
Evaluating Large Language Models for Automated Cyber Security Alarm
Analysis Processes
BEAU JONKHOUT, University of Twente, The Netherlands

Cybersecurity faces ever-increasing complexities and novel threats,
with recent reports from CrowdStrike, IBM, and ENISA highlight-
ing the appearance of 34 new adversaries and a 15% increase in cy-
berthreats. Traditional security tools and methodologies such as the
NIST CSF 2.0 are under pressure to evolve rapidly to keep pace. The
enormous volume of security alarms leads to ”alert fatigue,” a con-
dition where the overwhelming volume of security alarms causes
individuals to become desensitized and less responsive, which can
cause significant oversight in threat detection. This thesis investigates
the application of Natural Language Processing (NLP), particularly
Natural Language Understanding (NLU) and Large Language Models
(LLMs) like OpenAI’s GPT series, to streamline the decision-making
processes in cybersecurity alarm analysis. By delegating key decision-
making aspects to LLMs, this approach seeks to mitigate alert fatigue.
The research evaluates current state-of-the-art models, develops a
methodology for assessing the efficacy of LLMs, and analyses their
capabilities in specific security analysis. Results indicate that LLMs
match human response levels to a non-random degree, suggesting
that they can potentially support operators in reducing alert fatigue,
but need further optimization. Data and findings are made available
publicly to facilitate further research and verification.

Additional Key Words and Phrases: Artificial Intelligence, Natural Language
Processing, Natural Language Understanding, Alarm Analysis Process, Large
Language Models

1 Introduction
Cybersecurity is an ever-evolving field, facing increasingly complex
and frequent threats. The Global Threat Report 2024 by CrowdStrike
reports 232 distinct adversaries, with 34 new ones emerging [45].
IBM notes a 15% increase from 2020 to 2023 in the global cost of
a data breach, now averaging $4.45 million [11], while the Euro-
pean Union Agency for Cybersecurity (ENISA) observes a trend
toward larger, i.e. more complex DDoS attacks [9]. Traditional tools
such as Zeek [33] and Snort [30] struggle to keep pace, as does the
NIST Cybersecurity Framework 2.0 [25], despite its comprehensive
guidelines. The rising volume of security alarms, a significant chal-
lenge for operators, leads to alert fatigue, where the overwhelming
number of repetitive, low-quality alerts causes critical threats to
be overlooked. This issue was highlighted in an International Data
Corporation report, which found that 83% of professionals struggle
with alert volume, leading to missed threats [60]. Furthermore, a
ReliaQuest survey reveals enterprises typically deploy 19 different
security tools, yet only 22% are considered essential, which increases
alert fatigue [58].

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

To address this fatigue problem, automating the analysis process
could significantly alleviate the workload. For instance, a security
operator monitoring events flagged by an intrusion detection sys-
tem (IDS) such as Snort [30], which operates on predefined rules
and triggers alarms for specific activities such as five failed login
attempts, faces a decision-making process. The initial alarm raised
after five incorrect password entries does not necessarily confirm
a brute force attack, which would require the operator to perform
several validation steps. These might include identifying the source
IP address and assessing whether it is from a known device and
location. While the latter two steps can be automated through tradi-
tional programming logic, human reasoning is necessary for other
tasks. For example, a person might be on vacation, and therefore has
an unknown location, or a specific person might characteristically
make many mistakes, and therefore causes many errors. In these
cases, both scenarios should not be mistakenly classified as brute
force attacks. This kind of decision-making demands human insight
to accurately interpret the context of the errors.
To automate the human decision-making, this paper advocates

for the use of Natural Language Processing (NLP), a branch of Ar-
tifical Intelligence (AI) that enables machines to understand and
interpret human language. Within the realm of NLP, Natural Lan-
guage Understanding (NLU) focuses specifically on comprehending
the intent and meaning behind the text. This study suggests employ-
ing NLU to enhance automation in areas of the human reasoning
process that traditional programming logic struggle to manage ef-
fectively. NLU leverages Large Language Models (LLMs), such as
OpenAI’s Generative Pre-Trained (GPT) series [35, 56], which are
deep learning-based models designed to process and understand
text which can do an accurate job of human reasoning. LLMs are
important, because they can help to analyze large volumes of threat
data, identify patterns, and provide insights that human analysts
might miss. LLMs have already shown significant potential in au-
tomating complex tasks [13], including cybersecurity [62]. LLMs
have the potential to significantly automate the security analysis
process, accurately assessing the validity of alerts with a nuance
that resembles human judgment, while being less susceptible to
alert fatigue.
This study intends to define a framework employing LLMs to

improve, or perhaps even surpass, human performance in the alarm
analysis process. This framework will establish guidelines to assess
whether some, or potentially all, tasks involved in analysing a poten-
tial threat can be automated using LLMs. This is done by delegating
more responsibility and decision-making to LLMs through carefully
constructed prompts, where a prompt is an instruction fed to the
LLM to provide an output. This delegation can reduce alert fatigue
on security operators, in order to eventually improve performance
of a security operator handling security alarms. The framework will
be designed to be applicable to several LLMs, thus staying relevant
when the state-of-the-art LLMs change. The effectiveness of LLMs

1

TScIT 41, July 5, 2024, Enschede, The Netherlands Beau Jonkhout

for each stage of various alarms will be evaluated, determining how
the LLM can take over the decision-making process from humans
at each step.

To automate the security analysis process, the following research
questions (RQs) have been defined as the basis of this research:

• RQ1:What are the current large language models available
for automating the analysis of security alarms and what are
the most important steps in the security alarm analysis?

