
Predicate subtyping in VerCors
Tycho Dubbeling

t.b.dubbeling@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
VerCors is a program verifier that can verify specifications for pro-
grams written in Java, C and PVL (VerCors own language with
built-in support for VerCors specifications). These specifications
are expressed through pre-conditions and post-conditions similar
to JML (Java Modeling Language) annotations.
Many Java and C programs use bounded integers, rather than math-
ematical integers. Meanwhile, VerCors can only reason about all
integer-based types as mathematical integers. As such, VerCors
cannot verify a program for the absence of integer overflows.
Bounded integers can be seen as subtypes of integers. Predicate sub-
typing is a subtyping system in which a subtype gets constructed
with a type and predicates on a term of said type. The terms of the
constructed subtype are all terms of the original type for which
all predicates hold. We have added predicate-based subtyping to
VerCors as a more general solution to supporting bounded integers.
In this thesis we will first show how to manually translate examples
of the proposed subtyping system into the corresponding specifica-
tion in a program. We will also establish supporting mathematical
theory describing the relations between predicate subtypes.

KEYWORDS
VerCors, predicate subtyping, bounded integers, validation

1 INTRODUCTION
Java and C programs commonly use bounded integers. The pres-
ence of integer overflows may introduce undefined behaviour or
crashes into a program. Undefined behaviour may alter the visible
behaviour of programs in unforseen ways, potentially causing un-
expected behaviour by the program. In this thesis we will be using
the term integer overflow to refer to instances of arithmetic with
bounded integers resulting in values outside of said bounds.
Here is an example of an integer overflow from the C programming
language: an unsigned integer x (integer with a non-negative value)
will overflow when "x = 0; x = x-1;" gets executed. Integer overflow
may also occur when typecasting an integer to an integer type with
stricter bounds.
Since integer overflows may cause a program to not behave as
intended, we would like to have a way to show the absence of
potential overflows in our program. One way this may be achieved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TScIT 41, July 05, 2024, Enschede, The Netherlands
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

is through the use of external tooling.
The VerCors verifier, developed at the University of Twente, is
software for verifying partial correctness of annotated Java and C
programs. VerCors also supports verifying its own language PVL,
which has VerCors annotations built into the language. Since ab-
sence of integer overflows are a property that may be shown for
any arithmetic expression in a program, VerCors can be a useful
tool for proving the absence of overflows. Currently, VerCors treats
all integer types as mathematical integers and lacks support for
bounded integers. As such, VerCors does not support verifying the
absence of integer overflows out of the box. This is something we
wish to rectify, as having bounded integer support in VerCors will
allow VerCors to prove the absence of another class of potentially
undesired behaviour.
One way of viewing bounded integers is as a subtype of integers
with all its values between two mathematical integers. As a result,
the restrictions for bounded integers lend themselves well to be-
ing modelled using predicates [13]. However, manually specifying
the bounds for every instance of arithmetic being performed is
time-consuming and error-prone. With the addition of predicate
subtyping, this may be automated. The addition of predicate sub-
typing in VerCors allows bounded integers to be modelled with a
more general system, alongside allowing extension of VerCors with
more user-defined subtypes. The user-made subtypes allow users to
encode invariants specific to their programs as subtypes, allowing
a way to automatically generate the annotations to enforce this
invariant throughout the code. For example, a user may want to
make sure that a integer variable that is used for division is never
zero. The user could then declare a subtype "NonZero" that would
assert that the variable does not equal 0 and then annotate the
relevant variables with the subtypes.
We have the following research question:

How can a predicate subtyping system capable of
encoding bounded integers be added to VerCors?
To answer the main question, we will need to answer more specific
questions aswell. One questionwewill try to answer is how to trans-
late subtype annotations into first-order logic VerCors annotations.
We will also discuss how predicate subtyping may be implemented
into VerCors. Finally, we will work out a mathematical background
for the "is a subtype of" relation between predicate subtypes. Our
main contributions are showing how to encode predicate subtyping
in VerCors, using an approach that may be applied to other verifiers
as well, and working out a category-theoretical description of the
subtyping relations induced by predicate subtyping.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 41, July 05, 2024, Enschede, The Netherlands Tycho Dubbeling

2 BACKGROUND
VerCors uses annotations similar to Java Modeling Language as
specification for a program. JML [11] is a language for writing spec-
ifications for Java programs, using assertions on predicates written
in first-order logic. These specifications get used by many tool to
prove properties about a program using Hoare logic [12]. Hoare
logic primarily uses pre-conditions and post-conditions to reason
about the change of program-state after a command. Unlike JML,
VerCors uses separation logic for verification. Separation logic is
an extension of Hoare logic that keeps track of state throughout
the program and introduces operators that make assertions about
the state of the program. The ability to reason about read-write per-
missions in particular makes separation logic suitable for verifying
concurrent programs.
VerCors tries to verify assertions about programs which are made
in the specification of said program. A programmer may specify
conditions that must hold at a specified position within the pro-
gram. For example, these assertions may be pre-conditions and
post-conditions for functions or assertions about the state of the
program at a specific step of execution. VerCors will try to prove
that all pre-conditions hold when a function gets called in a function
to be proven. Similarly, it wil try to prove that the post-conditions
of the function hold as well. An example of such a function with
specification:

public class Example {
//@ requires y != 0;
//@ ensures \result == x/y;
private int division(int x, int y) {

return x/y;
}

}

The process VerCors goes through during verification can be de-
scribed through 5 major phases. First VerCors parses the program.
The grammar VerCors parses is built out of a specification grammar
and a grammar for the language it needs to parse. After VerCors fin-
ishes parsing, it will proceed to build a syntax tree out of the parsed
nodes. During this second step, VerCors may already produce an
error if it detects an unsupported feature in the parsed nodes. As a
third step, VerCors will try to resolve references and types within
the parsed program. After the resolution step, VerCors will pro-
ceed to the transformation step. During the transformation step,
VerCors will apply a list of rewriters to reduce the syntax tree into
a form that is accepted by the back-end. The final step is the step
where the rewritten syntax tree gets given to the Viper back-end
for verification. In figure 1 these phases are visualized. The creation
of the syntax tree, resolution step and the transformation step are
all bundled together in the "transformation" arrow.

