appendix an estimation of the the excess mass 𝑚𝑒 carried by the entropy patch is provided. Said excess mass

defined, as follows:

𝑚𝑒 ≡
ˆ

𝑉𝑒

𝜌𝑒d3𝑥 (103)

in §F.A and §F.B this a relation used to estimate 𝑚𝑒 for circular spots and rectangular slug are derived, respectively.

A. Excess mass circular spot

Based on the density distribution in a mature spot, the judgment is made that a Gaussian distribution for 𝜌𝑒 can be

assumed. Thus, one has:

𝜌𝑒 = 𝜌𝑒,ext exp
(
−𝑥2 + 𝑦2

𝑅2
𝑠

)
= 𝜌𝑒,ext exp

(
− 𝑟2

𝑅2
𝑠

)
(104)

Defining the upstream-channel width 𝑊𝑐 = 𝑆1. Moreover, assuming an unbounded space—i.e., not taking into account

spots with a radius larger than half the upstream-channel height. One can estimate the excess mass in a circular spot, as

follows:

𝑚𝑒 ≃ 𝑊𝑐

∞̂

−∞

∞̂

−∞

𝜌𝑒d𝑥d𝑦 (105)

which can obviously be rewritten as
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𝑚𝑒 ≃ 𝑊𝑐

∞̂

0

𝜌𝑒2𝜋𝑟d𝑟 (106)

Substituting Eq. (104), one finds:

𝑚𝑒 ≃ 𝑊𝑐𝜌𝑒,ext

∞̂

0

exp
(
− 𝑟2

𝑅2
𝑠

)
2𝜋𝑟d𝑟 (107)

= 𝑊𝑐𝜌𝑒,ext𝜋𝑅
2
𝑠

∞̂

0

exp
(
− 𝑟2

𝑅2
𝑠

)
d
(
𝑟2

𝑅2
𝑠

)
(108)

which yields

𝑚𝑒 ≃ 𝑊𝑐𝜌𝑒,ext𝜋𝑅
2
𝑠 = 𝑆1𝜌𝑒,ext𝜋𝑅

2
𝑠 (109)

B. Excess mass rectangular slug

Based on the density distribution in a mature slug, it is judged that a Gaussian distribution for 𝜌𝑒 can be assumed. Ergo,

one has:

𝜌𝑒 = 𝜌𝑒,ext exp
(
− 𝑥2

(𝑊𝑠/2)2

)
(110)

Taking upstream-channel height 𝐻𝑐 = 2𝑆1 and its width is 𝑊𝑐 = 𝑆1, the excess mass can be estimated as follows:

𝑚𝑒 ≃ 𝑊𝑐𝐻𝑐

∞̂

−∞

𝜌𝑒d𝑥 (111)

= 𝑊𝑐𝐻𝑐𝜌𝑒,ext

∞̂

−∞

exp
(
− 𝑥2

(𝑊𝑠/2)2

)
d𝑥 (112)

= 𝑊𝑐𝐻𝑐𝜌𝑒,ext𝐼int (113)

where

𝐼int =

∞̂

−∞

exp
(

𝑥2

(𝑊𝑠/2)2

)
d𝑥 (114)

Taking the square of 𝐼int, one has
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𝐼2
int =

∞̂

−∞

exp
(
− 𝑥2

(𝑊𝑠/2)2

)
d𝑥

=

∞̂

−∞

exp
(
− 𝑥2

(𝑊𝑠/2)2

)
d𝑥

∞̂

−∞

exp
(
− 𝑦2

(𝑊𝑠/2)2

)
d𝑦

=

∞̂

−∞

∞̂

−∞

exp
(
− 𝑥2 + 𝑦2

(𝑊𝑠/2)2

)
d𝑥d𝑦

=

∞̂

0

exp
(
− 𝑟2

(𝑊𝑠/2)2

)
2𝜋d𝑟 = 𝜋

(
𝑊𝑠

2

)2
(115)

Taking the square-root of this result, yields:

𝐼int =
√
𝜋

(
𝑊𝑠

2

)
(116)

Substituting this result in Eq. (113), one finds:

