Real-Time Recognition of Boxing Head Gestures with IMU-Earables:
Machine Learning and Dynamic Time Warping

THOMAS SEPANOSIAN, University of Twente, The Netherlands

The rising prominence of earables, wearables meant to be worn around
the ear, represents opportunities for novel applications. Previous research
showcases the potential of earables in the context of sports; however, a gap is
present for boxing, more specifically in recognition of defensive manoeuvres,
even outside the realm of earable development. Thus, this paper explores the
capability of real-time, IMU-based boxing head gesture recognition using
the open-source OpenEarable framework through classical machine learning
and dynamic time-warping approaches. A dataset was collected consisting of
approximately 460 samples of left/right slips, left/right rolls, and pullbacks,
by a hobby-level boxer. The results revealed that utilizing dynamic time
warping in combination with templates based on barycenter averaging
achieves effective results in gesture recognition. During the testing phase,
the implemented algorithm achieved a high accuracy score of 99% on the
collected dataset. This performance was further validated in a deployed
real-world scenario, where the algorithm maintained an overall accuracy of
96% across 50 repetitions per gesture. Additionally, the system demonstrated
robustness against variations in gesture execution speed and intensity.

Additional Key Words and Phrases: Earables, Inertial Measurement Unit,
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1 INTRODUCTION

With technology becoming increasingly integrated into everyday
life, the evolution from basic wearables to more advanced devices
like earables marks a significant shift. Earables are devices designed
to be worn in or around the ear, and they extend beyond tradi-
tional earphones by incorporating sensors enabling a wide range of
applications [17, 22].

Example applications include sensing fine-grained facial expres-
sions [27], enabling user authentication through sensing of heart
rate, gait and breathing patterns [2], and head gesture recognition
through PPG signal readings [15]. The placement of earables on
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the head makes them well-suited for tasks requiring head gesture
recognition, as demonstrated by Xu et al., who facilitate hands-free
text entry [29].

In the literature, most of the studies utilize the Nokia Bell Labs
eSense earbuds; however, with this device’s end of life 1, the Ope-
nEarable platform? has emerged as an alternative. This platform
follows a fully open-source approach. This enables researchers and
developers to directly modify and enhance both the hardware and
software components, thereby facilitating collaborative develop-
ment and novel research perspectives [23]. To exemplify its poten-
tial, applications such as a Jump Rope Counter, Posture Tracker
and Tightness Meter have been developed 3.

In sports, the precision and real-time recognition capabilities of
these devices can be particularly beneficial. Research into boxing-
specific gesture recognition, particularly defensive manoeuvres,
remains underexplored despite its potential to significantly enhance
training and performance. This gap presents a unique opportunity to
leverage the OpenEarable platform to facilitate real-time recognition
of gestures and feedback, potentially enhancing training.

This paper investigates the capabilities of the OpenEarable plat-
form, focusing on its application in real-time gesture recognition
for boxing. The following research questions are posited:

e RQ 1: How can classical machine learning and dynamic time
warping techniques be applied to IMU data obtained through
OpenEarable devices to attain real-time and effective boxing
head gesture recognition?

e RQ 2: How can a boxing head gesture recognition system
be integrated into the OpenEarable framework to provide
real-time feedback?

To explore these research questions, both classical machine learn-
ing and dynamic time-warping (DTW) techniques are employed.
Classical machine learning models provide a robust foundation for

!Details about the discontinuation can be found at https://www.esense.io/, accessed
in June 2024. A second generation is reportedly under development but is not yet
available.

Zhttps://github.com/OpenEarable/open-earable , accessed in June 2024

3These applications are showcased at https://open-earable.teco.edu/ , accessed in June
2024.


https://www.esense.io/
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pattern recognition, while DTW offers a complementary approach,
potentially yielding novel insights into the research questions.

The remainder of this paper is organized as follows: Section 2
reviews previous studies on earables, head gesture recognition, and
boxing gesture detection, identifying the gaps this research aims to
address. Section 3 outlines the methods used in this study. Section 4
presents the research results. Finally, Section 5 draws conclusions,
addresses the research questions, and discusses potential avenues
for future work.

2 RELATED WORK

This section reviews the emerging field of earables and explores
their applications, particularly in head gesture recognition. Table 1
presents a comparative analysis of relevant prior research in relation
to this work.

2.1 Earables: A Novel Sensing Platform

Earables, have been recognized for their vast range of potential
applications. They are particularly well-suited for head gesture
recognition due to their placement and, commonly, integration of an
IMU sensor. A comprehensive taxonomy of phenomena, including
head gesture recognition, is presented in [22], emphasizing the wide
variety of potential applications that can leverage earables.