Figure 1: Verification flowchart

3 RELATEDWORK
There has been previous work on encoding bounded integers in
program verifiers built on Viper. One such verifier is Prusti [1] for
the Rust language, which attempts to prove the absence of integer
overflows.
Below are an explanation of Viper syntax and examples of how
Prusti encodes 32-bits signed integers in Viper [13].
Viper has a built-in datatype called Ref. The value of a Ref is either
a pointer to an object or the constant null.
A field declares a variable of a type that is a component of every
object. Fields are declared at top level.
A predicate gives a name to a set of conditions to be proved. A
predicate declaration may take arguments that may be used in the
conditions. Predicates may be attached to methods as pre- and post-
requisites. Viper will try to prove all pre- and post-requisites of a
method.
acc is a predicate asking for write permission for a variable.
Prusti encodes integers as:

field val_int
predicate i32(self: Ref) {

acc(self.val_int, write)
}

and bounded integers with overflow checks as:

predicate i32(self: Ref) {
acc(self.val_int, write) &&
-2147483648 <= self.val_int &&
self.val_int <= 2147483647

}

As can be seen in the examples, Prusti encodes integers as a predi-
cate [16] that takes a Ref type with an integer field. When overflow
checks are turned on, Prusti adds the necessary bounds to the pred-
icate. This gives us a nice template for the predicates we could
use to simulate bounded integers through predicate subtypes. The
existence of prior art in regards to modeling bounded integers with
predicates shows that this approach is feasible. Since these pred-
icates can be directly written in VerCors and give us the desired
behaviour for verification, we made sure that our design could ac-
commodate this representation.
Another tool for verifying the absence of integer overflows within
software is Frama-C. Frama-C is a static analyzer tool for C pro-
grams. Frama-C allows the use of plugins, including plugins for
checking integer overflows.
The RTE plugin for Frama-C is a plugin that provides verification
for pre- and post-conditions for functions with ACSL specifications.
The RTE plugin also generates assertions checking for overflows
at every downcast [6]. Furthermore, it generates annotations for
all arithmetic calculations that were peformed. As such, the RTE
plugin automatically verifies whether overflowing operations occur
in the analyzed program.
The WP plugin for Frama-C implements a weakest-precondition
calculus for verifying annotated C-programs. The WP plugin has
different settings for how to treat arithmetic by default [3]. These
settings are called models and can be further modified by adding

2

Predicate subtyping in VerCors TScIT 41, July 05, 2024, Enschede, The Netherlands

extra flags. The WP plugin has two "models" for integer arithmetic
and two "models" for floating-point arithmetic. For integers, these
models govern whether operations on certain datatypes are allowed
to overflow. There are two models for integer arithmetic: the ma-
chine integer model and the natural model.
The machine integer model assumes that signed integers are not
allowed to overflow, while unsigned integer arithmetic is allowed
to overflow. For verification purposes, arithmetic that is allowed to
overflow gets interpreted as modular addition. Meanwhile, types
that are not allowed to overflow will have all arithmetic performed
on them be interpreted as their respective mathematical operations.
Casts between integer types use the modulo operation to determine
the result of the cast.
The natural model uses mathematical operations on all integer
types. Boundedness conditions are dropped, except for unsigned
integers being non-negative. Dropping the bounds prevents expen-
sive calculations by the prover. Casts between integer types are still
interpreted with modular arithmetic.
The RTE andWP plugins are examples of prior work onwhere asser-
tions should be generated to detect integer overflows. Furthermore,
they highlight the possibility of adding a setting to VerCors to au-
tomatically add the bound-checking predicates. The natural model
of the WP plugin reasons about integers the same way as VerCors
currently does. The considerations for both models of reasoning
highlight one of the trade-offs for full verification for the absence of
integer overflows: verification time. Since verification time may in-
hibit programmer productivity by way of delayed results, we strive
to make both modes of reasoning possible. To accommodate the
possibility of running VerCors with both the possibility of treating
bounded integers as mathematical integers and as proper bounded
integers, our predicate subtyping design has to take into account
the possibility of backwards compatible behaviour with the current
mode of reasoning for VerCors.
There has been previous work on implementing predicate subtyp-
ing. For example, the PVS verification system has implemented
predicate subtyping using the verification abilities already provided
by PVS [14] [7] [8].
Much mathematical theory has been developed as well for subtyp-
ing. Notably, categorical models that embed a notion of subtyping
have been developed [4] [2]. However, these describe more general
notions of subtypes. Meanwhile, we will be focusing specifically
predicate subtypes.

4 EXAMPLES AND TRANSLATIONS
In this section we first introduce the guidelines we used for deter-
mining the rewrite rules for subtype annotations, after which we
describe the rewrite rules in a language-agnostic way. Finally, this
section will finish with two examples of programs with subtype
annotations and a corresponding program with those annotations
rewritten into their corresponding specifications.
There are multiple abstract rewrite rules for rewriting subtype
annotations into verification annotations. These rewrite rules are
motivated by the goal of making sure a subtyped variable/expres-
sion always fulfill its subtyping predicates at any point that it may
be accessed. This goal induces the following rewrite rules:

• subtypes on function/method input parameters should add
pre-conditions to the function/method asserting that the
subtyped parameters fulfill the relevant predicates.

• subtypes on the return type of a function/method should
add post-conditions to the function/method asserting that
the return value of the function/method satisfies the subtype
predicates.

• expressions/statements that assign a value to a subtyped
variable/a field of a subtyped variable should have assertions
added after the assignment that assert that the new value of
the variable satisfies the subtype predicates.

Note that this list is not necessarily exhaustive, as different program-
ming languages may have different features for mutating values.We
have chosen for generating assertions after variable assignments be-
cause of ease of implementation in VerCors. An alternative method
would be adding an assertion before the assignment that checks the
result of the assignment expression. Both options would prevent
the variable from reaching an invalid state, meaning the list of
rewrite rules may be amended to include assertion generation be-
fore assignments instead. Another choice we made was to inline the
subtype predicates, rather than requiring them to be unfolded like
predicates in VerCors. The reason we made this choice is because
the subtyping system may generate a lot of proof obligations for
subtyped variables. Since there may be quite a few assertions about
the subtype, we wanted to avoid requiring unfolding the subtype
for basic operations that require simple proofs. One example of
such an operation would be indexing an array. VerCors requires
a value used for indexing to be smaller than the array length. If
a variable is subtyped to be within that range, it would need to
be unfolded every time an array gets indexed. For this reason, we
decided to make the default behaviour inline the subtype predicates.
Another comment on the rewrite rules: type casts for integer types
should be treated as functions with its input argument subtyped
with a predicate corresponding to the bounds of the type that is
casted to.
To add multiple subtype restrictions to a type, the relevant subtype
names may be written with spaces between the name. These will
be converted into a conjugated predicate, since the variable must
adhere to all the subtype predicates.
The second list of parameters for the subtype declarations are to
be substituted with constant values. These constant values must
be given when adding the subtyping restriction to a type. In the
below code example the "Index" subtype is an example of a subtype
with extra parameters. These parameters allow abstracting over
constant values, which may be used in cases where the difference
between subtype predicates may be a constant value.
Below is a Java example using VerCors annotations. We numbered
the lines with subtype applications in the example and gave the
corresponding line numbers for the corresponding specifications
in the rewritten version of the examples:

public class SubtypingExample {
//@ subtype NonZero(int x)() = x != 0;
/*@ subtype Byte(int x)() = x >= -128