𝑚𝑒 ≃ 𝑊𝑐𝐻𝑐

√
𝜋

(
𝑊𝑠

2

)
𝜌𝑒,ext = 𝑆2

1
√
𝜋𝑊𝑠𝜌𝑒,ext (117)

Acknowledgments
I would like to express my gratitude for the support offered by the Engineering Fluid Dynamics group (chaired by

Kees Venner) in terms of the academic supervision. I would like to give a special thank you to my supervisor Lionel

Hirschberg for the continuous supervision throughout this assignment. I would like to thank the co-authors who

contributed to the academic publication of this work. I would like to thank Avraham Hirschberg for the thoughtful &

meaningful conversations about the presently-reported work. I would like to thank my parents & my girlfriend for being

beside me every step of the way and always pushing me to be the best version of myself.

38



References
[1] Morgans, A. S., and Duran, I., “Entropy Noise: A Review of Theory, Progress and Challenges,” International Journal of Spray

and Combustion Dynamics, Vol. 8, No. 4, 2016, pp. 285–298. doi:10.1177/1756827716651791.

[2] Dotson, K. W., Koshigoe, S., and Pace, K. K., “Vortex Shedding in a Large Solid Rocket Motor Without Inhibitors at the

Segmented Interfaces,” Journal of Propulsion and Power, Vol. 13, No. 2, 1997, pp. 197–206. doi:10.2514/2.5170.

[3] Hulshoff, S. J., Hirschberg, A., and Hofmans, G. C. J., “Sound production of vortex nozzle interactions,” Journal of Fluid

Mechanics, Vol. 439, 2001, pp. 335–352. doi:10.1017/S0022112001004554.

[4] Anthoine, J., Buchlin, J.-M., and Hirschberg, A., “Effect of Nozzle Cavity on Resonance in Large SRM: Theoretical Modeling,”

Journal of Propulsion and Power, Vol. 18, No. 2, 2002, pp. 304–311. doi:10.2514/2.5935.

[5] Hirschberg, L., Hulshoff, S. J., Collinet, J., Schram, C., and Schuller, T., “Vortex nozzle interaction in solid rocket motors:

A scaling law for upstream acoustic response,” Journal of the Acoustical Society of America, Vol. 144, No. 1, 2018, pp.

EL46–EL51. doi:10.1121/1.5046441.

[6] Hirschberg, L., Hulshoff, S. J., Collinet, J., Schram, C., and Schuller, T., “Influence of Nozzle Cavity on Indirect Vortex- and

Entropy-Sound Production,” AIAA Journal, Vol. 57, No. 7, 2019, pp. 3100–3103. doi:10.2514/1.J058138.

[7] Hirschberg, L., and Hulshoff, S. J., “Lumped-Element Model for Vortex-Nozzle Interaction in Solid Rocket Motors,” AIAA

Journal, Vol. 58, No. 7, 2020, pp. 3241–3244. doi:10.2514/1.J058673.

[8] Dowling, A. P., and Mahmoudi, Y., “Combustion Noise,” Proceedings of the Combustion Institute, Vol. 35, No. 1, 2015, pp.

65–100. doi:10.1016/j.proci.2014.08.016.

[9] NASA, “NASA facts: Making future commercial aircraft quieter.” Technical Report FS-1999-07-003-GRC, 1999.

[10] Commission, E., for Mobility, D.-G., Transport, for Research, D.-G., and Innovation, Flightpath 2050 – Europe’s vision for

aviation – Maintaining global leadership and serving society’s needs, Publications Office, 2011. doi:doi/10.2777/50266.

[11] Marble, F. E., and Candel, S. M., “Acoustic disturbance from gas non-uniformities convected through a nozzle,” Journal of

Sound and Vibration, Vol. 55, 1977, pp. 225–243. doi:10.1016/0022-460X(77)90596-X.

[12] Ffowcs Williams, J. E., and Howe, M. S., “The generation of sound by density inhomogeneities in low Mach number nozzle

flows,” Journal of Fluid Mechanics, Vol. 70, No. 3, 1975, pp. 605–622. doi:10.1017/S0022112075002224.