2.2 Head Gesture Recognition

Head gesture recognition is an area of active research across diverse
computing platforms. For example, an IMU-augmented hat has been
utilized to recognize head gestures in [28]. The authors employed a
3-axis accelerometer, 3-axis gyroscope, and 3-axis compass to collect
sensor readings for nodding, shaking, raising up once, raising down
once, turning left once, and turning right once. Their decision tree
model achieved 94.63% accuracy and executed within 1.54 ms, while
the random forest model reached 99.17% accuracy but with a higher
execution time of 18.17 ms. These findings highlight the potential for
a real-time application, though the physical obtrusiveness of the hat
could limit practical use compared to more discreet alternatives like
earables. Furthermore, using computationally expensive features
such as the average absolute difference could be a bottleneck for
on-edge inference.

Similarly, [1] explored user authentication through head gesture
characteristics using smart glasses equipped with accelerometers,
gyroscopes, and geomagnetic sensors. They collected data for move-
ments such as moving the head in circles, squares, and triangles,
segmented using sliding windows, and translated into simple fea-
tures: minimum, maximum and mean. They observed an EER of 2.4%
for authentication and an f1-score of 98.7% for identification, further
underscoring the potential for real-time earable applications. How-
ever, as with the augmented hat, earables offer a more unobtrusive
and pervasive option, particularly as earbuds become increasingly
prominent in everyday use.

Building upon the potential of earables, the Nokia Bell Labs eSense
earbuds have been shown to effectively capture everyday gestures,
such as eating, nodding, and head shaking, which can facilitate the
detection of social interactions [12]. Advances in gesture recognition
also encompass facial expressions like smiling, talking, and yawning,
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which have been effectively recognized using hierarchical methods
applied to inertial signals collected through these earbuds [7].

These technological advancements open new avenues for practi-
cal applications, such as developing head gesture-based interfaces.
For example, HeadText provides an innovative interface for typing
[29].

2.3 Sports and Earables

Recent research suggests that earables offer promising applications
within the sports field. For example, [16] demonstrated how an
IMU at the waist, in conjunction with earables, can assist users
in performing core training exercises correctly. Furthermore, ear-
ables have been used to collect data on basketball dribbling [9] and
recognition of fitness exercises [25], showcasing their versatility
and potential in enhancing athletic performance.

2.4 The Gap: Boxing-Specific Head Gestures

Despite the advancements of earables in head gesture recognition
and their applications in sports, there is a notable gap in research,
specifically targeting boxing. In boxing, defensive manoeuvres heav-
ily depend on precise and quick head movements. Even outside the
realm of earables, when it comes to human activity recognition
research in boxing, research most commonly focuses on punches
[11, 26], rather than head movements for defensive techniques,
despite it being a crucial aspect in competitive boxing [10]. Further-
more, there is a lack of research on the utilization of earables in
conjunction with DTW. Studies most commonly focus on the use of
machine learning. Additionally, existing literature often does not
explore the implementation of an end-to-end system to evaluate
real-world efficacy.

This research aims to fill these gaps by exploring the use of ear-
ables for real-time head gesture recognition, focusing on boxing-
specific movements such as slipping, rolling and pulling back. To
do so, this study will extend the current use of the OpenEarable
platform, an open-source earable platform.

3 METHODOLOGY

In this section, the methodology employed to investigate the capa-
bilities of the OpenEarable platform for head gesture recognition in
the context of boxing is outlined. An overview of the methodology
is provided in Figure 1. The following subsections discuss the details
of the blocks mentioned in the overview.

3.1 Gestures

The research focused on three specific boxing manoeuvres: slip-
ping, rolling, and pulling back. These gestures are crucial defensive
techniques boxers use to evade punches and position themselves
advantageously.

o Slipping: This maneuver involves quick lateral movement of
the head to either side, approximately the width of a boxing
glove, to avoid straight punches aimed at the head. It is typi-
cally used to counter jabs and crosses, allowing for immediate
counterattacks due to the minimal movement required. This
is simulated by performing the slip in front of a boxing glove
attached to the roof at head-level height, akin to a slip bag.
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Table 1. Summary of Related Work
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Reference

Device

Recognition Goal(s)

Techniques

Results

Wau et al. [28]

Head-mounted wearable

Nodding, Shaking, Rais-

(Weka) J48 & Random

J48:94.63% Accuracy, 1.54

Head movements: Circle,
Square, Triangle, ...

models (RF, Adaboost)

ing, Bowing, Turning | Forest models ms; RF: 99.17% Accuracy,
Left/Right 18.17 ms

Agac and Incel [1] Smart Glasses Identification &  Au- | Feature extraction (mean, | 99.3% f1-score for identi-
thentication  through | min, max) — Multiple | fication

Laporte et al. [12]

Nokia Bell Labs eSense
earbuds

Nodding, Speaking, Eat-
ing, Standing still, Head
shaking

CNN (Accelerometer &
Gyroscope)

80% Balanced Accuracy

Pansiot et al. [18]

Custom Earable

Climbing performance:
Fluidity, Strength, En-
durance, Speed

PCA and Gaussian Mix-
tures

Polar graph performance
representation

(Up/Right/Left), Shaking
(Left/Right)