&& x <= 127; @*/
//@ subtype NonNull(int[] x)() = x != null;
/*@ subtype Index(int x)(int length) =

3

TScIT 41, July 05, 2024, Enschede, The Netherlands Tycho Dubbeling

x < length; @*/

//@ ensures \result == x/y;
public static int division(int x,

1 /*@ NonZero @*/ int y) {
return x/y;

}

public static void main(String[] args) {
2 /*@ Byte @*/ int result = division(3,5);
3 /*@ NonNull @*/ int[] array = new int[4];
4 /*@ Index(array.length) @*/ int index = 3;

array[index] = result;
}

}

This example would be rewritten into:

public class SubtypingExample {

1 //@ requires y != 0;
//@ ensures \result == x/y;
public static int division(int x, int y) {

return x/y;
}

public static void main(String[] args) {
int result = division(3,5);

2 //@ assert result >= -128 && result <= 127;
int[] array = new int[4];

3 //@ assert array != null;
int index = 3;

4 //@ assert index < array.length.
array[index] = result;

3 //@ assert array[index] != null;
// asignment to a field causes check

}
}

Another example in Java, but with multiple subtypes annotated at
a single variable:

public class NonNullVectors {
//@ subtype nonNull(int[] xs)() = xs!=null;
//@ subtype len2(int[] xs)() = xs.length==2;
//@ subtype len3(int[] xs)() = xs.length==3;

//@ requires Perm(xs[*],1);
//@ ensures Perm(xs[*],1);
private static void swap(

1 /*@ nonNull len2 @*/ int[] xs) {
int left = xs[0];
int right = xs[1];
xs[0] = right;
xs[1] = left;

}

//@ requires Perm(xs[*],1) ** Perm(ys[*],1);
//@ ensures Perm(xs[*],1) ** Perm(ys[*],1);

4 private static /*@ nonNull len3 @*/ int[] cross(
2 /*@ nonNull len3 @*/ int[] xs,
3 /*@ nonNull len3 @*/ int[] ys) {

int left = xs[1]*ys[2] - xs[2]*ys[1];
int middle = xs[2]*ys[0] - xs[0]*ys[2];
int right = xs[0]*ys[1] - xs[1]*ys[0];
return new int[]{left,middle,right};

}
}

which will be rewritten to:

public class NonNullVectors {

1 //@ requires xs!=null
1 //@ requires xs.length==2;

//@ requires Perm(xs[*],1);
//@ ensures Perm(xs[*],1);
private static void swap(int[] xs) {

int left = xs[0];
int right = xs[1];
xs[0] = right;
xs[1] = left;

}

2 //@ requires xs!=null
2 //@ requires xs.length==3;
3 //@ requires ys!=null
3 //@ requires ys.length==3;

//@ requires Perm(xs[*],1) ** Perm(ys[*],1);
4 //@ ensures \result!=null
4 //@ ensures \result.length==3;

//@ ensures Perm(xs[*],1) ** Perm(ys[*],1);
private static int[] cross(int[] xs, int[] ys) {

int left = xs[1]*ys[2] - xs[2]*ys[1];
int middle = xs[2]*ys[0] - xs[0]*ys[2];
int right = xs[0]*ys[1] - xs[1]*ys[0];
return new int[]{left,middle,right};

}
}

Both rewritten versions of the examples above should verify. Our
implementation is capable of properly verifying both examples as
expected.

5 IMPLEMENTATION
We managed to implement a prototype of the rewrite rules in Ver-
Cors. We have added subtyping annotations to the Java parser for
VerCors and subtype declarations to the specification parser for
VerCors. Furthermore, we have added a rewrite step to the transfor-
mation phase of VerCors. Currently, the prototype implementation
implements the function contract rewrite rules for methods and
generates an assert at variable assignments. The prototype also
implements annotating a type with multiple subtypes. Finally, we

4

Predicate subtyping in VerCors TScIT 41, July 05, 2024, Enschede, The Netherlands

managed to implement the constant parameters for subtype applica-
tions like in the "Index" subtype in the examples from the previous
section.
Because of time constraints we were not able to implement all the
planned features. We did not manage to add assertions for variables
declared in forall/exists clauses. We also do not yet check for side
effects in object methods upholding the subtype predicates. Finally,
we did not manage to implement a setting to enable subtyping for
bounded integers by default, meaning that VerCors will still treat
bounded integers as mathematical integers when no annotations
are present.
We do not expect any conceptual problems for implementing these
missing features. The conceptual groundwork for their implemen-
tation is already present and just needs engineering time spent on
implementing them.

6 THEORY
This section is split into three subsections. First we will be con-
structing a preorder to express a subtyping relation for predicate
subtypes. Then we will be converting the preorder into a category,
using said category to show how certain subtypes for a fixed type re-
late to each other. In the third subsection we will finish by showing
how certain subtype-categories relate to each other.

The preorder of subtypes of a type
We will start this section by identifying a preorder on the set of
all predicate subtypes of a type. This will give us confidence that
predicate subtyping does indeed act like a subtyping relation. For
this section we will assume the logic used to be classical predicate
logic, meaning that we assume the law of excluded middle (¬𝑃 ∨ 𝑃

is always true). As a refresher, a preorder on a set P is a binary
relation R for which the following hold:

Definition 6.1.