• RQ2: How can a comprehensive evaluation methodology be
developed to assess the effectiveness of different LLMs in the
context of security alarm analysis?

• RQ3: What are the advantages and limitations of different
LLMs when analysing one specific security alarm?

The remainder of this proposal is organized as follows: Section
2 addresses the first research question and provides related work
on the subject. Section 3 answers the second research question
by presenting a comprehensive framework for security analysis
automation. Next, Section 4 applies this framework to state-of-the-
art models to explore the advantages and disadvantages of using
LLMs in the security analysis process. Finally, this paper will end
with a conclusion, limitations and future work.

2 Related Work
In this section,the first research question will be addressed, which fo-
cuses on exploring the available LLMs and identifying the key steps
in analysing security alarms, so that these steps can be automated.

2.1 From Artificial Intelligence to Large Language Models
To understand the what LLMs are, it is essential to understand where
they come from. Therefore, an overview will be presented in the
this section. AI represents the foundation of machines mimicking
human-like intelligence, encompassing a spectrum of technologies
that enable machines to perceive, understand, act, and learn [44].
A subset of AI, ML, involves algorithms that learn from data to
improve decision-making over time [57]. Within ML, NLP empow-
ers computers to process and generate human language, playing a
crucial role in applications such as translation and speech recogni-
tion [44]. Advancing further, NLU delves into interpreting human
language in a meaningful way, essential for tasks such as language
inference [43] and question answering [53].
Language Models predict word sequences in text, providing the

backbone for NLP tasks. LLMs, such as the GPT [56], extend this
concept by leveraging deep learning to generate text that can closely
mirror human writing. Characterized by their billions to trillions
number of parameters and complexity, these models are important
in enhancing NLU and supporting more sophisticated applications,
such as intent recognition in security event analysis [14]. This nar-
rative journey from AI to LLMs showcases their evolution and
underscores their potential in advancing the understanding and
implementation of complex language-based tasks.

2.2 From Transformers To LLMs
This aforementioned NLP and NLU processes are implemented
through a series of steps, namely through models which keep im-
proving, eventually arriving at the current state-of-the-art LLMs. In
this section, the journey from the transformer model to ultimately

GPT-4 is highlighted. Vaswani et al. [61] introduces the transformer
model, which has been influential in the field of NLP. This model is
the base for many popular language models, such as Bidirectional
Encoder Representations from Transformers (BERT) [40], Genera-
tive Pre-training Transformer 1 (GPT-1) [56] and OpenAI’s GPT-4,
[35]. This influence is visible because BERT has been used as the
basis for many language models, such as SecureBERT [36], Security-
BERT [41], RoBERTa [48], ALBERT [46] and BART [47]. At the same
time, GPT’s owner OpenAI has received an 80 Billion $ valuation
of OpenAI [28] in 2024. This influence could be possible because
the transformer model processes large datasets efficiently and can
recognize complex patterns in data. Its importance lies in the sense
that the language models, that will be discussed, use this model or
some variant of it to process remarkable results.
Building up on BERT, BERT [40] is a deep learning model for

natural language processing designed by Google. It stands out for
its use of bidirectional training of transformers, meaning it learns
information from both the left and right context of a token within a
sentence. This two-way ability significantly improves its effective-
ness and understanding in tasks such as sentiment analysis, question
answering, and language inference, evidenced by high rankings on
NLP benchmarks [3].

Furthermore, the introduction of Generative Pre-Training 1 (GPT-
1) by Radford et al. [56] shows another remarkable step in NLP.
Utilizing a variant of the transformer model, GPT-1 serves as a
predecessor leading to the more sophisticated GPT-4 by OpenAI.
It introduces a novel approach to achieve strong natural language
understanding. This is done via unsupervised pre-training on a large
corpus of text, which then uses supervised fine-tuning for specific
tasks.

These developments highlight a significant evolution in NLP from
simpler, one-directional models to complex, context-aware systems
that underpin modern LLMs. The progression from the original
transformer to advanced models such as GPT-4 has fundamentally
changed how machines process and generate human language. This
shift allows for more accurate and natural interactions between
computers and humans. Therefore, showing opportunity to apply
LLMs to the analysis process.

2.3 Available Large Language Models
To establish a well-defined list of LLMs, the search engine Google
was utilized [21] was utilized and the first ten popular LLMs were
selected. Additionally, the five most popular models from Ollama’s
[27] library as of May 2024 were included. Ollama is an open-source
project that serves as a powerful and user-friendly platform for
running LLMs on a local machine [34]. The combined list from
Google and Ollama comprised the following models: Llama, GPT-
4, Falcon, PaLM 2, Claude, Cohere, BLOOM, LaMDA, Orca, BERT,
Gemma, Llama3, Mistral, Qwen, and Phi3.
The list will then be refined as follows: 1) Removed duplicate

entries of Llama, keeping only Llama 3; 2) Specified versions as
PaLM to PaLM 2, Qwen to Qwen 1.5, and Orca to Orca 2, to use
the latest version in May 2024; 3) Excluded Cohere and LamDA due
to domain-specific focus; 4) Excluded non-LLMs such as BERT for
having significantly fewer parameters.

