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Fig. 1. Safely driving cyclists on an intersection.

Cycling is one of the most common types of transportation in the Nether-
lands, accounting for about a quarter of all types of transportation used by
the population in 2023 [1]. This type of transport continues to lead to deaths
due to underdeveloped bicycle safety systems. Hence, the paper introduces
new research to create an improved deep learning model regarding F1-score
and advance notice time, predict cyclist maneuvers, and allow for a safe
environment. Experiments were conducted using bicycle/cyclist-mounted
IMUs and a smartphone device, which captured GPS data on 20 participants.
This data is analyzed to identify potential indicative signs of pre-maneuvers.
These signs are then utilized as contributing features in two prediction
models: CNN-LSTM and CNN, expectantly predicting the maneuvers with
substantial prior time and F1-score. Feature importance analysis is conducted
to determine what features contribute most to prediction. Moreover, differ-
ent combinations of prediction gaps and window sizes are tested on models
to determine the optimal configurations. The final configured CNN model
could predict the cycling maneuvers 1.2 seconds in advance and the window
size of 1.6 seconds with an F1-score of 0.84 (see Fig. 9). The final configured
CNN-LSTM model achieved an F1-score of 0.83, predicting 1.2 seconds in
advance with the window size of 2.6 seconds (see Fig. 8).
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1 INTRODUCTION
The Netherlands is famous for its well-developed cycling infrastruc-
ture, coupled with cultural preferences for sustainable transport
solutions, which has resulted in a substantial portion of the popula-
tion adopting bicycles. In 2023, bicycles accounted for more than
one-quarter (28%) of all trips in the Netherlands. This indicates that
there is a significant reliance on cycling as a mode of transportation
within the country [1]. However, the recent emergence of speed
pedelecs introduced new challenges to cyclist safety, especially in
populated cities.

Speed pedelecs, electric bicycles capable of reaching higher speeds,
have become increasingly popular among commuters, who seek
faster travel times. However, their integration into urban travelling
dynamics raises concerns regarding safety, particularly in interac-
tions with traditional bicycles and other road users.

Hence, the research aims to address these challenges by develop-
ing a predictive deep learning model for cyclist maneuvers utilising
Inertial Measurement Units (IMUs) [2] mounted on a bicycle and
speed data collected via smartphones’ GPS services. With a specific
emphasis on identifying pre-turning features, the ultimate focus is
to make bicycles smarter and safer for everyone.
In addition, to addressing these challenges, current study con-

ducted enhanced experiments, in comparison to analysed previous
researches. The experiments are conducted with mounted Inertial
Measurement Units (IMUs) on bicycles which are capable of captur-
ing crucial data such as acceleration, angular velocity, because of
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accelerometer and gyroscope integrated inside them. That is why
the information gathered by such units can provide us with valuable
insights into cyclist behavior. Building upon existing knowledge,
such as handlebar counter-steering and the tilting of a frame before
the actual maneuver [3], the research aims to explore new probable
signs indicative of upcoming maneuvers.
These new signs may include the slowing down of speed, cessa-

tion of pedaling, and turning of the head before the maneuver, all
of which will be measured using IMUs and speed data, and incorpo-
rated as additional indicators, which will probably assist towards
understanding of the cyclist behavior preceding maneuvers.
The results of this research have the potential to not only im-

prove cyclist safety but also contribute to advancements in V2X
communication systems and improve current solutions.

2 STATE OF THE ART
There are multiple researches that have explored various solutions.
One of them is a proposed method that utilizes the communication
behavior features of bicyclists to predict their maneuver intentions
at intersection approaches. This method involves the extraction of
explicit and implicit communication cues from bicyclists using a
bicycle simulator, focusing on their behavior at non-signalized inter-
sections. An Intel RealSense D435 depth camera was used to collect
the implicit and explicit communication features upon which AI
model has been trained [4]. The result has the potential of predicting
the trajectory of a bicyclist in traffic, but not explicitly predicting a
maneuver in advance. Moreover, the experiments were conducted
on a simulator, which does not represent real-world scenarios.