• R is transitive (∀𝑎, 𝑏, 𝑐 ∈ P.𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ⇒ 𝑎 ≤ 𝑐)
• R is reflexive (∀𝑎 ∈ P.𝑎 ≤ 𝑎)

We find that we can construct such a relation for all predicate
subtypes of any fixed type.
We will first establish a notational convention for predicate sub-
types. The tuple (𝑝𝑟𝑒𝑑,𝐴), where 𝐴 is the base type and 𝑝𝑟𝑒𝑑 the
subtype predicate, will be abbreviated as 𝐴. When writing 𝑎 : 𝐴 we
take it to mean that 𝑎 is an element of the base type of 𝐴 for which
the predicate expression holds true. We will use P𝐴 to denote the
predicate carried by the predicate subtype 𝐴. We will only consider
subtypes up to equivalence of predicates, meaning that 𝐴 � 𝐵 if
and only if P𝐴 is equivalent to P𝐵 in predicate logic.
We will now define the previously mentioned subtyping relation S
to be {(𝐴, 𝐵) |∀𝑎 : 𝐴.𝑎 : 𝐵}. This may be read as "(𝐴, 𝐵) ∈ S if every
term of A is a term of B". Since every admitted term of A is a term
of A by definition, we know that S is reflexive. We also know that
the relation S is transitive, since

(∀𝑎 : 𝐴.𝑎 : 𝐵) ∧ (∀𝑏 : 𝐵.𝑏 : 𝐶) ⇒ ∀𝑎 : 𝐴.𝑎 : 𝐶

One example of such a preorder is the preorder of subtypes on the
boolean type as seen in Figure 2:

𝐵𝑜𝑜𝑙

𝑖𝑠𝐹𝑎𝑙𝑠𝑒 𝑖𝑠𝑇𝑟𝑢𝑒

𝑒𝑚𝑝𝑡𝑦

𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠

𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠

Figure 2: Boolean subtype preorder

We only considered a subset of possible predicate subtypes of
boolean for brevity sake.

The category of subtypes of a type
Now that we have obtained a preorder on the subtypes of a type,
we can construct a corresponding category [5]. We will use this
category to show that we can deduce certain subtype relations
from other subtype relations. One thing we will show that we
can construct a common supertype and a common subtype for all
subtypes of a base type.Wewill also show a generic way of finding a
least common supertype (respectively subtype) for two subtypes of
a type. Furthermore, we will show that we have a notion of currying
for subtyping relations as described in the previous subsection.
A category C is a tuple composed of:

Definition 6.2.

• a class of objects 𝑂𝑏 (C)
• for each pair of objects𝑥,𝑦 ∈ 𝑂𝑏 (C) there is a class𝐻𝑜𝑚C (𝑥,𝑦)
whose elements are called morphisms (from x to y)

• for each object 𝑥 there is an unique identity morphism 𝑖𝑑𝑥
in 𝐻𝑜𝑚C (𝑥, 𝑥)

• a composition map

◦ : 𝐻𝑜𝑚C (𝑥,𝑦) × 𝐻𝑜𝑚C (𝑦, 𝑧) → 𝐻𝑜𝑚C (𝑥, 𝑧)

where 𝑥,𝑦, 𝑧 ∈ 𝑂𝑏 (C)
This composition map must be associative

(𝑓 ◦ 𝑔) ◦ ℎ = 𝑓 ◦ (𝑔 ◦ ℎ)

and identity morphisms must act like identity elements for the
composition map

𝑖𝑑𝑥 ◦ 𝑓 = 𝑓 ∧ 𝑓 ◦ 𝑖𝑑𝑦 = 𝑓

We will now translate the preorder S on the set of subtypes of a
type 𝑋 , henceforth denoted as 𝑆𝑢𝑏 (𝑋), to a category S(𝑋):

• let 𝑂𝑏 (S(𝑋)) = 𝑆𝑢𝑏 (𝑋)
• if (𝑥,𝑦) ∈ S
then let 𝐻𝑜𝑚S(X) (𝑥,𝑦) = {(𝑥,𝑦)}
else 𝐻𝑜𝑚S(X) (𝑥,𝑦) = {}

• let ◦((𝑥,𝑦), (𝑦, 𝑧)) := (𝑥, 𝑧)
Wefind that every object inS(X) has an identitymorphism because
S is reflexive and

∀𝑥,𝑦 ∈ 𝑂𝑏 (S(𝑋)) . (𝑥, 𝑥) ◦ (𝑥,𝑦) = (𝑥,𝑦) = (𝑥,𝑦) ◦ (𝑦,𝑦)

Furthermore, we find that ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑂𝑏 (S(𝑋)) :

((𝑎, 𝑏) ◦ (𝑏, 𝑐)) ◦ (𝑐, 𝑑) = (𝑎, 𝑑) = (𝑎, 𝑏) ◦ ((𝑏, 𝑐) ◦ (𝑐, 𝑑))
5

TScIT 41, July 05, 2024, Enschede, The Netherlands Tycho Dubbeling

We also find that for any two objects 𝑥,𝑦 ∈ 𝑂𝑏 (S(𝑋)), the existence
of morphisms both ways imply that the objects are isomorphic. This
can be seen by the equations

(𝑥,𝑦) ◦ (𝑦, 𝑥) = (𝑥, 𝑥) = 𝑖𝑑𝑥

and
(𝑦, 𝑥) ◦ (𝑥,𝑦) = (𝑦,𝑦) = 𝑖𝑑𝑦

Isomorphism in S(𝑋) means that both subtypes admit the same
elements, giving us a sanity check that our category makes sense
for what we which to study through it.

𝐵𝑜𝑜𝑙 𝑖𝑠𝐹𝑎𝑙𝑠𝑒 | |𝑖𝑠𝑇𝑟𝑢𝑒

𝑖𝑠𝐹𝑎𝑙𝑠𝑒 𝑖𝑠𝑇𝑟𝑢𝑒

𝑒𝑚𝑝𝑡𝑦

Figure 3: Boolean subtype category

Now that we have constructed a category S(𝑋), we are interested
in the properties it satisfies. Particularly, we will want to show that
S(𝑋) is a cartesian closed category. Showing that S(𝑋) is a carte-
sian closed categorywill tell us that for anymorphism 𝑓 : 𝐴×𝐵 → 𝐶

we have unique corresponding morphism 𝑔 : 𝐴 → 𝐶𝐵 . In more
familiar categories like the category of sets, this correspondence is
often called currying.