2

Evaluating Large Language Models for Automated Cyber Security Alarm Analysis Processes TScIT 41, July 5, 2024, Enschede, The Netherlands

Name Release
Time

Public Number of
Parameters

GPT-4 [16] 2023 ✗ 1.76T1 [38]
Falcon [20] 2023 ✓ 40-170B
PaLM 2 [12] 2022 ✓ 540B [8]
Claude 2 [10] 2023 ✗ 130B [55]
BLOOM [5] 2022 ✓ 176B
Orca 2 [51] 2022 ✓ 7-13B
Gemma [37] 2023 ✓ 2-7B
Llama3 [23] 2024 ✓ 8-70B
Mistral [50] 2023 ✓ 7B
Qwen 1.5 [29] 2024 ✗ 0.5-110B
Phi3 [39] 2024 ✓ 3-14B

Table 1. Overview of popular LLMs

Table 1 presents a list of eleven different LLMs, after the adjust-
ments, each representing the state-of-the-art LLMs in May 2024.
The selection criteria ensure that the most advanced and capable
will be provided, and therefore relevant LLMs, allowing for a com-
prehensive analysis of their potential and applications in the alarm
analysis.

2.4 Key Steps in Security Alarm Analysis
In the process of alarm analysis, the Security Operations Center
(SOC) plays an important role in defending its organisation from
cyberthreats. This section will discuss how SOCs detect potential
security incidents, the tools they use, and the subsequent steps they
take to mitigate these threats. The initial and crucial step in this
process is the detection of potential security incidents.
A SOC utilizes Security Information and Event Management

(SIEM) systems, such as Splunk [31] or LogRhythm [49], to monitor
and analyze security alerts generated by various network devices
such as firewalls, intrusion detection/prevention systems (ID/PS)
and system errors. These SIEM systems gather and correlate differ-
ent types of security data. Once a specific security rule has been
violated, then the SIEM will notify the SOC. Extended Detection and
Response (XDR) tools, such as Microsoft 365 Defender [24], enhance
SIEM [32] systems by integrating and correlating alerts from spe-
cific vendors. The SIEM, along with this XDR integration, improve
the security response by making it faster and more effective.
To further optimize the efficiency and effectiveness of these se-

curity tools, Security Orchestration, Automation, and Response
(SOAR) automation is employed. SOAR frameworks, such as Cortex
XSOAR [19], leverage guidelines from standards such as ISO/IEC
27001 [22] to define specific rules for SIEM systems, thereby stan-
dardizing responses and automating processes in threat detection
and mitigation. Furthermore, the primary difference between SIEM
and SOAR is that while SIEM alerts the SOC about potential threats,
SOAR also automates response actions, such as quarantining mal-
ware. In conclusion, these systems, such as SOAR and SIEM, can be
employed for the alarm analysis. In this study, it is assumed that
detection is well done, and it needs to be understood where in this
system an LLM could potentially replace human decision-making.

The next step in the analysis is to determine whether a triggered
alarm (detection) is legitimate or not, and second, whether follow-
up actions should be taken. In the next section, two alarms – one

for phishing and one for brute-force – selected from the MITRE
ATT&CK [52] website will be analysed. The information – regarding
the alarm analysis – has been reconciled with a security analyst
from Northwave Security [26].
MITRE ATT&CK [52] provides a detailed database of adversary

tactics and techniques, essential for enhancing the alarm analysis
process. By mapping alarms to specific tactics (e.g., Initial Access,
Execution, Persistence) and associated techniques (such as "Brute
force" or "Phishing), the framework helps categorize and contextu-
alize each alarm within the attack life cycle (i.e. identifying which
stage the attacker is), which is needed to mitigate the threat. This
database provides a detailed list of cyberthreats, with 202 techniques
and 435 sub-techniques for enterprises alone. However, the focus
here was only on two types of alarms: brute force and phishing.

2.4.1 Brute Force Alarm A brute force attack involves an attacker
systematically attempting every possible combination of passwords
or keys until the correct one is found, aiming to gain unauthorized
access to a system. When the Security Information and Event Man-
agement (SIEM) system triggers a brute force alarm, the Security
Operations Center (SOC) should first diligently examine the security
logs. This examination entails scanning for patterns of failed login
attempts, identifying the specific accounts targeted, and noting the
timing of these attempts. Recognizing any unusual patterns in login
failures or focused attempts on high-value or privileged accounts is
crucial, as these are common indicators of a brute force attack. This
analysis is typically conducted using queries—a form of traditional
programming logic where LLMs may not be as effective due to their
inability to perform server calls directly.
In addition to log analysis, the SOC should conduct a thorough

context analysis to assess the situation further. This involves exam-
ining the types of accounts involved, such as distinguishing between
admin and regular user accounts, and reviewing the geographical
locations of the login attempts. For instance, a login attempt from a
region where the user has never accessed the system before may
raise suspicion. However, an edge case such as an employee logging
in from a new location while on holiday—potentially triggering
the brute force alarm—might actually be benign. This highlights
the importance of integrating threat intelligence, such as checking
whether the IP addresses involved are known in threat databases or
log files for previously observed malicious activity. Finally, the SOC
may interact with users directly to verify the nature of the attempts,
ranging from sending emails to making phone calls. While an LLM
may not assist directly with server queries or user communication,
it can effectively draft informative emails for users, leveraging the
appropriate context to aid the SOC in managing potential threats
and distinguishing between genuine security concerns and false
alarms.

2.4.2 Phishing Alarm Phishing is a type of cyberthreat where at-
tackers attempt to trick individuals into revealing sensitive infor-
mation (such as passwords or credit card details) by posing as a
trustworthy entity. Once the SIEM has detected activity or patterns
in the data that resemble a phishing attack, then the SOC should
conduct a different investigation.