Mavus and Sezer [14] Head-mounted wearable | Rotating (Clock- | Dynamic Time Warping | Approx. 80% Accuracy
wise/Counter), Shaking, per gesture
Nodding

Li and Hu [13] Smart Glasses Nodding, Tilting | Dynamic Time Warping | 100% Accuracy

Xu et al. [29]

Custom Earable

Turning Left / Right /

K-Nearest-Neighbor &

Approx. 90% Accuracy

Down

Dynamic Time Warping

Nokia Bell Labs eSense
earbuds & Waist-
mounted Accelerometer

Motokawa et al. [16]

Core Training Monitor-
ing and Support

Rule based feedback n/a

Stromback et al. [25] Nokia Bell Labs eSense

Exercise Recognition &

Multimodal Deeplearn- | 82% accuracy for the ear-

earbuds, among other de- | Repetition Counting ing bud device
vices
This study OpenEarable Earable Real-time Boxing Head | Classical Machine Learn- | 99% Accuracy, Real-time

Gesture Recognition

ing & Dynamic Time | feedback

Warping

¢ Rolling: Also known as bobbing and weaving, rolling in-
volves moving the head in a circular "U" shape motion. This
technique is crucial for dodging hooks and uppercuts. The
study simulates this by performing rolls underneath the slip-
back set at head height, encouraging replicable and consistent
rolls.

e Pulling Back: Also known as the lean back, involves a quick
backward movement of the head to avoid straight punches.
Similar to the slip, for this study, lean backs are performed in
front of a slip bag.

An illustration of these gestures is provided in Figure 2. Given the
variability in boxing styles, this study standardizes the maneuvers
by using an orthodox stance, characterized by the left foot forward
and hands guarding the face and torso.

3.2 Data Collection

The study was conducted with a single participant, the researcher.
The participant is a hobbyist skill-level boxer. Thus, their execu-
tions of the gestures may differ from those performed by more
experienced boxers or those completely unfamiliar with boxing.

Data collection spanned several sessions across multiple days,
ensuring a comprehensive dataset. Each session was dedicated to
performing and recording all the gestures repeatedly for a predeter-
mined number of iterations. This approach allowed each gesture to
be captured in isolation before proceeding to the next. Recordings
were made using the OpenEarable dashboard’s data recorder, com-
plemented by a screen recording for enhanced clarity. To distinctly
mark the beginning and end of each gesture’s recording, the partici-
pant briefly jumped and moved their head around before starting
each set of iterations and after each set of iterations.

The OpenEarable device, equipped with an Inertial Measurement
Unit (IMU), was used to collect motion data. Using Bluetooth, data
was streamed at 50Hz in real-time to the OpenEarable web dash-
board, deployed locally on a laptop. The IMU data included 3-axis
accelerometer, gyroscope, magnetometer readings and timestamps.

3.2.1 Labeling. Post-collection, the data was labelled using Edge-
ML, an open-source and browser-based tool directly supporting the
labelling of data obtained through the OpenEarable dashboard [4].
The data was inspected together with the recorder video to manually
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Fig. 1. Methodology Overview
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Fig. 2. The target head gestures demonstrated by practitioner B, sparring
against opponent A

ip_left] slip_left slip_left lip_le slip_left

pullback pullback pullback pullback pullback

Fig. 3. Labelling of data in Edge-ML (Gyroscope, y-axis (°/s))

label the gestures. An example of labelled data in Edge-ML has been
provided in Figure 3.

Table 2. Aggregated Data - Sequences Information

Gesture | No. of Sequences | Avg. Length (samples)
Idle 2296 24.50
Left Slip 460 38.16
Right Slip 459 38.59
Left Roll 458 54.83
Right Roll 459 55.95
Pull Back 459 53.44

3.3 Data Preprocessing

3.3.1 Aggregation & Segmentation. The raw, labelled IMU data was
exported to CSV format for further processing. Using Python, the
data underwent preprocessing, which involved a sliding window
approach. During data aggregation of the sessions, the number of
sequences and the average sequence length were extracted for every
gesture. Statistics for these sequences are provided in Table 2. With
this information, several window sizes and overlap sizes were con-
sidered, with a window size of 50 and an overlap of 25 being chosen
as the most optimal, as apparent from testing multiple configura-
tions which were based on previously mentioned average sequence
lengths. Window labels were determined through a majority voting
process based on the data within the window. This segmentation
process resulted in a collection of windows, with approximately
800 windows for the slips, 1100 for the rolls, and 1500 for the idle
gesture.

3.3.2  Feature Extraction. To train the models, various features were
extracted from the windowed segments of sensor data. The selection
of these features was guided by evaluating the performance of differ-
ent models, manually assessing feature distinction between classes
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in Weka [6] (illustrated in Figure 4), and utilizing tsfresh [3]. Con-
sidering the requirements for real-time performance and resource
constraints of the earable device, the selected features include min-
imum, maximum, standard deviation, root mean square, 10th
quantile, and absolute maximum from both the accelerometer’s
x-axis and the gyroscope’s y-axis.

