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Protoplasts are plant cells without cell walls. They provide a unique single-
cell system to underpin several aspects of modern biotechnology. They
are important in researching fundamental aspects of cell physiology and
cell surface interaction with toxins and pathogens. The segmentation of
protoplast cell images proves to be a difficult task even for the current state-
of-the-art machine learning models. Even though some of them show good
results, most lack accuracy when it comes to automatically segmenting cells
from an image. A prevalent challenge in cell imaging is the occurrence of
out-of-focus blur, which arises because cells are positioned at different levels
along the Z-axis on the chamber slide. This study seeks to enhance automatic
segmentation accuracy by training a U-net model with microscopy image
annotation masks generated using SAM’s segmentation tools.

Additional Key Words and Phrases: Image segmentation, microscopic im-
agery, machine learning, U-net model

1 INTRODUCTION
The research of cells is a vital topic for the accurate assessment of
health conditions. Understanding cell behaviour can lead to higher
accuracy in the detection of certain diseases and better compre-
hension of numerous biological processes. For example, protoplasts
(plant cells) have the potential to regenerate a cell wall and are
proven to be very useful when it comes to creating experimental
systems for many kinds of plant genetic manipulation [3]. Normally,
cell images are segmentedmanually by pathologists, but this method
is extremely time-consuming. Therefore, the need for a cell segmen-
tation algorithm came up pretty naturally. However, the process
of cell segmentation comes as a significant problem due to cells
existing in three-dimensional space. This challenge is amplified by
the use of multiple focal planes during imaging, leading to varying
levels of blurring across cells. As a result, some cells appear more
focused while others are entirely blurred. Consider Figures 1 and 2,
which depict cells in similar states. A noticeable difference arises
between the clarity of the cells taken at various z-levels, showcasing
the impact of different focal planes on cell blurring. In this particular
case, a z-level 18 (Figure 2) provides a clearer separation of cells.

With the evolution of deep learning techniques, computer vision
technologies play an important role in cell segmentation since it is
a classical problem of image processing where an image is divided
into different regions according to a set of features such as shape,
colour or texture. Convolutional neural networks (CNN) attract the
most interest since they allow the development of different image
segmentation models with high accuracy[21]. One big disadvantage
of these networks is that they require large amounts of high-quality
labelled data to be trained upon, and in the case of image segmenta-
tion, this process tends to be time-consuming.
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Fig. 1. Cell image taken at z-level 12

Fig. 2. Cell image taken at z-level 18

Currently, one of the biggest segmentation models is SAM (Seg-
ment AnythingModel)[8]. Its most important feature is that it allows
for instance segmentation rather than semantic segmentation. The
latter classifies pixels based on their semantic meaning, treating all
objects within the same category as one entity, while the former
distinguishes between different objects of the same class, allowing
for better identification and differentiation of the object. Moreover,
SAM was designed to be a foundation model. It shows great results
regarding zero-shot learning, meaning that it manages to segment
images from domains it was not trained on. SAM outputs a 2D array
mask, where pixels that do not belong to an object are labelled as
0 and pixels that are used in the representation of a segmented
instance are labelled with a corresponding numeric value to that
instance. Besides having an automatic segmentation function, the
model provides an interactive segmentation [11] feature that allows
users to use point prompts to highlight the object that should be
segmented. The prompts are of two types, positive or negative, and
help the model distinguish the region that should be segmented
from the image.

2 PROBLEM STATEMENT
This research aims to study various methods to obtain accurate
segmentation results from cell images taken at various focal levels.
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(a) Bright-field image at z-level 16 (b) Fluorescent image at z-level 16

Fig. 3. Comparison between a bright-field (a) and a fluorescent (b) image

Due to the different focal planes, some cells appear blurred, while
others are clearer and more defined. Due to this phenomenon, there
is no way to create an annotation mask based only on one single
image. Moreover, low contrast and blurred edges have always caused
problems affecting cell segmentation performance. There were also
issues in detecting the edges of cells that overlap with each other.
One of the advantages of fluorescent images is that they clearly
show the outline of the cells, ignoring other structures that can be
found in a bright-field image, thus simplifying the segmentation
task. For example, Figure 3 shows this difference. As you can see,
the fluorescent image is darker and shows some blue outlines that
represent the cell walls and ignores the green chloroplast formations
that can be seen in the bright-field image. Therefore, it makes the
job easier for the SAM model to predict the location of the cells.
Figure 4 shows the output of the automatic segmentation using