Firstly, as a SOC Training showcases [42], the SOC should review
the specific details of the phishing alert (log analysis), such as the

3

TScIT 41, July 5, 2024, Enschede, The Netherlands Beau Jonkhout

sender’s email address, the subject line, and the content of the email.
Phishing emails often contain urgent calls to action or requests for
sensitive information, which are telltale signs of phishing attempts.
Additionally, poor grammar and or spelling errors are common
for phishing. These indicators can determine the validity of the
alarm judging purely on content. An LLM is capable of determining
sentiment in text, which theoretically means it could determine
whether emails are urgent.

In the next step, the SOC conducts a detailed review of the email
headers [59]. This includes tracing where the email originally came
from to determine if the sender’s domain is authentic or has been
faked—a common tactic known as "spoofing." Spoofing occurs when
attackers disguise their email to make it appear as if it comes from a
trustworthy source, such as a well-known company. By examining
the "Received from" fields in the email headers, the SOC can spot
any inconsistencies that might suggest the email isn’t what it claims
to be. Such discrepancies often signal that the email may be part
of a phishing attempt, designed to deceive the recipient. This is
conducted through queries, where LLMs may not be as effective.
Furthermore, user interaction is also required. The SOC should

verify the email’s authenticity, if the sender is seemingly trustwor-
thy, by contacting the supposed sender through a different commu-
nication method, such as a phone call. This can confirm whether
the email was genuinely sent or if their account has been hacked.
At the same time, it is vital to contact the recipient(s) and determine
whether they have interacted with the phishing email, such as click-
ing on links, downloading files or responding to it. It is possible that
they provide more information which can determine it validity. To
repeat, the LLM can help with drafting informative emails.

2.4.3 Consistencies This analysis still reveals common steps in
handling different security threats, despite the broad range of poten-
tial alarms outlined by MITRE. To define the key steps in security
analysis, the main commonality between these two alarms will be
covered. The commonality lies in log analysis, contextual under-
standing, and human interaction. Both alarms involve analyzing
logs, such as IP addresses. Placing each alarm in its context enables
the SOC to understand its true significance. For a brute force alarm,
this means looking at the types of accounts involved or the geo-
graphical locations. For phishing, it involves verifying the sender’s
authenticity. In both situations, contextual knowledge is essential,
requiring human reasoning to determine the nature of the threat.
To replace this human reasoning, LLMs can be used. Additionally,
human interaction is critical in both scenarios, as discussions may
reveal new information that impacts the final decision. Ultimately,
these steps highlight the existence and importance of nuanced hu-
man judgment in determining the validity of an alarm, where the
judgement can be delegated to LLMs.

This section provides a foundation for understanding the capabil-
ities of these models, discussing the evolution of AI, moving from
general AI, ML, NLP to NLU, which contributes to the development
of LLMs. It clarifies the origins of many popular LLMs, emphasiz-
ing the revolutionary Transformer architecture, which underpins
many state-of-the-art models such as GPT-4. Finally, it presents
a table listing eleven popular, state-of-the-art LLMs and discusses
their potential role in enhancing human decision-making in security

analysis, allowing for more effective contribution to the automation
of these processes.
Furthermore, this section reviews the key steps involved in the

analysis of security alarms within a SOC and explores the poten-
tial role of LLMs in automating these processes. By detailing the
integration and functionality of SIEM, XDR, and SOAR systems, it
establishes an understanding of how LLMs could enhance alarm
analysis. Additionally, it examines specific examples of brute force
and phishing alarms, showing overlap in log analysis, context un-
derstanding, and human interaction. This analysis suggests that
LLMs can be employed more effectively on contextual textual tasks,
while being less effective in API calls. Through this exploration, the
research question regarding the identification and automation of
key steps in security alarm analysis is addressed.

3 Evaluation Methodology
This section addresses the research question of how to develop a
comprehensive evaluation methodology to assess the effectiveness
of different LLMs in the context of security alarm analysis.

The ultimate goal is to discover the extent to which LLMs can be
applied to security alarm analysis. To achieve this, a framework for
comparing state-of-the-art LLMs with general alarms is proposed.
This approach has been designed to stay relevant even when the
state-of-the-art LLMs change or when new adversaries emerge. The
framework is structured into three stages: preparation, computation,
and interpretation of results.

The primary method to evaluate different LLMs involves compar-
ing their conclusions with those drawn by their human counterparts.
Both the LLM and the human (such as a security operator) are pro-
vided with a specific output request via a prompt. A prompt is a
detailed instruction specifying what the LLM should generate, based
on structured and precise information for each step of the alarm
analysis. This same prompt is also given to a human, who should
be able to execute the security step as well. If the LLM and the
human provide identical responses, it is assumed, for the purposes
of this study, that the LLM can perform equivalently to a human in
that particular scenario. By evaluating this for a large amount of
scenarios per step, the general picture can be understood whether
responsibility can be delegated to the LLM.
For the rest of this section, the focus will be on how to system-

atically construct, i.e., gather the relevant information for, such a
prompt for each particular case to eventually evaluate different steps
of the analysis process.

3.1 Preparation
The prompts need to be populated such that the LLMs are equipped
to answer the question. For generality, each prompt will have the
same structure. System prompt: This is an instruction explaining
what the LLM is to provide a better domain-specific answer, such
as You are assisting a security analyst in evaluating alarm events.
You can only answer with ’yes’ or ’no’. Context: This is a text block
containing information relevant to answer the question, such as
security logs in the event of brute force attacks or emails in the case
of phishing attacks. Scenario prompt: For each particular case, the
LLM will receive a tailored prompt. This prompt will be a clear
sub-task of a step: For analysis of the email, it can be "Please analyse

4

Evaluating Large Language Models for Automated Cyber Security Alarm Analysis Processes TScIT 41, July 5, 2024, Enschede, The Netherlands

the subject line and sender’s email address. Do any of these imply
phishing?".