Fig. 4. Feature Visualization using Weka

3.4 Classical Machine Learning Approach

The extracted features were used to train various classical machine-
learning algorithms. The algorithms evaluated included Random
Forest, Decision Tree and Support Vector Machine. These
algorithms were chosen for their superior performance in classifi-
cation tasks. The SciKit-Learn library [19] was used to implement
and evaluate the models. All data used for model development and
testing underwent a train test split, with a 70:30 ratio, respectively.
A collection of Jupyter notebooks concerning the development of
these models is made available in a public GitHub repository 4.

3.5 Dynamic Time Warping Approach

In addition to classical machine learning techniques, this study also
employed Dynamic Time Warping (DTW) for recognizing gestures.
DTW is particularly effective in measuring the similarity between
temporal sequences, which is essential in scenarios where the same
gestures might be performed at varying speeds and intensities. For
example, in boxing, boxers might perform rolls more smoothly
depending on the intensity of their opponent’s pressure.

However, employing DTW effectively requires careful selection
of a reference template that accurately represents the gesture across
different users. To enhance the reliability and generalizability of
these templates, this study utilized Dynamic Time Warping Barycen-
ter Averaging (DBA) [5, 20, 21]. Unlike simple averaging methods,
which may skew towards outliers or be adversely affected by noise,
DBA constructs a more robust central sequence that better preserves
the intrinsic properties of the gestures being analyzed. Templates
were generated for every gesture, with the templates consisting of
the gyroscope’s y-axis DBA sequence, followed by the accelerom-
eter’s x-axis sequence DBA of said gestures, resulting in a single

4Made available at:
EarableBoxingHeadGestureRecognition

https://github.com/Thomas-mp4/
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template per gesture. This approach is depicted in Figure 5. A col-
lection of Jupyter notebooks is made available in the mentioned
GitHub repository.

Left Slip Sequences (First 5)

Raw Value

Left Slip Template (DBA) \l/

Y Sensor Data
(DF1) gyroy
10 (DF1) aceX

10 20 30

Raw Value

sample

Left Slip DBA Concatenated Template

Raw Value

0 10 20 30 40

sample

Fig. 5. DTW Template creation for the left slip gesture using DBA (Show-
casing only the first 5 sequences, instead of all 460)

3.6 System Integration

Integrating the boxing gesture recognition system into the OpenEar-
able framework consisted of multiple procedures. The OpenEarable
platform has a wide range of software accessible, including a dash-
board %, and a Flutter library 6 which serve as ways to communicate
with the earable. The aforementioned approaches to recognizing
boxing head gestures were developed in Python. To assist with ges-
ture recognition development, a Python CLI application, akin to the
dashboard and Flutter implementation, has been developed ”.

To make the gesture recognition more accessible and extensible,
a Flask [8] implementation has been developed to host an infer-
ence APL Given this API, the OpenEarable dashboard has been
augmented to provide real-time boxing head gesture recognition by
utilizing the API 8. Visual feedback is provided through the form
of a gesture mirror, wherein an animated character performs the
same gestures as the user. The augmented dashboard, featuring the
added head gesture recognition module, is showcased in Figure 6.

Shttps://github.com/OpenEarable/dashboard , accessed in June 2024
®https://github.com/OpenEarable/open_earable_flutter , accessed in June 2024

"Made available at: https://github.com/Thomas-mp4/
EarableBoxingHeadGestureRecognition
8Made available at: https://github.com/Thomas-mp4/

OpenEarableAugmentedDashboard-BoxingHeadGestureRecognition


https://github.com/Thomas-mp4/EarableBoxingHeadGestureRecognition
https://github.com/Thomas-mp4/EarableBoxingHeadGestureRecognition
https://github.com/OpenEarable/dashboard
https://github.com/OpenEarable/open_earable_flutter
https://github.com/Thomas-mp4/EarableBoxingHeadGestureRecognition
https://github.com/Thomas-mp4/EarableBoxingHeadGestureRecognition
https://github.com/Thomas-mp4/OpenEarableAugmentedDashboard-BoxingHeadGestureRecognition
https://github.com/Thomas-mp4/OpenEarableAugmentedDashboard-BoxingHeadGestureRecognition
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Fig. 6. Augmented OpenEarable Dashboard, showcasing the recognition of a left roll in the head gesture recognition module in the bottom right

3.7 Evaluation

3.7.1 Research Question 1. To evaluate the effectiveness and effi-
ciency of the real-time boxing head gesture recognition approaches,
multiple factors were considered:

e Model Metrics: For the developed machine learning mod-

els, multiple metrics were extracted and analyzed, including

insights into the following:

— Accuracy: Overall correctness

— Precision: Effectiveness in predicting positives

— Recall: Effectiveness in identifying true positive

— F1-score: Representation of harmonic mean of precision
and recall

— Confusion Matrix: Representation of classification errors /
mislabeling

Practical Performance Tests: For the most effective ap-

proach, real-time practical tests were conducted, to determine

real-world applicability.