the “vit-b” image encoder of the SAMmodel and Figure 5 the results
of the labelled image using the interactive segmentation feature
of SAM that shows our correct masks. It is evident that there is
a significant discrepancy between the two figures; the automatic
segmentation algorithm failed to deliver an accurate outcome, re-
sulting in the image being divided into an excessive number of
objects. U-Net [18] is one of the most popular machine learning
architectures used for numerous segmentation tasks. Various re-
search has shown the U-Net model’s efficacy, establishing it as one
of the most commonly used models with exceptional performance in
cell segmentation. As stated in [12], fine-tuning hyper-parameters
and employing efficient image pre-processing techniques can allow
a U-Net model to deliver state-of-the-art results. Consequently, I
decided to train my own U-Net model to assess its performance in
my particular case.

2.1 ResearchQuestions:
The main questions that this research aims to answer are:

(1) How to effectively generate annotation masks for cells
frommultimodal images taken ondifferent focal planes
using interactive segmentation tools?

(2) What is the effectiveness of automatic semantic seg-
mentation of a trainedU-netmodel on cell images taken
on different focal planes?

3 RELATED WORK
In this section, we analyze previous work done on image segmen-
tation and specifically cell segmentation. In 2022, Tingxi et. al.[21]
reviewed most of the techniques used for image segmentation. The
methods are split into two categories: traditional methods and deep
learning methods.

3.1 Traditional Methods
3.1.1 Threshold segmentationmethod[14]. Represents a simplemethod
of separating objects from their background. It involves setting a
threshold value. Pixels in the image are given intensity values and
the ones that are above the threshold are classified as belonging
to one group, while those below it belong to another (typically the
background). This method proved to be extremely accurate when
there is a big contrast between the object of interest and the back-
ground.

3.1.2 Region growing method[6]. This method relies on grouping
neighboring pixels based on a certain criterion such as intensity or
colour. The algorithm starts from a given pixel or region, and then
neighbouring pixels are iteratively added to the region if they meet
the criteria. This technique is effective for segmenting regions with
homogeneous properties.

3.1.3 Active contour segmentation[16]. This process outlines object
boundaries in images, thus resolving image overlaps effectively. It
works by initializing a curve near the object boundary and then
iteratively deforming it to fit the boundary. The contour is attracted
to features such as edges or intensity gradients, while also resisting
factors such as noise or occlusions. The deformation is guided by
energy minimization principles, where an energy function is defined
to balance between fitting the contour to the image features and
maintaining smoothness.
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Fig. 4. Automatic segmentation result

Fig. 5. Interactive segmentation result

3.2 Deep learning methods and cell segmentation
strategies

These methods leverage Convolutional Neural Networks[15] for
analyzing pathological images. CNN processes images through mul-
tiple layers trying to extract the crucial features for classification
or segmentation such as edges, shapes, and various patterns. Archi-
tectures like AlexNet[9] and VGG[19] pioneered image classifica-
tion while FCNs[13] and U-Net[18] revolutionized image segmen-
tation, particularly in medical imaging. CNN-based models excel
over traditional approaches significantly benefitingmedical research
by providing more precise cell image segmentation results. A no-
table method for cell segmentation was presented by C. Hernández
et.al.[5]. He described a two-step process using convolutional neu-
ral networks to count cells in microscopy images. Firstly a feature
pyramid network(FPN)[10] is used to generate a cell mask. The FPN
is designed to learn features at different scales, which improves
the accuracy of the segmentation mask. Secondly, a VGG-11-based
network is used to count the cells in the foreground mask generated
in the previous step. The authors achieved impressive results having
over 80% of ground truth counts fall within the model’s predicted
95% interval.

4 METHODOLOGY
In this section, we will present and discuss each step of our process.
Figure 6 represents the workflow diagram of our methodology.

Fig. 6. Workflow diagram

4.1 Creating the annotation masks
As seen in Figure 6 the first phase in our research starts by creating
the annotation masks for our dataset. They will act as a ground
truth in the training process of the model. The dataset contains
brightfield and fluorescent cell images taken on 7 different focal
planes for every specific state. The images are systematically named
based on key acquisition parameters:

• Date: The day the image was captured (e.g., "day1").
• Time Point: Indicates the specific time point within the
experiment (e.g. "t1").

• Imaging Modality:Denoted by "c" with "c1" representing
bright-field imaging and "c2" representing fluorescent imag-
ing.

• XY Position: The location of the cells within the sample,
based on the x and y axes of the microscope stage (e.g., "xy10").