[13] Kowalski, K., Hulshoff, S. J., Ströer, P., Withag, J., Genot, A., Morgans, A. S., Bake, F., Venner, K., Sanders, M., and

Hirschberg, L., “Entropy-Patch-Choked-Nozzle Interaction: Quasi-Steady-Modeling-Regime Limits Probed,” 30th AIAA/CEAS

Aeroacoustics Conference (2024), 2024. doi:10.2514/6.2024-3113, URL https://arc.aiaa.org/doi/abs/10.2514/6.

2024-3113.

[14] Curle, N., “The influence of solid boundaries upon aerodynamic sound,” Proc. Roy. Soc. A, Vol. 231, 1955, pp. 505–514.

doi:https://doi.org/10.1098/rspa.1955.0191.

39

https://arc.aiaa.org/doi/abs/10.2514/6.2024-3113
https://arc.aiaa.org/doi/abs/10.2514/6.2024-3113


[15] Pierce, A. D., Acoustics: an introduction to its physical principles and applications, Acoustical Society of America, Melville,

New York, USA, 1994.

[16] Hulshoff, S. J., EIA an Euler Code for Internal Aeroacoustics: method description and user’s guide, Faculty of Aerospace

Engineering, Delft University of Technology, Delft, the Netherlands, October 2016.

[17] Hulshoff, S. J., Hirschberg, A., and Hofmans, G. C. J., “Sound production of vortex nozzle interaction,” Journal of Fluid

Mechanics, Vol. 439, 2001, pp. 335–352.

[18] Hirschberg, L., Hulshoff, S. J., Schuller, T., Schram, C. F., and Collinet, J., Numerical simulations based evidence of impingement

free sound production during vortex-nozzle interaction in solid rocket motors, AIAA, 2019. doi:10.2514/6.2019-2421, URL

https://arc.aiaa.org/doi/abs/10.2514/6.2019-2421.

[19] Hirschberg, L., “Low order modeling of vortex driven self-sustained pressure pulsations in solid rocket motors,” Ph.D. thesis,

CentraleSupélec, Université Paris-Sacly, 2019.

[20] Henrici, P., Applied and Computational Complex Analysis, Vol. I, Wiley-Interscience, NY, USA, 1974.

[21] Hirschberg, L., Schuller, T., Schram, C., Collinet, J., Yiao, M., and Hirschberg, A., “Interaction of a vortex with a contraction in

a 2-dimensional channel: incompressible flow prediction of sound pulse,” 23rd AIAA/CEAS Aeroacoustics conference, 2017.

[22] Venkatakrishnan, V., and Jameson, A., “Computation of unsteady transonic flows by the solution of Euler equations,” AIAA

Journal, Vol. 26, No. 8, 1988, pp. 974–981.

[23] Hulshoff, S. J., Computational modelling: lecture notes, TU Delft, 2016.

40

https://arc.aiaa.org/doi/abs/10.2514/6.2019-2421

	Introduction
	Thermo-acoustic instability
	Modeling approaches for entropy noise found in the literature
	Matching-condition/Marble-Candel-like modeling
	Inertial-effect/Ffowcs-Williams-Howe-like modeling
	Comment re state-of-the-art

	Focus of the Study

	Theory
	Quasi-1-D Matching-conditions model
	Quasi-1-D point-mass model

	Numerical simulations: methodology
	Computational mesh generation and information regarding numerical accuracy
	Establishment of a steady choked-nozzle base flow
	Entropy-patch-nozzle-interaction simulations: boundary conditions and entropy-patch generation 
	Boundary conditions, pressure-probe positions and emission time
	Entropy-patch generation
	Solution verification
	Effect of starting position of entropy patches


	Numerical-simulation results and comparison to theory
	Numerical-Simulation results compared to matching-conditions model
	Numerical-simulations result compared to inertial/hybrid model
	Preliminary results re effect of amplitude contained within entropy patches

	Conclusion
	Derivation of Reflection coefficient
	Derivation of Eq. (47)
	Derivation of Eq. (48)
	Hybrid point-mass model: convective acceleration estimation
	Richardson Extrapolation
	Excess-mass estimation
	Excess mass circular spot
	Excess mass rectangular slug