3.7.2  Research Question 2. To evaluate the degree to which inte-
gration with the OpenEarable framework has been attained, tests
were performed to measure the delay between the gesture being per-
formed in real-time and the gesture being performed in the gesture
mirror, using video and screen recordings to measure the difference
in frames per second.

3.8 Ethical Considerations

The Computer & Information Sciences (CIS) committee reviewed
and approved the study’s design and methodology. Ethical consider-
ations included the potential misuse of Al and model biases arising
from training on data from a single participant.

4 RESULTS AND DISCUSSION

In this section, the results are discussed in relation to the research
questions. First, the performance of the classical machine learn-
ing models is discussed. Then, the performance of the dynamic
time-warping approach is presented, including the differences be-
tween the two approaches. Finally, the results of integrating with
the OpenEarable framework are shown, highlighting the practical
performance of the gesture recognition system.

4.0.1 Recognition Performance with Classical Machine Learning
Models. Multiple machine learning models have been developed, in-
cluding a decision tree, random forest, and support vector machine.
The models’ confusion matrices are presented in Figure 7.

Important to note is that apart from a set random number gener-
ator, the default hyperparameters were employed for both the Ran-
dom Forest and Support Vector Machine algorithms. However, for
the decision tree model, a parameter-tuning exercise was conducted:
with the max_depth parameter being set to 5, and the min_sam-
ples_leaf parameter set to 300, in an effort to achieve a model that
generalizes well. This decision was based on a manual inspection
of results and the usage of GridSearchCV °. The window size and
overlap size, 50 samples and 25 samples, respectively, were chosen
in a similar fashion.

The classification report results of the best-performing model,
the random forest model, are provided in Table 3. A recognition
system with accuracies of approximately 70% and higher, with most
miss-classifications being made within the same gesture types (e.g.
left and right rolls) in theory could be adequate for real-time applica-
tions, assuming the system is not used in critical contexts. However,

“https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html, accessed in June 2024
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Fig. 7. Machine Learning Models - Gesture Recognition Confusion Matrices

Table 3. Classification Metrics Summary (Random Forest excluding idle
sequences

Label Precision | Recall | F1-Score | Support
Left Slip 0.92 0.90 0.91 195
Right Slip 0.92 0.93 0.93 197
Left Roll 0.90 0.91 0.91 300
Right Roll 0.88 0.87 0.87 303
Pullback 0.99 0.99 0.99 332
Accuracy 0.92 (1327 Support)
Macro Avg 0.92 Precision, 0.92 Recall, 0.92 F1-Score
Weighted Avg 0.92 Precision, 0.92 Recall, 0.92 F1-Score

when these models were deployed in a real-time environment, none
performed as one would assume given the testing results. Despite
developing a Python CLI application to circumvent a potential de-
lay being caused by the JavaScript implementation utilizing the
Python Flask inference API, results remained poor, with a right slip
never being recognized, and, apart from the idle class, running into
frequent miss-classifications.

This discrepancy between real-time performance and testing per-
formance could be due to poor generalizability of the models. Given
that gestures were performed only approximately 460 times by a
hobbyist-level boxer, the data potentially lacks the capability to
spawn models that can classify gestures that slightly deviate from
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Table 4. Classification Metrics Summary (DTW with DBA templates)

Label Precision | Recall | F1-Score | Support
Left Slip 0.98 1.00 0.98 460
Right Slip 0.99 1.00 0.99 459
Left Roll 1.00 0.98 0.99 458
Right Roll 1.00 0.98 0.99 459
Pullback 0.99 1.00 1.00 459
Accuracy 0.99 (2295 Support)
Macro Avg 0.99 Precision, 0.99 Recall, 0.99 F1-Score
Weighted Avg 0.99 Precision, 0.99 Recall, 0.99 F1-Score

how they were performed prior. Furthermore, the feature visualiza-
tion in Figure 4 suggests potentially that the features do not differ-
entiate between the classes distinctly enough. Thus, this approach
did not sufficiently satisfy the research goal of attaining real-time
gesture recognition despite the promising results in testing.

4.0.2 Recognition Performance with Dynamic Time Warping. Next
to classical machine learning models, the applicability of dynamic
time warping was also explored. The performance of DTW is dis-
played in Figure 8. The DBA templates were generated using all
samples per gesture. Additionally, the classification report for recog-
nition using DTW with the DBA templates is provided in Table 4.
For the implementation of DTW, fastdtw was used, which provides
optimal or near-optimal alignments with an O(N) time and memory
complexity [24].