Another research was conducted in a natural setting using a wide-
angle stereo camera system mounted at the research intersection of
the University of Applied Sciences Aschaffenburg. The camera was
mounted approximately 5 meters above the ground and used for
movement detection and a probabilistic trajectory forecast [5]. Even
though, the research achieved promising results in terms of high
F1-score for the trajectory prediction, the solution is not predicting
a maneuver in advance explicitly. Furthermore, suppose the current
solution is widely adopted at intersections. In that case, each of them
requires such a camera, which limits the safety regions drastically,
as the ultimate goal is to make cycling safe at all times and places.
Moving on to more mobile solutions, [6] presented the solution

of HeadMon, the maneuver prediction system, utilizing the head
dynamics of a rider by installing an inertial measurement unit on
the helmet. After experiments conducted with 20 participants, the
results demonstrated an overall precision of at least 85% for a ma-
neuver prediction under a 4 seconds prediction time gap.

In [3], the authors confronted the limitations and potential inac-
curacies associated with predicting data solely from a head turns.
Consequently, they explored a more reliable approach and enhanced
it by utilizing IMU sensors mounted directly on the bicycle, namely
its handlebar and frame. Through this method, they successfully pre-
dicted bike maneuvers with a substantial prediction gap, including
left or right turns and cruising.
Their strategy involved analyzing both the bike’s side tilt and

the countersteering of the handlebars preceding a turn. By training
a CNN-LSTM model on the data they collected, the researchers

achieved a significant predictive accuracy, as evidenced by improve-
ments in F1-score and advance notice time. This innovative approach
not only addressed the shortcomings of previous methods but also
offered a more coherent and effective means of anticipating bike
maneuvers.

3 PROBLEM STATEMENT
Therefore, drawing inspiration from the findings of [3] and [6] re-
searches, by utilizing additional IMU sensors, GPS, experimenting
with different deep learning model layers, and conducting data col-
lection experiment close to real life setting, this research is aimed
to investigate other indicative features that can be measured, pre-
ceding a cyclist’s maneuvers and if the prediction results can be
improved in terms of F1-score and the advance notice time window.
Hence, based on the above, the research question follows:

To what extent can cycling maneuvers be predicted from
bicycle/cyclist-mounted IMUs and speed data using deep learn-
ing?

Sub research questions:
(1) What are pre-maneuver indicators in a real-world setting and

how to detect them usingmultiple bicycle/cyclist mounted IMUs?
(2) How to predict turn maneuvers with the identified indicative

signs?
(3) To what extent and how early can the deep learning model

predict cycling maneuvers based on F1-score?

4 DATA COLLECTION
This section discusses the specifics and the tools used in the experi-
ment setup.

4.1 Experiment setup
Specifically for this research a set of 4 IMU sensors was employed [7],
along with a smartphone utilizing application for GPS data captur-
ing, and an e-bike with a helmet. The IMU sensors were strategically
positioned: one on the handlebar of the bike next to the smartphone
to measure turning dynamics, another on the frame - to monitor
bicycle’s tilting movements, helmet - for capturing pre-maneuver
head behaviors, and pedals - to detect any deviations from typical
pedaling patterns, such as cessation before turning.
In addition to the above mentioned setup, a Full HD camera has
been used in order to document each experiment and be further
used for the manual labeling of the classified events (left, right turns
and cruising) as the measure for the ground truth.
First, the camera was turned on and until the end of an experiment.
Right after, GPS recording application was started on the smart-
phone sampling data at the rate of 1 Hz. Later, all 4 IMU sensors
were synchronously being started, sampling the data with 200 Hz
frequency.
Before, a participant of the experiment could start off, the handlebar
was moved left-right-left in order to set an indicative starting point
in the data records after which the data can be analyzed.
In total, there were 20 people taking part in the experiment. The
bike seat and the helmet were adjusted to the personal preference
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Fig. 2. Experiment setup

of a participant, ensuring a comfortable setup akin to their own
bike in a real-world scenario. The speed constraint has not been
set. It was allowed to cycle with an approximate maximum speed of
25 km/h due to e-bike software speed limitation. Participants were
encouraged before the ride to maintain all the safety and road rules
while conducting the experiment.

4.2 Experiment route

Fig. 3. Experiment route

The experiment was conducted on a circular route within the cam-
pus grounds of the University of Twente. The route included 16
turns (8 left, 8 right). Participants had to make 4 consecutive laps
in total. First, 2 laps had to be cycled in one direction with 8 con-
secutive left turns. Later, they had to make a U-turn and repeat
the same route in reverse direction with 8 consecutive right turns.
The start and finish points were at the exact same location. This
setup ensured the simplicity of the route, eliminating the need to
have a virtual map attached to the handlebar, hence maximizing
the participant’s focus on the road and making the helmet sensor’s
result the most accurate in capturing natural head movements and
pre-maneuver behaviors.