• Z-Stack Level: The specific focal plane captured within the
z-stack (e.g., "z15").
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Fig. 7. U-net architecture diagram [18]

Thus, an image named "day1t1c1xy10z15" represents a bright-field
image of cells taken on day 1 of the experiment, at time point 1, at
position 10 on the XY stage, and at focal plane 15 within the z-stack.
For the dataset, we acquired 2030 images (1015 fluorescent and 1015
bright-field), which correspond to 145 unique states

(1015 𝑢𝑛𝑖𝑞𝑢𝑒 𝑖𝑚𝑎𝑔𝑒𝑠) ÷ 7 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 𝑓 𝑜𝑐𝑎𝑙 𝑝𝑙𝑎𝑛𝑒𝑠 = 145 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑡𝑎𝑡𝑒𝑠

To create the masks, we use the 2D Micro-SAM annotator [1].
Micro-SAMprovides an annotator built as a Napari [20] plugin using
Meta’s SAM model. It also contains new fine-tuned models based
on publicly available microscopy data, which are also available on
BioImage.IO 1, however for this research we will stick to using only
the SAM’s "vit-h" model. The reason we choose to use the annotator
is for its simplicity. Figure 8 depicts an image of the annotator itself.
It contains the following features:

(1) The napari layers for the segmentations and prompts:
• prompts: Shape layer that is used to provide box prompts
to the model.

• point_prompts: point layer that is used to provide point
prompts to the model. Positive points(green) for marking
the object you want to segment and negative points (red)
to mark the background.

• committed_objects: label layer that contains objects that
have been segmented.

• auto_segmentation: label layer that contains results from
the automatic instance segmentation operation.

• current_object: label layer for the object that is currently
being segmented.

(2) The embedding menu. Used to select the image that has to be
processed and the model that you want to use to make the
segmentation and compute the embeddings.

(3) The prompt menu. Allows for choosing the type of the cur-
rently selected point prompt.(positive or negative)

(4) Segmentation button. By clicking the "Segment object" the
segmentation process will run based on the given prompts.
The result is displayed in the current_object layer.

1https://bioimage.io/

Fig. 8. 2d-annotator from micro-sam [2]

(5) Automatic Segmentation menu. Clicking the "automatic seg-
mentation" button will segment all objects detected in the
image. The results will be displayed in the auto_segmenta-
tion layer. Additionally, different parameters can be tuned
directly from the menu.

(6) The menu for committing the segmentation. When clicking
"Commit", the results from the selected layer (current_ob-
ject or automatic_segmentation) will be transferred to the
commited_objects layer. When a "commit_path" is given,
the results will be automatically stored there.

The annotation procedure will focus exclusively on fluorescent
images, leveraging their ability to outline important features of cell
structures while disregarding irrelevant elements that are present in
the bright-field images. The annotator allows images to be processed
in batches, making it easier to annotate images from the same state.
After annotating the masks, they will be combined into one general
mask reflecting the ground truth for the corresponding cell state.
Every mask will be saved as a tiff file. Moreover, each cell instance
will also be saved as an array, allowing faster quality improvements
on the masks.

4.2 Formatting of the dataset
With the generation of the mask completed, we proceed to the
second phase of our research. In previous sections we mentioned the
two different types of images, recall the bright-field and fluorescent
images. Our goal is to determine if the fluorescent images can have
a positive impact on the results. Therefore, we decide to build two
separate datasets, once containing only bright-field images, and a
second one with both bright-field and fluorescent images.
Images at the same xy level were organized into distinct folders

since they all correspond to the same annotation mask. To ensure
effective training, the data set was split based on the xy location.
Randomly splitting the data is not advisable as it could result in
images from the same state appearing in both the training and test
sets, potentially causing overfitting. For this study, we designate all
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images from position xy-10 as our test data, while the remaining
images will be used for training.

4.3 Training the U-Net Model
U-Net is a deep learning architecture that was introduced to combat
the challenge of limited annotated data in the medical field [18]. As
we can see in Figure 7, the U-Net model has two main parts, the
contracting part in which the image is being downsized and the
expansive part in which the image is up-scaled back to the original
size. The first part is similar to the feed-forward layers of other
CNN networks; the main idea here is for the model to try and detect
important features of the image such as edges and corners while
downsizing the image to try and capture more abstract features. The
expansive part is responsible for decoding the image and up-scaling
it back to its original size, while also locating relevant features.