The testing results significantly improve with the use of the DBA-
based templates, compared to randomly selecting samples out of the
dataset to use as templates. Given that DTW needs two sequences
to compare, this approach requires detecting the start and end of
anomalies, as opposed to the machine learning approach, which
utilized sliding windows. The metrics present great potential for
gesture recognition. When deployed in a real-time environment,
the DTW approach performs as promising as the testing results
do. Practical testing yielded an overall accuracy of 96% across 50
repetitions of each gesture, with misclassification only occuring for
the left roll (8 misclassifications as left slip), and the right roll (2
misclassifications as left slip). Classification remained accurate when
performing gestures with different speeds, but showed sensitivity to
stylistic deviations from the template (e.g. varying head orientations
while rolling or drastically different speeds). The DTW approach,
compared to the machine learning approach, thus more closely
satisfies the research goals posed by research question 1.

Important to note is that the exceptions to the performance are
the times when anomaly detection triggers unnecessarily due to
sensitive thresholds, resulting in an attempt to recognize a gesture
even though the correct gesture is idle. Furthermore, because the
entire sequence of data needs to be recognized before attempting
to recognize it, predictions can only be made after an anomaly,
including the time it takes to recognize the end of an anomaly.

4.0.3 OpenEarable Framework Integration. The integration of the
boxing head gesture recognition system into the OpenEarable frame-
work consisted of augmenting the dashboard and developing an
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Fig. 8. Dynamic Time Warping - Gesture Recognition Confusion Matrices

inference API. The OpenEarable dashboard was augmented by cre-
ating an additional module in the UI, which mirrors the user’s be-
haviour nearly instantaneously. Inspecting a video recording of
the augmented OpenEarable dashboard, recorded at 60 frames per
second, predictions are approximately made 50 frames after the
anomaly ends (ignoring the moment the anomaly has been recog-
nized as ending).

Furthermore, the Ul has been designed so that the user is clearly
notified of gesture recognition. Figure 6 showcases the recognition
of a right roll, including the highlighting of the label indicator, and
the gesture mirror performing the gesture. Figure 9 showcases all
gesture mirror models.

Thomas Sepanosian

Fig. 9. All model movements featured in the augmented dashboard, mid
animation - From left to right: Idle, Left Slip, Right Slip, Left Roll, Right Roll,
Pullback

The research goals posed by research question 2 are answered
using the developed Python CLI application and the augmented
OpenEarable dashboard.

5 CONCLUSION

This study explored using the IMU sensor embedded in the OpenEar-
able device for real-time boxing head gesture recognition. Gestures
of interest were the left/right slip, the left/right roll, and the pull-
back, for which approximately 460 samples were collected from a
hobby-level boxer.

Two approaches were explored to achieve effective gesture recog-
nition: classical machine learning and dynamic time warping. While
both performed well during theoretical testing, results showed that
dynamic time warping, in combination with barycenter averaging-
based templates, performed superiorly in real-time deployed con-
texts. Testing metrics for this approach showed an accuracy of 99%,
which was closely matched by its performance in deployed contexts,
where performance was not affected by varying speeds or intensities
of performed gestures.

The gesture recognition system was integrated into the Open-
Earable framework through a Python CLI application and the aug-
mentation of the OpenEarable dashboard, powered by an inference
API. Real-time feedback was near-instantaneous, approximately
displaying the recognized gesture within a second.

In conclusion, this study offers valuable insights into the po-
tential of earables for head gesture recognition, particularly for
sports-related applications such as boxing. Future research into
other recognition approaches or further extensions of the OpenEar-
able framework has the potential to further expand the capabilities
of earables and their utilization.

6 ACKNOWLEDGEMENTS

The author would like to thank Ozlem Durmaz for her guidance
and support throughout this research.

During the preparation of this work, the author utilized ChatGPT
4 and GitHub Copilot for assistance with debugging, translating code
to different languages, and using various frameworks and libraries.
After using these tools and services, all content was thoroughly
reviewed and edited as needed. The author takes full responsibility
for the final outcome.



Real-Time Recognition of Boxing Head Gestures with IMU-Earables: Machine Learning and Dynamic Time Warping

REFERENCES

[1]

[2

—

3

=

[4

o

[5]

G

=

[7

—

[8

—

[

=

[10]

(11]

(12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

Sumeyye Agac and Ozlem Durmaz Incel. 2023. User Authentication and Identi-
fication on Smart Glasses with Motion Sensors. SN Computer Science 4, 6 (Sept.
2023), 761. https://doi.org/10.1007/s42979-023-02202-4

William Cheung and Sudip Vhaduri. 2020. Context-Dependent Implicit Authenti-
cation for Wearable Device Users. In 2020 IEEE 31st Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications. IEEE, London, United
Kingdom, 1-7. https://doi.org/10.1109/PIMRC48278.2020.9217224

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. 2018.
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh —
A Python package). Neurocomputing 307 (Sept. 2018), 72-77. https://doi.org/10.
1016/j.neucom.2018.03.067

edge-ml developers. 2024. edge-ml: Open source web based machine learning
framework for MCUs. https://github.com/edge-ml/edge-ml. Accessed: 2024-06-14.
Germain Forestier, Francois Petitjean, Hoang Anh Dau, Geoffrey I Webb, and
Eamonn Keogh. 2017. Generating synthetic time series to augment sparse datasets.
In Data Mining (ICDM), 2017 IEEE International Conference on. IEEE, 865-870.
Eibe Frank, Mark A. Hall, and Ian H. Witten. 2016. The WEKA Workbench (fourth
ed.). Morgan Kaufmann, Online Appendix for "Data Mining: Practical Machine
Learning Tools and Techniques".