Table 1. Features (F)

Helmet Pedal Frame Handlebar Smartphone
ax-515 ax-559 ax-560 ax-558

speed

ay-515 ay-559 ay-560 ay-558
az-515 az-559 az-560 az-558
gx-515 gx-559 gx-560 gx-558
gy-515 gy-559 gy-560 gy-558
gz-515 gz-559 gz-560 gz-558

Table 2. Data set: total samples obtained for each maneuver

All data Training data Testing data
Left turn 160 112 38
Right turn 160 112 38
Cruise 160 112 38
Total 480 336 144

5 DATA ANALYSIS
Once all the data has been collected, namely from 4 IMU sensors
and the GPS application, all the files have been combined and syn-
chronized using the timestamps for every participant separately.
Due to frequency incompatibility, extracted speed data from GPS
application for each participant have been linearly interpolated. The
dataset resulted in having 25 features (F) (see Fig. 1).
6 features from each IMU sensor and additionally speed feature,
extracted from GPS file.
’ax, y, z’ columns represent acceleration around a corresponding
axis in m/s2. ’gx, y, z’ columns represent rotational speed per second
along a corresponding axis in °/s. ’speed’ represents speed in m/s.

6 MANEUVER PREDICTION MODELS
In this section the preparation of the data set is discussed as well as
model architecture and their tuning parameters.

6.1 Events labeling
In preparation for training the dataset, the events were labeled man-
ually by reviewing the video footage of the turns and cruises. The
mid-maneuver reference point of a turn has been selected based on
the peak of ’gz-560’ (see Fig. (a) Frame under Fig. 4.) at the turning
area. This selection is based on the assumption that the middle of a
turn is defined as the point where the frame is tilted the most from
its normal position [8]. Hence, the selected time point is considered
to be a middle of a turn prior to which the prediction is expected to
be done. Worth mentioning that no data calibration has been done
from the start of a participant’s trip.

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Ilja Kaniscev

(a) Frame (b) Handle

(c) Helmet (d) Pedal

Fig. 4. Right turn raw data

Eventually, each participant’s data file has been split to 3 individ-
ual ones, containing labeled only left turns, only rights turns and
only cruises. Consequently, corresponding events were combined,
thus the labeling resulted into 480 events total, with an equal distri-
bution of classified events, namely 160 each in total. Training and
testing sets were split with 7:3 ratio. (see Table 2)

6.2 Parameters
For each labeled event (right, left turn, cruise) a 10 seconds data flow
was selected upon the determined mid point. The variations of the
window sizes and prediction gaps resulting in significant F1-scores
were interchanged within these 10 seconds time frames (see Fig. 5).

Fig. 5. Parameters

In order to comprehensively evaluate the performance of models
and assess how it is affected by the trade-off between window size
(W) and prediction gap (G), we considered 341 combinations. This
involved training 341 models for each sensor combination with
prediction gaps ranging from 0 to 2 seconds and window sizes
ranging from 1 to 7 seconds, with a step value of 0.2 seconds. In
order to facilitate the scale of the computational work, the cloud
computing of the University of Twente has been exploited.

6.3 Models
For this research, two models have been used: CNN-LSTM with a
similar structure (see Fig. 6) as proposed by Han et al. [6] and by
Smit et al. [3], and CNN (see Fig. 7). The CNN-LSTM models were
trained and evaluated on a dataset of cycling maneuvers captured
with bicycle-mounted IMUs, focusing on predicting turn dynamics.
Meanwhile, CNN was employed to explore alternative time series
modeling approaches [9], comparing its performance against the
CNN-LSTM models in terms of F1-score and computational effi-
ciency.

Table 3. Hyper parameter Values

Parameter Value
Batch Size 60
Optimizer Adam
(Initial) Learning Rate 0.001
Numpy Randomizer Seed 42
Loss Categorical crossentropy

Through out all the computational and training experiments, the
same hyper parameters were used for both models(see Table 3).