Definition 6.3. A category C is cartesian closed if:
• C has a terminal object
• any two objects𝐴, 𝐵 ∈ 𝑂𝑏 (C) have a product𝐴×𝐵 in𝑂𝑏 (C)
• any two objects 𝐴, 𝐵 ∈ 𝑂𝑏 (C) have an exponential object
𝐴𝐵 in 𝑂𝑏 (C)

The first two properties we wish to show are the existence of an
initial object and a terminal object. The existence of these objects
tells us that there is a subtype that is the supertype of all subtypes
of 𝑋 (terminal object) and that there is a subtype that is a subtype
of all subtypes of 𝑋 (initial object).

Definition 6.4. In category theory, the initial object is character-
ized by having exactly one morphism from itself to every other
object in the category.

Definition 6.5. Similarly, the terminal object is the object in a
category that has exactly one incoming morphism for every object
in the category.

We find that, for every type 𝑋 , the category S(𝑋) contains a
initial and terminal object. The initial object in S(𝑋) is given by
the subtype 𝑒𝑚𝑝𝑡𝑦 with the predicate 𝑓 𝑎𝑙𝑠𝑒 . Since 𝑒𝑚𝑝𝑡𝑦 admits
no terms, all of its term are admitted by all subtypes of 𝑋 . As such,
there is a morphism to every other object. As there is either only
one morphism (𝑥,𝑦) or no morphisms ∀𝑥,𝑦 ∈ 𝑂𝑏 (S(𝑋)), we know
that 𝑒𝑚𝑝𝑡𝑦 must have exactly one morphism to all other subtypes
of 𝑋 . Similarly, we find that 𝑋 with predicate "true" admits every
term of 𝑋 . Since all subtypes of 𝑋 only admit terms of 𝑋 , every

subtype of𝑋 has a morphism to𝑋 . For example, inS(𝑖𝑛𝑡) the initial
object is the empty subtype and the terminal object is int as seen
in Figure 4:

𝑖𝑛𝑡

𝑖𝑠𝐸𝑣𝑒𝑛 𝑁𝑎𝑡 : 𝑥 ≥ 0 𝑖𝑠𝑂𝑑𝑑

𝑒𝑚𝑝𝑡𝑦

Figure 4: int subtype category

the choice to show the subtypes isEven, isOdd and Nat was arbi-
trary, since any predicate subtypes of int could have been used to
illustrate the concepts of initial and terminal objects.
Another property of interest is the presence of products and coprod-
ucts. Taking the product (respectivelly coproduct) of two subtypes
will give us a subtype (respectivelly supertype) with a minimally
(respectivelly maximally) restrictive predicate for both given sub-
types. We will proceed to first give the definition of a product and
then show that S(𝑋) contains the product of any two objects in
S(𝑋).

Definition 6.6. Given a category C, a tuple

(𝑝 ∈ 𝑂𝑏 (C), 𝜋𝑎 : 𝑝 → 𝑎, 𝜋𝑏 : 𝑝 → 𝑏)

is a product if, given any other tuple

(𝑐 ∈ 𝑂𝑏 (C), 𝑓 : 𝑐 → 𝑎,𝑔 : 𝑐 → 𝑏)

there exists a unique morphism

(𝑓 , 𝑔) : 𝑐 → 𝑝

such that both 𝑓 = 𝜋𝑎 ◦ (𝑓 , 𝑔) and 𝑔 = 𝜋𝑏 ◦ (𝑓 , 𝑔) hold.

𝐶

𝐴 𝐴 × 𝐵 𝐵

𝑓 𝑔(𝑓 ,𝑔)

𝜋𝐵𝜋𝐴

Figure 5: Product visualized

We will now show that for any 𝑥,𝑦 ∈ S(𝑋) the product 𝑥 × 𝑦

exists in S(𝑋). Consider subtypes 𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡 ∈ S(𝑋) and the
subtype𝑀𝑖𝑑𝑑𝑙𝑒 with predicate P𝐿𝑒𝑓 𝑡 ∧ P𝑅𝑖𝑔ℎ𝑡 . By predicate logic
we know that

P𝑀𝑖𝑑𝑑𝑙𝑒 ⇒ P𝐿𝑒𝑓 𝑡 ∧ P𝑀𝑖𝑑𝑑𝑙𝑒 ⇒ P𝑅𝑖𝑔ℎ𝑡

meaning that ∀𝑚 : 𝑀𝑖𝑑𝑑𝑙𝑒 we find that𝑚 : 𝐿𝑒 𝑓 𝑡 ∧𝑚 : 𝑅𝑖𝑔ℎ𝑡 . Given
some subtype𝐶 , with morphisms 𝑓 : 𝐶 → 𝐿𝑒 𝑓 𝑡 and 𝑔 : 𝐶 → 𝑅𝑖𝑔ℎ𝑡 ,
we know that

P𝐶 ⇒ P𝐿𝑒𝑓 𝑡 ∧ P𝐶 ⇒ P𝑅𝑖𝑔ℎ𝑡

Since P𝐶 ⇒ P𝐿𝑒𝑓 𝑡 ∧ P𝐶 ⇒ P𝑅𝑖𝑔ℎ𝑡 can be rewritten to P𝐶 ⇒
P𝐿𝑒𝑓 𝑡 ∧P𝑅𝑖𝑔ℎ𝑡 , we know that there exists a morphism (𝐶,𝑀𝑖𝑑𝑑𝑙𝑒).

6

Predicate subtyping in VerCors TScIT 41, July 05, 2024, Enschede, The Netherlands

Since for any two objects 𝑥,𝑦 ∈ S(𝑋) there can only be one mor-
phism from 𝑥 to 𝑦, we know that

(𝑀𝑖𝑑𝑑𝑙𝑒, (𝑀𝑖𝑑𝑑𝑙𝑒, 𝐿𝑒 𝑓 𝑡), (𝑀𝑖𝑑𝑑𝑙𝑒, 𝑅𝑖𝑔ℎ𝑡))
uphold the properties of a product. Since 𝐿𝑒 𝑓 𝑡 and 𝑅𝑖𝑔ℎ𝑡 were
arbitrary objects in S(𝑋), we find that the product exists for any
two objects in S(𝑋).