3.1.1 Determining the alarm and its relevant information Determin-
ing the context and scenario prompt is dependable on the specific
alarm. A phishing alarm has different context than a brute force
alarm. However, both of these prompt sections should be deter-
mined at some point as well as the baseline, because the baseline
is used to compare the results with. This general preperation (i.e.
investigation) is essential of the framework. The preparation steps
are below.

Alarms: Select the alarms you want to compare from the MITRE
ATT&CK [52] framework.

Steps:Discover the steps required in the analysis process for each
alarm. This information should be extracted from MITRE. Eventu-
ally, this should be the scenario prompt. This scenario prompt is
designed to help refine the final answer for the task. By generating
multiple scenario prompts, you can choose the most effective one
to ensure the highest accuracy from the LLM.
Filtering the steps & Gathering Context: Go through each

step and assess whether a human should perform this step or a
simple API call or query can gather the information. If the latter is
the case, then this should be added to the context. If steps involve
both an API call and human reasoning, then this step is removed
for not being in the scope. The end result should be a list of steps
where the human should use reasoning based on the information
accessible to them.

Establish a Baseline: Decide on the expected outcomes for each
step in the analysis, to use as a baseline for comparison. For instance,
the urgency of an email can easily be determined by a human; it
should either be urgent or not urgent. This baseline establishment
should mean labeling the data for each step. This can be based
on literature review, authoritative confirmation, and/or a security
company playbook.
LLM Selection: Select LLMs to evaluate. In section 3.1.2, more

guidelines are presented in order to select the LLM.
Structure the information: Structure the information so that it

can be used in the evaluation. In section 3.1.3, more guidelines are
presented in order to successfully structure the information.

3.1.2 Selection of LLMs To evaluate LLMs, it is necessary to have
LLMs to evaluate, referred to as language_models in the code. For
this study, any general-purpose LLM can be used. General LLMs are
specifically chosen over domain-specific models due to their broad
versatility, which allows them to handle a wide range of tasks, in-
cluding text summarizing and log analysis. Furthermore, employing
general LLMs simplifies the comparison between different models,
as they are assessed based on a uniform set of capabilities rather
than niche, specialized functions.
In order to select the most suitable LLMs, other factors must

also be considered, including availability and performance. Public
LLMs are more readily available than private models, making them
easier to access. However, specific private models, such as GPT-4,
are renowned for their superior performance in benchmarks, which
suggests they may be more effective. For details on the leading
LLMs, refer to the table 1. Performance is a crucial metric, primarily
determined by benchmarks. The mentioned table highlights LLMs

that excel in popular benchmarks such as the Massive Multitask
Language Understanding (MMLU) [7] and the Discrete Reasoning
Over Paragraphs (DROP) [54]. Limited information is available on
benchmarks specific to cybersecurity. Other benchmarks, such as
ImageNet [6] or HumanEval [17], focus on particular areas such
as image or code generation and are therefore not relevant to this
study, which does not require image processing or code generation.
Therefore, when selecting LLMs, it is important to consider a

balance of generality, availability, performance. General models can
be easily compared and are versatile for different tasks. Publicly
available models offer ease of access and lower costs, which is crucial
for widespread adoption and experimentation. Performance, as evi-
denced by benchmarks, provides a measure of a model’s capability
and efficiency in handling complex tasks.

3.1.3 Structuring of the information After gathering the informa-
tion needed, it is essential to structure the information, such that it
can be interpreted by an algorithm, where the role of the algorithm
is to evaluate the LLMs.

language_models: A list of LLMs, which are selected to evaluate.
alarms: A list of alarms used as scenarios, functioning as keys for
each of the next items. steps_per_alarm: Maps each alarm to a
list of steps. Each step is a sentence that outlines the actions the
LLM (or operator) should take. baseline: Maps each alarm to a list
of information, containing all necessary context and the correct
answer for the LLM. Each alarm consists of a list of lists, with test
cases and expected results, providing the program with relevant
benchmark information.

prompts_per_step_per_alarm: Maps each alarm to a list of
pairs. Each pair contains several (in this study, three) scenario
prompts for each analysis step. Diverse prompts help select the
best one for an optimal result.

system_prompt_per_alarm: Maps each alarm to a specific string
that the algorithm should output (system prompt). This can instruct
the LLM to respond in a predictable and comparable manner, such
as solely answering ’true’ or ’false’.

The structured information above is necessary to assess the per-
formance of an LLM. Recall that this structure is different from
the the structure in the prompt described in the beginning, this is
because the structured information has all the data necessary to
construct a such a prompt. This prompt is single scenario which
can be tested, while the information above has all the information
needed to construct all scenarios. In the next section, the discussion
will focus on how this information can be used to evaluate LLMs.

3.2 Computation
In this section proposes guidelines for an algorithm, which inte-
grates the six aforementioned factors: language_models, alarms,
steps_per_alarm, prompt_per_step_per_alarm, baseline, system_prompt_-
per_alarm. The algorithm’s output is systematically organized into a
table that evaluates several language models (denoted by ‘n‘) across
multiple prompts (typically three). The process involves iterating
over each step (denoted by ‘k‘) of the analysis to collect and record
specific key performance indicators (KPIs). These KPIs include the
accuracy of each response, the time taken to generate the response,
and the character length of the response.

5

TScIT 41, July 5, 2024, Enschede, The Netherlands Beau Jonkhout

The structure of the output table is detailed in Table 2. Each col-
umn within this table corresponds to a specific language model and
prompt combination, capturing the aforementioned metrics for com-
prehensive evaluation and comparison across different scenarios.