Shkurta Gashi, Aaqib Saeed, Alessandra Vicini, Elena Di Lascio, and Silvia San-
tini. 2021. Hierarchical Classification and Transfer Learning to Recognize Head
Gestures and Facial Expressions Using Earbuds. In Proceedings of the 2021 Interna-
tional Conference on Multimodal Interaction. ACM, Montréal QC Canada, 168-176.
https://doi.org/10.1145/3462244.3479921

Miguel Grinberg. 2018. Flask web development: developing web applications with
python. " O'Reilly Media, Inc.".

Alexander Hoelzemann, Henry Odoemelem, and Kristof Van Laerhoven. 2019.
Using an in-Ear Wearable to Annotate Activity Data across Multiple Inertial
Sensors. In Proceedings of the 1st International Workshop on Earable Computing.
ACM, London United Kingdom, 14-19. https://doi.org/10.1145/3345615.3361136
Safet Kapo, Said EL Ashker, Anida Kapo, Ekrem Colakhodzic, and Husnija Kaj-
movic. 2021. Winning and losing performance in boxing competition: a compar-
ative study. Journal of Physical Education and Sport 21 (May 2021), 1302-1308.
https://doi.org/10.7752/jpes.2021.03165

Soudeh Kasiri-Bidhendi, Clinton Fookes, Stuart Morgan, David T. Martin, and
Sridha Sridharan. 2015. Combat sports analytics: Boxing punch classification
using overhead depthimagery. In 2015 IEEE International Conference on Image
Processing (ICIP). 4545-4549. https://doi.org/10.1109/ICIP.2015.7351667

Matias Laporte, Preety Baglat, Shkurta Gashi, Martin Gjoreski, Silvia Santini,
and Marc Langheinrich. 2021. Detecting Verbal and Non-Verbal Gestures Using
Earables. In Adjunct Proceedings of the 2021 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International
Symposium on Wearable Computers. ACM, Virtual USA, 165-170. https://doi.org/
10.1145/3460418.3479322

Huaizhou Li and Haiyan Hu. 2024. Head Gesture Recognition Combining Activity
Detection and Dynamic Time Warping. Journal of Imaging 10, 5 (May 2024), 123.
https://doi.org/10.3390/jimaging10050123

Ubeyde Mavus and Volkan Sezer. 2017. Head gesture recognition via dynamic
time warping and threshold optimization. In 2017 IEEE Conference on Cognitive
and Computational Aspects of Situation Management (CogSIMA). IEEE, Savannah,
GA, USA, 1-7. https://doi.org/10.1109/COGSIMA.2017.7929592

Alessandro Montanari, Andrea Ferlini, Ananta Narayanan Balaji, Cecilia Mascolo,
and Fahim Kawsar. 2023. EarSet: A Multi-Modal Dataset for Studying the Impact
of Head and Facial Movements on In-Ear PPG Signals. Scientific Data 10, 1 (Dec.
2023), 850. https://doi.org/10.1038/s41597-023-02762-3

Nishiki Motokawa, Ami Jinno, Yushi Takayama, Shun Ishii, Anna Yokokubo, and
Guillaume Lopez. 2021. Coremoni-WE: Individual Core Training Monitoring and
Support System Using an IMU at the Waist and the Ear. In Adjunct Proceedings of
the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2021 ACM International Symposium on Wearable Computers.
ACM, Virtual USA, 176-177. https://doi.org/10.1145/3460418.3479325

Nhan Nguyen, Avijoy Chakma, and Nirmalya Roy. 2021. A Scalable and Domain
Adaptive Respiratory Symptoms Detection Framework using Earables. In 2021
IEEE International Conference on Big Data (Big Data). 5620-5625. https://doi.org/
10.1109/BigData52589.2021.9671796

Julien Pansiot, Rachel C. King, Douglas G. Mcllwraith, Benny P. L. Lo, and Guang-
Zhong Yang. 2008. ClimBSN: Climber performance monitoring with BSN. In 2008
5th International Summer School and Symposium on Medical Devices and Biosensors.
IEEE, Hong Kong, China, 33-36. https://doi.org/10.1109/ISSMDBS.2008.4575009
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal of machine
learning research 12, Oct (2011), 2825-2830.

Frangois Petitjean, Germain Forestier, Geoffrey I Webb, Ann E Nicholson, Yanping
Chen, and Eamonn Keogh. 2014. Dynamic time warping averaging of time series

[21

[22

[24

[25

[26

[27

[28

[29

]

]

TSclT 41, July 5, 2024, Enschede, The Netherlands

allows faster and more accurate classification. In Data Mining (ICDM), 2014 IEEE
International Conference on. IEEE, 470-479.