𝑥 >= 0 && (𝑥 mod 4) == 0

𝑥 >= 0 𝑥 >= 0 && (𝑥 mod 2) == 0 (𝑥 mod 2) == 0

Figure 6: A product in S(𝑖𝑛𝑡)

Next up we will give the definition of a coproduct in a category:

Definition 6.7. Given a category C, a tuple
(𝑝 ∈ 𝑂𝑏 (C), 𝜄𝑎 : 𝑎 → 𝑝, 𝜄𝑏𝑏 → 𝑝)

satisfies the universal property of a coproduct if given any other
tuple

(𝑐 ∈ 𝑂𝑏 (C), 𝑓 : 𝑎 → 𝑐, 𝑔 : 𝑏 → 𝑐)
there exists a unique morphism

(𝑓 |𝑔) : 𝑝 → 𝑐

such that 𝑓 = (𝑓 |𝑔) ◦ 𝜄𝑎 and 𝑔 = (𝑓 |𝑔) ◦ 𝜄𝑏 .

𝐶

𝐴 𝐴|𝐵 𝐵𝜄𝑎

𝑓 (𝑓 |𝑔)

𝜄𝑏

𝑔

Figure 7: Coproduct visualized

We find that a coproduct exists for any 𝑥,𝑦 ∈ S(𝑋):
Consider subtypes 𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡 ∈ S(𝑋) and the subtype 𝑀𝑖𝑑𝑑𝑙𝑒

with predicate P𝐿𝑒𝑓 𝑡 ∨ P𝑅𝑖𝑔ℎ𝑡 .
Since

P𝑀𝑖𝑑𝑑𝑙𝑒 = P𝐿𝑒𝑓 𝑡 ∨ P𝑅𝑖𝑔ℎ𝑡

we know that

P𝐿𝑒𝑓 𝑡 ⇒ P𝑀𝑖𝑑𝑑𝑙𝑒 ∧ P𝑅𝑖𝑔ℎ𝑡 ⇒ P𝑀𝑖𝑑𝑑𝑙𝑒

For any subtype 𝐶 with morphisms 𝑓 : 𝐿𝑒 𝑓 𝑡 → 𝐶 and 𝑔 : 𝑅𝑖𝑔ℎ𝑡 →
𝐶 we know that

(P𝐿𝑒𝑓 𝑡 ⇒ P𝐶 ∨ P𝑅𝑖𝑔ℎ𝑡 ⇒ P𝐶) = P𝐿𝑒𝑓 𝑡 ∨ P𝑅𝑖𝑔ℎ𝑡 ⇒ P𝐶
This gives us P𝑀𝑖𝑑𝑑𝑙𝑒 ⇒ P𝐶 , meaning that (𝑓 |𝑔) does indeed exist
given any 𝑓 and 𝑔. Like with the case of the product, we find that

(𝑓 = (𝑓 |𝑔) ◦ 𝜄𝐿𝑒𝑓 𝑡) ∧ (𝑔 = (𝑓 |𝑔) ◦ 𝜄𝑏)
because, for any two objects 𝑥,𝑦 ∈ S(𝑋), the only possible mor-
phism is (𝑥,𝑦). Since 𝐿𝑒 𝑓 𝑡 and𝑅𝑖𝑔ℎ𝑡 were arbitrary objects inS(𝑋),
we can construct a coproduct for any two objects in S(𝑋).

We will now discuss the last property of S(𝑋) that we will discuss
in this subsection, the existence of the exponential object 𝑏𝑎 for any
𝑎, 𝑏 ∈ S(𝑋). The definition of an exponential object is as follows:

𝑥 == 1| |𝑥 == 2| |𝑥 == 3

𝑥 == 1 𝑥 == 1| |𝑥 == 2 𝑥 == 2

Figure 8: A coproduct in S(𝑖𝑛𝑡)

Definition 6.8. Consider the category𝐶 with objects 𝑎, 𝑏 ∈ 𝑂𝑏 (𝐶)
and let 𝐶 contain all binary products with 𝑏. An exponential object
is an object 𝑏𝑎 with a morphism

𝑓 : 𝑏𝑎 × 𝑎 → 𝑏

if, given any object 𝑐 ∈ 𝑂𝑏 (𝐶) with morphism

𝑔 : 𝑐 × 𝑎 → 𝑏

there is a unique morphism

ℎ : 𝑐 → 𝑏𝑎

such that:
𝑓 ◦ (ℎ × 𝑖𝑑𝑎) = 𝑔

This equation is visualized in Figure 9:

𝐶 ×𝐴

𝐵𝐴 ×𝐴 𝐵

𝑔
ℎ×𝑖𝑑𝐴

𝑓

Figure 9: Exponential visualized

We will now show that we can construct an exponential object for
any two objects in S(𝑋):
Consider objects 𝑆𝑜𝑢𝑟𝑐𝑒,𝑇𝑎𝑟𝑔𝑒𝑡 ∈ 𝑂𝑏 (S(𝑋)) and let𝐸𝑥𝑝 ∈ 𝑂𝑏 (S(𝑋))
be the subtype with predicate

P𝑆𝑜𝑢𝑟𝑐𝑒 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡 = ¬P𝑆𝑜𝑢𝑟𝑐𝑒 ∨ P𝑇𝑎𝑟𝑔𝑒𝑡
We find that for any such object 𝐸𝑥𝑝 , we have a morphism

𝑓 : 𝐸𝑥𝑝 × 𝑆𝑜𝑢𝑟𝑐𝑒 → 𝑇𝑎𝑟𝑔𝑒𝑡

since in classical predicate logic

(¬P𝑆𝑜𝑢𝑟𝑐𝑒 ∨ P𝑇𝑎𝑟𝑔𝑒𝑡) ∧ P𝑆𝑜𝑢𝑟𝑐𝑒 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡
We will now continue to show that 𝐸𝑥𝑝 is an exponential object
𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒 . Consider some object 𝑆𝑒𝑙𝑒𝑐𝑡 ∈ 𝑂𝑏 (S(𝑋)) and a mor-
phism 𝑔 : 𝑆𝑒𝑙𝑒𝑐𝑡 × 𝑆𝑜𝑢𝑟𝑐𝑒 → 𝑇𝑎𝑟𝑔𝑒𝑡 . The existence of 𝑔 implies
that

P𝑆𝑒𝑙𝑒𝑐𝑡 ∧ P𝑆𝑜𝑢𝑟𝑐𝑒 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡
We now find that