LLM_1 LLM_2 . . . LLM_n
Steps p1 p2 p3 p1 p2 p3 . . . p1 p2 p3
1 . . .
. .
k . . .
Table 2. Example Output of the Evaluation Benchmark

The algorithm should evaluate LLMs by systematically processing
each one with a standard prompt set for all models. For each prede-
fined step in the evaluation process, the algorithm cycles through
various prompts linked to that step. It combines these prompts with
scenarios outlined in a baseline document and the main system
prompt to form a comprehensive test prompt for the model.
As the LLM responds to each combined prompt, the algorithm

records the response time and compares the response to expected
outcomes listed in the baseline. This comparison process should use
multiple filtering layers to handle different scenarios, to automate
some of the effort. For cases that remain unclear or unresolved by
the filters, a human should make the final decision. This comparison
helps assess the model’s accuracy in understanding and reacting to
the scenarios. The results for each model, including response times
and accuracy measurements, are compiled into a summary table,
following the structure above, providing a detailed view of each
model’s capabilities across different test cases.
3.3 Interpretation
The output of the algorithm, llm_scores, provides a quantified
measure of each LLM’s performance across different alarm scenarios.
This output should be interpreted as follows:

Score Analysis: Higher scores indicate a better alignment of the
LLM’s responses with the expected baseline responses, suggesting
greater efficacy in handling the specific alarm context.
Time Analysis: Time is crucial in determining costs. Longer

times may lead to higher expenses and may reduce the relevance to
the current situation if time is limited.

Character Length Analysis: When a LLM’s response matches
the expected length based on the prompt, it indicates effective and
predictable performance. If asked for a simple "True" or "False" and
the model instead provides a lengthy response before concluding,
this suggests a lack of obedience to instructions and reduced pre-
dictability.

Model Comparison: By comparing scores across different mod-
els for the same alarms, stakeholders can determine which model is
more effective at understanding and analyzing security alarms.
Alarm Analysis: Comparing scores across different alarms for

the same model can reveal which types of alarms the model han-
dles better, highlighting potential areas for improvement in model
training or prompt design.
Prompt Analysis: Assessing how different prompts affect the

model’s responses reveals which are most effective, guiding im-
provements in prompt design for optimized performance

This concrete interpretation explains on how to interpret the
results effectively. It takes all KPIs into account, while including
analysis across different prompt, models and alarms. With these
guidelines, it is possible to systematically assess different models,
when the LLMs or alarms change.

This section outlines a three-phase evaluation method for assess-
ing how well LLMs handle security alarm analysis. Therefore, it
concretely shows what steps need to be taken in order to effectively
evaluate different LLMs in the analysis process. In the preparation
phase, all necessary information about different security alarms is
gathered, a baseline for expected answers is set, and choices are
made on how to test LLMs based on their availability and perfor-
mance. This phase ensures that everything is set up correctly for a
systematic comparison of the LLMs.

The next stages involve applying the specific algorithm (compu-
tation phase) to see how the LLMs perform and then looking at
the results (interpretation phase) to understand which models did
the best. The computation phase simulates how a security analyst
would use the LLMs, providing them with scenarios and relevant
data to see how they respond. The interpretation phase then uses
these responses to measure each model’s accuracy and effectiveness.
This helps determine which LLMs could be useful in real-world
security settings, providing clear metrics to guide future integration
and improvements.

4 Applying the Framework
This section addresses the third research question by evaluating
the advantages and limitations of different LLMs in analyzing three
specific security alarms. This question will be answered by imple-
menting the framework discussed in Section 3. The framework, and
therefore the analysis, will be implemented using Python 3.9.0 [4]
and a Jupyter Notebook [1], which facilitates a structured approach
through modular Python components. This Jupyter notebook can
be found on this Github [15].

4.1 Preperation
The initial step in this framework is the "Preparation" step, focusing
on selecting an appropriate alarm. Phishing is selected due to its
singificant involvement of human reasoning in detection and analy-
sis, as detailed in Section 2.4.2. Brute-force alarms are excluded due
to time and resource constraints.

During this phase, relevant steps are refined by extracting those
requiring human reasoning, for this case solely email analysis. Open-
source databases, such as the Apache Public Corpus [2] and GitHub’s
Phishing Pot [18], are used to source email samples. The Apache
Public Corpus is valuable for its semi-spammy yet benign emails,
underscoring the research’s aim to assess if a LLM can differentiate
between semi-spammy and genuinely dangerous phishing emails.
To label 200 emails, each is examined, and the four questions a

security operator would address are answered, including analyzing
the sender’s email and the urgency. The results are saved. The next
framework step is selecting the LLM.
Phi3:14B, Qwen1.5:4B, and Llama3:8B were selected based on

performance, availability, and efficiency with the available hard-
ware: an 8-core Intel I7 processor and an RTX 2060 graphics card.
Preliminary analysis demonstrated that these models consistently

6

Evaluating Large Language Models for Automated Cyber Security Alarm Analysis Processes TScIT 41, July 5, 2024, Enschede, The Netherlands

responded within 30 seconds. In contrast, larger models, such as
Llama3:70B, required 5 minutes to process, rendering them imprac-
tical for handling the volume of prompts necessary. Namely, each
of the three chosen models will process 2400 prompts (3 prompts
for each of 4 steps across 200 emails), meaning it can take 200 hours
to compute 2400 5-minute prompts for a single LLM. Consequently,
these models provide a balance of performance and efficiency while
achieving reasonable MMLU benchmark scores, as shown in Table
3.