Data Pre-processing. Our images and masks are stored using
Python NumPy arrays [4]. NumPy library offers easy-to-use
methods to quickly store and load data in arrays. To read the
image we use OpenCV[7] library and resize each one of them
from 2880𝑋2048 to a size of 512𝑋512 using linear interpola-
tion. Afterwards, we normalize the images to the pixel values
between [0,1].
The masks underwent a similar process. After resizing, the
resulting masks are converted into binary masks by setting
all pixels greater than 0 equal to 1, and the rest to 0. The
conversion to binary masks is a necessary step since we are
training our model for semantic segmentation.

Training. We trained two U-Net models for each dataset using two
different loss functions. The training is done for 50 epochs
using the Adam optimizer with a batch size of 16 and a cycling
learning rate that starts at 1𝑒 − 4 and goes up to 1𝑒 − 2. The
loss functions used are:
• Binary cross-entropy is a commonly used loss function
also known as log loss.

𝐵𝐶𝐸 = −(𝑦 ∗ 𝑙𝑜𝑔(𝑝𝑟𝑒𝑑) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑝𝑟𝑒𝑑))

It compares each of the predicted probabilities with the
actual class output, which can be either 0 or 1. It then
calculates the score that penalizes the probabilities based
on the distance from the expected value.

• Mean Squared Error loss quantifies the extent of the
error between the prediction of themachine learningmodel
and the ground truth by taking the average of the squared
difference between the predictions and the target values.
Squaring the difference leads to a bigger penalty for large
errors, making the model more sensitive to outliers.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

Here, n represents the size of the data, y the true segmen-
tation of an image and ŷ the predicted segmentation.

Fig. 9. Final resulted annotation mask

Fig. 10. Overlay of the mask over the cell image for quality check inspection

4.4 Performance metrics
With the training complete, automatic segmentation is performed
on the test data using newly trained models. We compare the seg-
mentation results using the following criteria:

• the Model Accuracy

Accuracy =
Number of Correct Predictions
Total Number of Predictions

• the F1 score.

𝐹1 = 2 · Precision · Recall
Precision + Recall

• the Jaccard index (IoU).

IoU =
Area of Overlap
Area of Union

5 RESULTS AND DISCUSSION
In this section, we show and discuss the results obtained by our
experiment.
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5.1 Image annotation
As previously mentioned, a total of 145 annotation masks were
meticulously crafted using the Micro-SAM annotation tool in con-
junction with the "vit-h" model. As each cell state encompasses
seven distinct focal planes (z-12, z-14, z-16, z-18, z-20, z-22, and
z-24), the annotation process is strategically organized into batches,
each containing seven images representing one focal plane. To en-
sure the fidelity of the annotations, each mask is visually inspected
by overlaying it onto the corresponding original image immediately
after its generation. This allows for prompt identification and cor-
rection of any misalignment with the cell outlines. An example of
the resulting high-quality annotation mask is presented in figure 9.
During the annotation process, we encountered challenges regard-
ing the cell overlapping. In certain cases, a larger cell would emerge
across different z-levels, partially or completely obscuring another
cell. Figure 10 shows an example of such a case. This phenomenon
negatively impacts the quality of the masks because the research ap-
proach involves using a single mask for all z-levels, allowing models
to recognize cells even in blurred and out-of-focus images. In this
case, the smaller cells are discarded and only the big cell is added to
the final annotation mask. With the help of fluorescent images, a
large number of dead cells and foreign structures are discovered to
be present in the brightfield images and are not introduced in the
final mask with the purpose of teaching the model to ignore them
completely.

5.2 U-Net models results
The results of the U-net model can be seen in table 1 and 2. Both ta-
bles showcase a comparison between the performance of a machine
learning model when using BCE and MSE loss functions across all
of the Z-levels.Table 1 shows the results of the model trained on
both bright-field and fluorescent images whereas table 2 shows the
results of the model trained only on the bright-field images. Just by
looking at the two tables, we can see that when training the model
on both types of images we get better results no matter the loss
functions we use. The biggest difference between the models can be
noticed when looking at the F1 scores (3% improvement) and the IoU
score(4% improvement). The biggest benefit of training the model
on all images is not necessarily the metric’s overall growth, but that
it will be able to make some predictions when given fluorescent im-
ages as well. Next, we will focus on the results from the table 1 since
they are better. The overall result shows that regardless of which
loss function we use the model performs similarly. However, when
using BCE it has a 2% lead in accuracy. The Figures 11 and 12 show
an example with some predictions that our model makes. When
looking at Figure 12, both models appear to over-segment the image,
identifying more regions as cells than are present in the ground
truth. Nevertheless, the BCE model’s prediction seems more aligned
with the ground truth, although it misses some smaller cells. It can
be noticed that both models manage to ignore the foreign structures
from the top of the image. The low IoU scores of the models also
point to the fact that they perform poorly when they try to identify
the cells and that there is a low overlap between the prediction
and the ground truth mask. Analyzing the performance across the
z-levels we find out that the models perform worst on images from