Fig. 6. CNN-LSTM model architecture

CNN-LSTM features with two 1 dimensional convolutional layers,
each of them followed by max pooling layer with a pool size 2.
First convolutional layer has 16 filters (output channels) and the
second one has 2 filters. Both of them are with a kernel size of 7,
activation ’ReLU’ to introduce non-linearity, and padding ’same’.
The purpose of those layers is to find spatial dependencies, whereas
LSTM layer’s purpose is to find temporal dependencies. LSTM layer
is configured with dimensionality of 64, returning sequences over
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previously analyzed times steps, and activation ’tanh’. Importantly,
the attention layer is used to prioritize and weigh different parts of
the input sequence [10]. It uses Dense layer to compute attention
scores with ’tanh’ activation and ’softmax’ normalization. Lastly, it
uses drop out layer to prevent over fitting with an argument of 0.5.

Fig. 7. CNN model architecture

CNN model architecture consists out of 3 pair of 1 dimensional
convolutional layer followed by max pooling layer. Each convo-
lutional layer has 64, 128 and 256 filters respectively with kernel
size of 2, padding ’causal’ and activation ’ReLu’. Later, flatten layers
follows in order to output 1 dimensional vector, which is followed
by dropout layer with an argument of 0.5 to prevent over fitting.
Lastly, dense layer is present performing classification based on
previously extracted features [11].

7 RESULTS

7.1 Different sensor combinations
In order to evaluate effectiveness in terms of F1-score performance
and to assess the predictive lead time prior to an event, comparisons
were made with previous research results, namely [6] and [3]. For
this evaluation, only helmet features were present in the CNN-LSTM
and CNN model training set, following the approach of Han et al.
[6], while only handlebar features were considered in the the CNN-
LSTM and CNN model training set, following the methodology of
Smit et al. [3].
For further evaluation, strong performance results are charac-

terized by attaining high F1-scores (close to 0.8 is considered to be
sufficient), while also maximizing prediction gap and minimizing
window size. Smaller window sizes facilitate faster model evalua-
tion calculations. The higher prediction gaps, the higher chance of
communicating the maneuver in advance.

7.2 Only helmet
By exploring different combinations of window size and predic-
tion gap, and utilizing only helmet features (ax-515, ay-515, az-515,
gx-515, gy-515, gz-515) and speed, the best results achieved for CNN-
LSTM model were F1-score of 0.78 and predicted 1 second before
the maneuver’s mid-point with a window size of 2 seconds (see Fig.
13).

Moreover, as for CNN model, the best performance results were
F1-score of 0.79, prediction gap of 1 second and window size of 1.2
seconds (see Fig 14).

Evaluating the performance, the results were not that promising as

reported by Han et al. [6]. Possible that if higher prediction gaps
evaluated, than CNN-LSTM model could have shown better results
in terms of higher prediction gap with a decent F1-score metric.

7.3 Only handle
By exploring different combinations of window size and prediction
gap, and utilizing only handlebar features (ax-558, ay-558, az-558,
gx-558, gy-558, gz-558) and speed, the best results achieved for CNN-
LSTM model were F1-score of 0.79 and predicted 0.4 second before
the maneuver’s mid-point with a window size of 2 seconds (see Fig.
19).

CNN model, however, achieved the best performance results with
F1-score of 0.79, prediction gap of 0.4 second and window size of
1.2 seconds (see Fig 20). Important to notice that with higher predic-
tion gap, CNN performed way worse with handlebar features than
CNN-LSTM.

7.4 Other combinations
Other than combinations for evaluation for the previous researches
comparison sake, combinations of only handlebar and pedal were
explored, as well as handlebar and helmet.

Table 4. Other combinations: CNN-LSTM

F1-score Prediction
gap (G)

Window
size (W)

Handlebar-
helmet

0.8 1.4 s 3.8 s

Handlebar-
pedal

0.81 0.8 s 3.4 s

Table 5. Other combinations: CNN

F1-score Prediction
gap (G)

Window
size (W)

Handlebar-
helmet

0.81 0.8 s 1.4 s

Handlebar-
pedal

0.83 0.4 s 1.4 s

From the reported results (see Table. 4) and 5, it is evident that
CNN-LSTM performed significantly better in terms of almost dou-
bling prediction gap. However, this improvement came with a trade-
off of computation time, as the window size was doubled too, while
maintaining the same prediction F1-score.