P𝑆𝑒𝑙𝑒𝑐𝑡 ∧ P𝑆𝑜𝑢𝑟𝑐𝑒 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡
= ¬(P𝑆𝑒𝑙𝑒𝑐𝑡 ∧ P𝑆𝑜𝑢𝑟𝑐𝑒) ∨ P𝑇𝑎𝑟𝑔𝑒𝑡
= ¬P𝑆𝑒𝑙𝑒𝑐𝑡 ∨ ¬P𝑆𝑜𝑢𝑟𝑐𝑒 ∨ P𝑇𝑎𝑟𝑔𝑒𝑡
= P𝑆𝑒𝑙𝑒𝑐𝑡 ⇒ ¬P𝑆𝑜𝑢𝑟𝑐𝑒 ∨ P𝑇𝑎𝑟𝑔𝑒𝑡

meaning that the existence of 𝑔 implies the existence of a morphism
ℎ : 𝑆𝑒𝑙𝑒𝑐𝑡 → 𝐸𝑥𝑝 . Because S(𝑋) has either no morphisms or

7

TScIT 41, July 05, 2024, Enschede, The Netherlands Tycho Dubbeling

exactly one morphism from a fixed object to another fixed object,
we know that ℎ is unique. As a result, we find that

𝑓 ◦ (ℎ × 𝑖𝑑𝑆𝑜𝑢𝑟𝑐𝑒) = 𝑔

As a sanity check, we find that

(P𝑆𝑜𝑢𝑟𝑐𝑒 ∧ P𝑆𝑒𝑙𝑒𝑐𝑡 ⇒ P𝐸𝑥𝑝 ∧ P𝑆𝑜𝑢𝑟𝑐𝑒)
∧

(P𝐸𝑥𝑝 ∧ P𝑆𝑜𝑢𝑟𝑐𝑒 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡)
gives us

P𝑆𝑜𝑢𝑟𝑐𝑒 ∧ P𝑆𝑒𝑙𝑒𝑐𝑡 ⇒ P𝑇𝑎𝑟𝑔𝑒𝑡
As such, 𝐸𝑥𝑝 is an exponential object 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒 . Since 𝑆𝑜𝑢𝑟𝑐𝑒
and𝑇𝑎𝑟𝑔𝑒𝑡 were arbitrary objects inS(𝑋), we findwe can construct
an exponential object for any two objects in S(𝑋).

𝑥 ≥ 0 && 𝑥 < 8

(𝑥 < 8 ⇒ (𝑥 ≥ 0 && 𝑥 < 8)) && 𝑥 < 8 𝑥 ≥ 0 && 𝑥 < 8

Figure 10: exponential object in S(𝑖𝑛𝑡)

Since we have shown that S(𝑋) has a terminal object, a product for
any two objects and an exponential object 𝐵𝐴 for any two objects 𝐵
and𝐴, we have now shown thatS(𝑋) is a Cartesian closed category
for any type𝑋 [10]. On top of that we have shown an even stronger
result: S(𝑋) is a Bicartesian closed category. A Bicartesian closed
category is a Cartesian closed category with an initial object and a
coproduct for any two objects in the category [9].

The category of subtype categories
In this subsection we will be studying how S(𝑋) with different
types 𝑋 relate to each other. We will primarily do so through func-
tors between these categories. The insights given by functors will
give us insights on how to translate subtypes between related types.
A functor 𝐹 from a category C to a category D is a map such that:

• given 𝑋 ∈ 𝑂𝑏 (C), 𝐹 (𝑋) ∈ 𝑂𝑏 (D)
• 𝐹 maps any morphism 𝑓 : 𝑋 → 𝑌 in C to a morphism
𝐹 (𝑓) : 𝐹 (𝑋) → 𝐹 (𝑌) in D

• 𝐹 (𝑖𝑑𝑋) = 𝑖𝑑𝐹 (𝑋)
• 𝐹 (𝑔 ◦ 𝑓) = 𝐹 (𝑔) ◦ 𝐹 (𝑓)

One kind of functor we are interested in is a functor from S(𝑖𝑛𝑡1)
to S(𝑖𝑛𝑡2), where both 𝑖𝑛𝑡1 and 𝑖𝑛𝑡2 are bounded integers.
Let 𝑌 be a bounded integer type with lower bound 𝑎 and upper
bound 𝑏 and let 𝑋 be a bounded integer type with lower bound
𝑥 < 𝑎 and upper bound 𝑦 < 𝑏. Let 𝜄𝑋→𝑌 : S(𝑋) → S(𝑌) be a map
that maps any subtype 𝐴 ∈ 𝑂𝑏 (S(𝑋)) to subtype 𝐵 ∈ 𝑂𝑏 (S(𝑌))
where

P𝐵 = P𝐴 ∧ 𝑣𝑎𝑟 ≥ 𝑥 ∧ 𝑣𝑎𝑟 ≤ 𝑦

(𝑣𝑎𝑟 being a placeholder name for the subtyped variable).
Let 𝜄𝑋→𝑌 map morphisms

𝑓 : 𝐴 → 𝐵

to morphisms

𝜄𝑋→𝑌 (𝑓) : 𝜄𝑋→𝑌 (𝐴) → 𝜄𝑋→𝑌 (𝐵)

For this to be well-defined, we need to show that such morphisms
always exist in S(𝑌). Given 𝐴, 𝐵,𝐶 ∈ 𝑂𝑏 (S(𝑋)) with morphisms

𝑓 : 𝐴 → 𝐵,𝑔 : 𝐵 → 𝐶

we find that the existence of 𝑓 and 𝑔 mean that P𝐴 ⇒ P𝐵 and
P𝐵 ⇒ P𝐶 . As such, we know that

P𝜄𝑋→𝑌 (𝐴) = P𝐴 ∧ 𝑣𝑎𝑟 ≥ 𝑥 ∧ 𝑣𝑎𝑟 ≤ 𝑦

P𝜄𝑋→𝑌 (𝐵) = P𝐵 ∧ 𝑣𝑎𝑟 ≥ 𝑥 ∧ 𝑣𝑎𝑟 ≤ 𝑦

and

(P𝐴 ∧ 𝑣𝑎𝑟 ≥ 𝑥 ∧ 𝑣𝑎𝑟 ≤ 𝑦) ⇒ (P𝐵 ∧ 𝑣𝑎𝑟 ≥ 𝑥 ∧ 𝑣𝑎𝑟 ≤ 𝑦)

As such, we know that 𝜄𝑋→𝑌 (𝑓) exists. For the same reason, we
know that 𝜄𝑋→𝑌 (𝑔) exists. Because there is at most one morphism
from 𝜄𝑋→𝑌 (𝐴) to 𝜄𝑋→𝑌 (𝐶), we know that

𝜄𝑋→𝑌 (𝑔 ◦ 𝑓) = 𝜄𝑋→𝑌 (𝑔) ◦ 𝜄𝑋→𝑌 (𝑓)

Furthermore, we find that

𝜄𝑋→𝑌 (𝑖𝑑𝑋) = 𝑖𝑑𝜄𝑋→𝑌 (𝑋)

As such 𝜄𝑋→𝑌 is in fact a functor.