Model Params MMLU DROP Public
Phi3 14B 78.0 - ✓

Llama3 8B 68.4 79.7 ✓

Qwen1.5 4B 56.1 - ✓

Table 3. Performance of Selected LLMs

After selecting themodels, the next step involves drafting prompts,
as discussed in Section 3. A prompt is structured into three key com-
ponents: a context, a scenario prompt, and a system prompt, with
the order being crucial. Through testing, it was established that plac-
ing the system prompt last maximizes the likelihood of its inclusion
in the computation of the result by the LLM. This approach not only
makes the prompt more concrete but also facilitates easier compre-
hension for the operator. In this study, it is important to emphasize
that the prompt is specifically crafted to respond either a ’true’ or a
’false’ response, and this intention has been repeatedly highlighted
and reformulated, eventually simplifying the comparison across the
2,400 prompts and their respective baselines.

4.2 Computation
For the "Computation" phase of the framework, the information
needed will be collected and will be evaluated for phishing specifi-
cally. All information, such as steps_per_alarm, prompt_per_step_-
per_alarm, and baseline and the implemented algorithms can be
found on this GitHub [15]. This returns the following result, which
will be interpreted in the next section.

4.3 Results
In this section, the results from the computation phase will be ana-
lyzed. The discussion will cover three different tables, showing the
average time, average character length, and accuracy respectively,
highlighting the most important information.

Table 4 shows the average time throughout the different LLMs. It
is evident that Llama3 is consistently faster than Qwen:4b and Phi3.
This suggests that Llama3 has the smallest cost, since it requires
the least amount of computation time. Qwen on the other hand has
half the amount of parameters, potentially making it quicker, but it
is not. This time differentiation can be explained if it is correlated
with Table 5.

During the "Preparation" phase, the LLM was programmed to
respond with ’true’ or ’false’—words comprising four and five char-
acters respectively. Assuming an equal distribution of responses, the
average character count per response should be 4.5, since the words
’true’ and ’false’ have an average character length of 4.5 charac-
ters. However, examining the average response lengths reveals that
only Llama3 approximates this expected length, with an average
of 5.5 characters per response. This short length likely contributes
to Llama3’s faster performance, suggesting it adheres more strictly
to the instructions compared to Qwen and Phi3, thus needing less

time to finish the response. Similarly, Phi3’s decrease in time can be
correlated with the decreasing character length in Phi3.
Phi3 is clearly the slowest from these three. This is predictable,

since Phi3 has the highest parameter size. while the parameter size
is not more than 2 times the parameter size of Llama3, it still takes
a little less than 10 times as much time to compute. Additionally,
during the implementation of the algorithm, the model was loaded
only once, so that when running, it would not require to reload
everything into the cache memory. This means that there is another
reason, which is not cache, but perhaps Phi3’s design. Phi3:14B has
been designed to handle a wide variety of complex tasks [39], which
can make its internal structure more complex and thus resulting in
a higher time. In Table 4,

Step Llama3 Time Qwen:4b Time Phi3 Time
0 1.964283 2.768391 28.043647
1 2.042337 2.531961 22.630253
2 2.143857 3.013252 14.742495
3 2.071740 2.738032 12.684208

Average 2.055554 2.762909 19.525151
Table 4. Average Time Measurements for Various Models

In table 5, it can be also seen that Llama3 is generally consistent
between the token lengths, each being near 4.5 tokens, but in step 2,
there is a clear outlier where it is almost double: 8.728. A potential
explanation can be found in its relevant step. The security step asks
the LLM to answer two questions, and Llama3 answers both of them,
thus resulting in a longer response, answering true true instead of
solely true.

Step Llama3 Length Qwen:4b Length Phi3 Length
0 4.512 264.140 245.743
1 4.362 227.073 192.280
2 8.728 302.980 100.380
3 4.437 255.768 77.085

Average 5.510 262.490 153.872
Table 5. Average Character Lengths for Various Models

The accuracy (Acc) of various LLMs as detailed in Table 6 is ex-
amined, which presents accuracy measurements across multiple
prompts for each model at different stages of interaction. It rep-
resents how similar the prompts of the LLM are compared to the
human counter-part. This means that the message can still be accu-
rate even if the character length varies from the expected format,
which will increase accuracy. Please note that the prompt P1 used
in step 0 differs from the prompt P1 used in step 1, as each step
requires a unique scenario prompt.

It is evident that some prompts perform better for different LLMs.
To obtain the best accuracy for each LLM, the best prompt is selected
in each step for each LLM, and the average of these selections is
computed. This is possible, because the prompts are different in
each row.

Notably, Phi3 outperforms the other models, achieving the high-
est accuracy of 0.573. This suggests that Phi3 is more robust across
diverse scenarios. Llama3, on the other hand, shows the lowest
performance with an accuracy of 0.553 in one instance. Statistical

7

TScIT 41, July 5, 2024, Enschede, The Netherlands Beau Jonkhout

analysis would be useful here to determine the significance of these
results given the high number of prompts (2400/LLM). Even mar-
ginal improvements in accuracy, when applied across such a high
number of prompts, implies more beneficial value: Scores below 0.5
fail to exceed the benchmark set by random chance (e.g. a monkey
flipping a coin), but 0.573 exceeds it significantly with N=2400. This
suggests that LLM can be beneficial, but for this study, it might not
be as effective as it can be.
When analyzing the average accuracy scores for each step, it is

evident that performance varies between steps and models. Step 0,
with an average score of 0.518, suggests that this step may not be
effectively managed by LLMs. Conversely, Step 1 shows an improve-
ment, with an average score of 0.543, indicating better performance
by LLMs in assisting with this task. However, generalizations about
the utility of LLMs for specific steps should be approached with
caution. Notably, Qwen consistently outperforms others in Step 1,
achieving accuracy scores higher than 0.575.