z12. This outcome is expected since cells at z12 levels are mostly
fully blurred whereas z20 ( highest accuracy) shows clearer cell
images. Images 1 and 2 show this difference. More results of model
prediction can be seen in figures 13,14,15 in the appendix. You can
notice how the prediction gets more accurate across the z-levels.

5.3 Discussion and Future Work
After analysing the results achieved using the annotation masks, it is
obvious that the model encounters problems predicting overlapping
cells. A future research would be to investigate how a Mask R-CNN
model would perform using the current annotation masks. Studies
show that it can achieve good results when it comes to segmenting
overlapping objects[17], therefore it might be a potential candidate
for this particular research. An alternative approach to improve the
accuracy of ground truth masks involves a change in how they are
created and used. Recognizing that larger cells may fully occlude
smaller ones at certain z-levels, it becomes necessary to avoid using
an annotation mask containing the larger cell for images where it
hasn’t started appearing. A better strategy for generating annota-
tion masks might be creating individual binary masks for each cell
encountered throughout the z-stack. This approach allows for the
construction of a unique binary mask at each z-level, seamlessly
aggregating the masks of previously identified cells based on their
presence in the corresponding image. By adopting this method-
ology, the limitations of using a single annotation mask per cell
state across all z-levels are avoided. Consequently, the ground truth
masks become more faithfully representative of the specific image
they correspond to, potentially leading to a significant improvement
in accuracy.

Z-level BCE MSE

Accuracy F1-Score IoU Accuracy F1-Score IoU

z12 0.68 0.68 0.52 0.67 0.71 0.55
z14 0.70 0.71 0.55 0.69 0.72 0.56
z16 0.72 0.73 0.57 0.71 0.74 0.58
z18 0.73 0.74 0.59 0.71 0.75 0.60
z20 0.74 0.76 0.61 0.72 0.75 0.60
z22 0.73 0.75 0.60 0.71 0.75 0.60
z24 0.71 0.73 0.58 0.69 0.73 0.58
Overall 0.72 0.73 0.58 0.70 0.73 0.58

Table 1. Performance Comparison Across Z-levels of the model trained on
all images

6 CONCLUSION
This research is divided into two phases, each attributed to the
corresponding research question. The first phase consists of creat-
ing annotation masks for a series of microscopic cell images with
the help of a state-of-the-art interactive segmentation model. Af-
terwards, a manual analysis of the quality of the masks and an
assessment of whether the SAM model is effective in the creation of
the masks. During this part of the research, we answered RQ1 by
showing that it is indeed possible to generate high-quality masks
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Z-level BCE MSE

Accuracy F1-Score IoU Accuracy F1-Score IoU

z12 0.69 0.65 0.46 0.69 0.65 0.49
z14 0.71 0.69 0.52 0.71 0.69 0.53
z16 0.73 0.71 0.55 0.72 0.71 0.55
z18 0.73 0.72 0.57 0.73 0.72 0.56
z20 0.73 0.73 0.57 0.72 0.72 0.56
z22 0.72 0.71 0.55 0.70 0.70 0.54
z24 0.70 0.69 0.52 0.70 0.67 0.53
Overall 0.71 0.70 0.54 0.71 0.70 0.54

Table 2. Performance Comparison Across Z-levels of the model trained only
on bright-field images

Fig. 11. Prediction of the model on a fluorescent image

using advanced image segmentation models. The second part of
our research involves training U-Net models on 2 different datasets
(one containing only bright-field images and another one containing
fluorescent images as well), to see how well they would perform the
automatic segmentation task based on the masks generated in the
previous part. To answer our RQ2, both models showed similar re-
sults, with an overall accuracy of 70%, thus showing that there could
be room for improvement. Additionally, we learned that training the
model on different types of images does not harm its accuracy, but
can actually improve it. The insights gained from this research pave
the way for future investigations, including exploring alternative
models such as Mask R-CNN and refining annotation strategies to
address issues such as cell overlap.

Fig. 12. Prediction of the model on a bright-field image
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