Francois Petitjean, Alain Ketterlin, and Pierre Gangarski. 2011. A global averag-
ing method for dynamic time warping, with applications to clustering. Pattern
Recognition 44, 3 (2011), 678-693.

Tobias Réddiger, Christopher Clarke, Paula Breitling, Tim Schneegans, Haibin
Zhao, Hans Gellersen, and Michael Beigl. 2022. Sensing with Earables: A System-
atic Literature Review and Taxonomy of Phenomena. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3 (Sept. 2022),
135:1-135:57. https://doi.org/10.1145/3550314

Tobias Roddiger, Tobias King, Dylan Ray Roodt, Christopher Clarke, and Michael
Beigl. 2022. OpenEarable: Open Hardware Earable Sensing Platform. In Proceed-
ings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, Cambridge United Kingdom, 246-251. https://doi.org/10.1145/
3544793.3563415

Stan Salvador and Philip Chan. 2007. FastDTW: Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analysis 11, 5 (2007), 561-580.
David Strémbick, Sangxia Huang, and Valentin Radu. 2020. MM-Fit: Multimodal
Deep Learning for Automatic Exercise Logging across Sensing Devices. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4
(Dec. 2020), 1-22. https://doi.org/10.1145/3432701

Javier Vales-Alonso, Francisco Javier Gonzalez-Castafio, Pablo Lopez-Matencio,
and Felipe Gil-Castifieira. 2023. A Nonsupervised Learning Approach for Au-
tomatic Characterization of Short-Distance Boxing Training. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems 53, 11 (Nov. 2023), 7038-7052.
https://doi.org/10.1109/TSMC.2023.3292146 Conference Name: IEEE Transactions
on Systems, Man, and Cybernetics: Systems.

Dhruv Verma, Sejal Bhalla, Dhruv Sahnan, Jainendra Shukla, and Aman Parnami.
2021. ExpressEar: Sensing Fine-Grained Facial Expressions with Earables. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
5, 3 (Sept. 2021), 1-28. https://doi.org/10.1145/3478085

Cheng-Wei Wu, Hua-Zhi Yang, Yan-Ann Chen, Bajo Ensa, Yi Ren, and Yu-Chee
Tseng. 2017. Applying machine learning to head gesture recognition using wear-
ables. In 2017 IEEE 8th International Conference on Awareness Science and Tech-
nology (iCAST). IEEE, Taichung, 436-440. https://doi.org/10.1109/ICAwWST.2017.
8256495

Songlin Xu, Guanjie Wang, Ziyuan Fang, Guangwei Zhang, Guangzhu Shang,
Rongde Lu, and Liqun He. 2022. HeadText: Exploring Hands-free Text Entry using
Head Gestures by Motion Sensing on a Smart Earpiece. http://arxiv.org/abs/2205.
09978 arXiv:2205.09978 [cs].


https://doi.org/10.1007/s42979-023-02202-4
https://doi.org/10.1109/PIMRC48278.2020.9217224
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://github.com/edge-ml/edge-ml
https://doi.org/10.1145/3462244.3479921
https://doi.org/10.1145/3345615.3361136
https://doi.org/10.7752/jpes.2021.03165
https://doi.org/10.1109/ICIP.2015.7351667
https://doi.org/10.1145/3460418.3479322
https://doi.org/10.1145/3460418.3479322
https://doi.org/10.3390/jimaging10050123
https://doi.org/10.1109/COGSIMA.2017.7929592
https://doi.org/10.1038/s41597-023-02762-3
https://doi.org/10.1145/3460418.3479325
https://doi.org/10.1109/BigData52589.2021.9671796
https://doi.org/10.1109/BigData52589.2021.9671796
https://doi.org/10.1109/ISSMDBS.2008.4575009
https://doi.org/10.1145/3550314
https://doi.org/10.1145/3544793.3563415
https://doi.org/10.1145/3544793.3563415
https://doi.org/10.1145/3432701
https://doi.org/10.1109/TSMC.2023.3292146
https://doi.org/10.1145/3478085
https://doi.org/10.1109/ICAwST.2017.8256495
https://doi.org/10.1109/ICAwST.2017.8256495
http://arxiv.org/abs/2205.09978
http://arxiv.org/abs/2205.09978

	Abstract
	1 Introduction
	2 Related Work
	2.1 Earables: A Novel Sensing Platform
	2.2 Head Gesture Recognition
	2.3 Sports and Earables
	2.4 The Gap: Boxing-Specific Head Gestures

	3 Methodology
	3.1 Gestures
	3.2 Data Collection
	3.3 Data Preprocessing
	3.4 Classical Machine Learning Approach
	3.5 Dynamic Time Warping Approach
	3.6 System Integration
	3.7 Evaluation
	3.8 Ethical Considerations

	4 Results and Discussion
	5 Conclusion
	6 Acknowledgements
	References