7 CONCLUSION
We have determined a set of rewrite rules for verifying predicate
subtypes using VerCors. Alongside these rewrite rules, we have
given the original motivation for these rules. This allows a guideline
for extending the list of rewrite rules to support applying predicate
subtypes in more contexts. Through this, we have created a tem-
plate for adding predicate subtyping to VerCors in such a way that
bounded integers may be supported by it.
Furthermore, we have created a prototype implementation to show
that implementing this template is practically possible. This is only
a partial implementation, since time constraints made implement-
ing all planned features infeasible.
We have also described the intended semantics for predicate sub-
types in a context-agnostic manner, providing a base for mathemat-
ical proofs about the predicate subtyping system.

Further work
As was mentioned in the implementation section, the prototype
does not implement all planned functionality yet. As such, the pro-
totype may be further expanded to support the unrealised features.
In this thesis, we studied the semantics of predicate subtyping only
with regard to classical first order logic. An investigation of the
properties of our category with respect to different logics may high-
light which parts of the semantics of the category are dependent
on the logic used. Furthermore, we believe that it may be worth
exploring how S(𝑋) and boolean categories are related [15]. This
suggestion is made because of similarities between the objects with
universal properties in S(𝑋) and those in a boolean category de-
scribing first order logic.
We have also not yet shown whether the S(𝑋) categories for
bounded integers form subcategories of S(𝑌) for bounded inte-
gers with bounds that include 𝑋 . Further functors that may be
of interest for further investigation are functors from interface
subtypes to the subtypes of an implementation of said interface.

8

Predicate subtyping in VerCors TScIT 41, July 05, 2024, Enschede, The Netherlands

REFERENCES
[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. 2019. Leveraging Rust Types

for Modular Specification and Verification, In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA). Proc. ACM Program. Lang. 3,
OOPSLA, 147:1–147:30. https://doi.org/10.1145/3360573

[2] William Babonnaud. 2021. Covariant Subtyping Applied to Semantic Predicate
Calculi. In LACL 2021 - Logical Aspects of Computational Linguistics. Montpellier
(online), France. https://inria.hal.science/hal-03542057

[3] Patrick Baudin, François Bobot, Loïc Correnson, and Zaynah Dargaye. [n. d.].
WP Plug-in Manual. CEA LIST, Software Safety Laboratory. https://frama-
c.com/download/wp-manual-Chlorine-20180501.pdf

[4] Greta Coraglia and Jacopo Emmenegger. 2023. Categorical models of subtyp-
ing. ArXiv abs/2312.14600 (2023). https://api.semanticscholar.org/CorpusID:
266520932

[5] Brendan Fong and David I. Spivak. 2019. Resource Theories: Monoidal Preorders
and Enrichment. Cambridge University Press, 38–76.

[6] Philippe Herrmann and Julien Signoles. [n. d.]. Frama-C’s annotation generator
plug-in. CEA LIST, Software Safety Laboratory. https://frama-c.com/download/
rte-manual-Sulfur-20171101.pdf

[7] Gabriel Hondet. 2022. Expressing predicate subtyping in computational logical
frameworks. Université Paris-Saclay. https://theses.hal.science/tel-03855351/

[8] Joe Hurd. 2001. Predicate Subtyping with Predicate Sets. In Theorem Proving
in Higher Order Logics, Richard J. Boulton and Paul B. Jackson (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 265–280.

[9] Joachim Lambek. 1974. Functional completeness of cartesian categories. Annals
of Mathematical Logic 6, 3-4 (1974), 259–292.

[10] F. William Lawvere. 1969. Diagonal arguments and cartesian closed categories.
In Category Theory, Homology Theory and their Applications II. Springer Berlin
Heidelberg, Berlin, Heidelberg, 134–145.

[11] Gary Leavens, Albert L. Baker, and Clyde D. Ruby. 2006. Preliminary design
of JML: a behavioral interface specification language for java. ACM SIGSOFT
Software Engineering Notes 31 (2006), 38 pages. https://doi.org/10.1145/1127878

[12] Ursula Martin, Erik A. Mathiesen, and Paulo Oliva. 2006. Hoare Logic in the
Abstract. In Computer Science Logic, Zoltán Ésik (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 501–515.

[13] prustiI32 [n. d.]. Heap-based type encoding. https://viperproject.github.io/prusti-
dev/dev-guide/encoding/types-heap.html

[14] John Rushby, Sam Owre, and N. Shankar. 1998. Subtypes for Specifications:
Predicate Subtyping in PVS. IEEE Transactions on Software Engineering 24 (1998),
709–720. https://ieeexplore.ieee.org/abstract/document/713327

[15] Lutz Strassburger. 2006. What could a Boolean category be?. In Classical Logic and
Computation 2006 (ICALP Workshop). Venice, Italy. https://inria.hal.science/inria-
00130504

[16] viperPreds [n. d.]. Viper tutorial. http://viper.ethz.ch/tutorial/#predicates

9

https://doi.org/10.1145/3360573
https://inria.hal.science/hal-03542057
https://frama-c.com/download/wp-manual-Chlorine-20180501.pdf
https://frama-c.com/download/wp-manual-Chlorine-20180501.pdf
https://api.semanticscholar.org/CorpusID:266520932
https://api.semanticscholar.org/CorpusID:266520932
https://frama-c.com/download/rte-manual-Sulfur-20171101.pdf
https://frama-c.com/download/rte-manual-Sulfur-20171101.pdf
https://theses.hal.science/tel-03855351/
https://doi.org/10.1145/1127878
https://viperproject.github.io/prusti-dev/dev-guide/encoding/types-heap.html
https://viperproject.github.io/prusti-dev/dev-guide/encoding/types-heap.html
https://ieeexplore.ieee.org/abstract/document/713327
https://inria.hal.science/inria-00130504
https://inria.hal.science/inria-00130504
http://viper.ethz.ch/tutorial/#predicates

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Examples and Translations
	5 Implementation
	6 Theory
	7 Conclusion
	References