7.5 Full sensors setup
Evaluating CNN-LSTM and CNN performance with all 4 sensors’
and speed data, the following results are reported:
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Fig. 8. CNN-LSTM with all sensors

CNN-LSTM obtained F1-score of 0.83 with a prediction gap of 1.2
seconds and window size of 2.6 seconds (see Fig. 8).

Fig. 9. CNN with all sensors

As for CNN, one of the best performance results was of 0.84 of
F1-score with a prediction gap of 1.2 seconds and window size of
1.6 seconds (see Fig. 9). Comparing both best performance model
results, CNN has an advantage of the computation time since the
window size is less by 1 second .

(a) CNN-LSTM (b) CNN

Fig. 10. Confusion matrices of CNN-LSTM and CNN with all sensors (best
performance)

7.6 Feature importance evaluation
In order to understand what feature contribute towards prediction
the most and what is influencing it negatively, the feature permu-
tation technique has been used. The CNN-LSTM model with all

sensors set up (having 25 features) has been used with 2.6 second
window size and 1.2 seconds prediction gap.

The baseline for the evaluation is the F1-score obtained during
training the model with above mentioned parameters - 0.83 (see Fig.
8).

Fig. 11. CNN-LSTM with all sensors

Figure 11 demonstrates that the removal of gx-515, gx-558, az-560,
and gy-560 results in a significant drop in the F1-score, indicating
the importance of these features in the model’s learning and predic-
tion processes.
On the other hand, removal of gz-515 improves the F1-score, mean-
ing that including this feature in the training set worsens the pre-
diction performance.
Apart from negatively or positively influencing features, gx-560
turned out to have no influence at all, since by removing it, F1-score
has not been changed at all.

Fig. 12. CNN with all sensors

In addition to analyzing the model performance dependency on
the removal of individual features, the top 10 most significant rela-
tionships are plotted (see Fig. 12). The graph should be interpreted
as showcasing the most critical relationships contributing to a high
F1-score. It is evident that the rotational speed of the pedals (gx-559)
and the handlebar rotation acceleration (ay-558) combined are the
most significant indicators. This suggests that a pedaling behavior
and a handlebar turning prior to a maneuver are crucial for an ac-
curate advance prediction.
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The second crucial relationship is between pedals and a frame over
x axis, proving that acceleration of a frame tilting combined with
rotational speed of pedals are also significant behavior patters be-
fore a maneuver.
It is worth highlighting that the rotational speed over the z-axis of
the helmet also plays a significant role in prediction when combined
with a frame acceleration along the x-axis. This finding suggests
that human side gazing prior to a maneuver helps to predict it more
accurately.
Therefore, all sensor positions were found to provide useful indica-
tors of behavioral patterns preceding a maneuver.

8 CONCLUSION
In conclusion, CNN-LSTM and CNN models were able to predict
maneuvers of left and right turns and cruises, where input is bicycle-
mounted IMU sensors and speed data in time windows. CNN-LSTM
was able to predict maneuvers 1.2 seconds in advance using a win-
dow size of 2.6 seconds with an F1-score of 0.83. Another model
CNN was able to predict maneuvers with 1.2 seconds in advance,
with a window size of 1.6 seconds, achieving an F1-score of 0.84.
It is discovered that the rotational speed of the pedals and the han-
dlebar rotation acceleration combined are the most significant indi-
cators in order to make a prediction, followed by the pedal rotational
speed and the frame acceleration over the axis.
Moreover, the rotational speed over the z-axis of the helmet, repre-
senting the person’s gazes to the sides, showcased to be important
too (see Fig. 12).
Compared to the research conducted by Smit et al. [3], the experi-
ments were conducted in a natural traffic environment with people,
bicycles, and cars being obstacles on the road and intersections.
This implies that the prediction results achieved in this research
are more accurate and significant, as the data was collected in a
real-case scenario environment.
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A.1 Only helmet

Fig. 13. CNN-LSTM helmet

Fig. 14. CNN helmet
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A.2 Only handle

Fig. 15. CNN-LSTM handle

Fig. 16. CNN handle

A.3 Handlebar-helmet

Fig. 17. CNN-LSTM handlebar-helmet

Fig. 18. CNN handlebar-helmet

A.4 Handlebar-pedal

Fig. 19. CNN-LSTM handlebar-pedal

Fig. 20. CNN handlebar-pedal
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