Llama3 Acc Qwen:4b Acc Phi3 Acc
Step P1 P2 P3 P1 P2 P3 P1 P2 P3 Avg
0 0.440 0.440 0.490 0.610 0.575 0.575 0.515 0.500 0.515 0.518
1 0.630 0.575 0.600 0.490 0.525 0.490 0.535 0.570 0.475 0.543
2 0.500 0.505 0.525 0.580 0.575 0.520 0.480 0.530 0.560 0.531
3 0.570 0.460 0.470 0.495 0.510 0.495 0.600 0.645 0.520 0.529

Best 0.553 0.556 0.573
Table 6. Accuracy Measurements for Various Models Across Multiple
Prompts. The best column is the average of the accuracy of the best four
cases for each LLM. These best cases are underlined.

In conclusion, this section highlights the advantages and disad-
vantages of applying LLM in the cyber security analysis process.
Phi3, despite its large parameter size and longer computation time,
showed the highest accuracy. This suggests that while Phi3 is com-
putationally more expensive, it is more effective in complex decision-
making tasks. On the other hand, Llama3 and Qwen showed similar
performance in terms of computation time and accuracy. Notably,
Llama3 adheredmore closely to the formatting instructions, whereas
Qwen and Phi3 often responded in sentence form, making it less
predictable, but makes it easier to understand the choice of the LLM.

Specifically, in the context of phishing analysis, the tested LLMs
show potential despite their relatively low accuracy. They demon-
strate an ability to differentiate between phishing and benign emails
with an accuracy slightly above 0.55, which, given the high sample
size, suggests a non-random level of accuracy. This indicates that
while LLMs may not fully replace human decision-making in secu-
rity operations, this suggests that LLM can be beneficial, but in this
study it has not reached it full potential.

The primary advantages of integrating LLMs include their ability
to quickly interpret extensive textual content and identify under-
lying intentions, such as distinguishing between phishing and le-
gitimate communications. However, limitations are evident in the
granularity of the tasks. For instance, while an LLM might success-
fully identify a phishing attempt when analyzing the entire email
content, its performance might degrade when tasked with making
a determination based on less data, such as just the subject line.
Moreover, another limitation observed is the trade-off between

computational time and confidence in the accuracy of the results. For

example, Phi3 takes an average of 19.5 seconds per response, which
might be impractical in real-time scenarios where rapid response is
crucial.

Ultimately, while LLMs demonstrate promising capabilities in en-
hancing phishing detection, the application of these models must be
carefully tailored to balance effectiveness, efficiency, and operational
demands.

5 Conclusions
This thesis has explored the potential of LLMs to automate the
decision-making processes in cybersecurity alarm analysis, aim-
ing to mitigate ’alert fatigue’ in security operations. This research
highlighted the key steps in the analysis process and the state-of-
the-art LLMs in May 2024. Next, the effectiveness of several LLMs
(i.e. Llama3:8B, Qwen1.5:4B Phi3:14B) has been assessed, by devel-
oping a methodology to evaluate their performance in real-world
cybersecurity scenarios, revealing that all LLMs demonstrated a non-
random ability to match human responses. The study confirmed that
while LLMs can significantly enhance the efficiency and accuracy
of security alarm analyses, their effectiveness varies depending on
the complexity of the tasks and the specific characteristics of each
model.

6 Limitations
In preparing for future research, several critical considerations must
be addressed, especially surrounding the limitations encountered
in the current study. Firstly, the evaluation of LLMs on brute-force
attack alarms was hindered by time and privacy constraints, pre-
venting access to the necessary data due to legal restrictions. Fur-
thermore, financial and computational limitations restricted the
exploration of different LLMs. For instance, while GPT-4 emerged
as a promising candidate, its utility was limited in analysing longer
texts, such as two large emails, due to token length limitations. Simi-
larly, larger models, such as Llama:70B, were too resource-intensive
for standard personal computing devices. Using manually labeled
data increases the risk of human errors in data reliability, and the
current method of evaluating responses, which depends on human
decision-making in unusual situations, is inconvenient.

7 Future Work
For future research, several enhancements and directions are sug-
gested. First, more scalable or efficient computational strategies
should be considered to accommodate the demands of larger LLMs,
which may involve exploring alternative models or improving hard-
ware capabilities. Additionally, while the current focus was on phish-
ing attacks, a broader evaluation encompassing various techniques
listed in the MITRE ATTA&K framework is recommended to pro-
vide a more comprehensive understanding of cybersecurity threats.
Future studies should also utilise pre-labeled datasets to enhance the
credibility of the results and consider leveraging LLMs to automate
and refine the evaluation process. This could significantly improve
the accuracy and efficiency of response assessments. Establishing
GPT-4 or a similarly capable LLM as a baseline for benchmarks could
standardise evaluations and provide a clearer metric for comparison
across different studies.

8

Evaluating Large Language Models for Automated Cyber Security Alarm Analysis Processes TScIT 41, July 5, 2024, Enschede, The Netherlands

Disclaimer on the Use of AI
AI Assistants, such as ChatGPT: Assisted with rewriting, format-
ting this document in LaTeX, including the creation of tables, and
summarization of extensive data. Used a tool for difficult terminol-
ogy to get a better understanding when the search engines are not
sufficient.

After careful review, the author takes full responsibility for writ-
ing this document.
LLMs: Applied to evaluate and interpret complex cyber secu-

rity data, demonstrating potential to automate decision-making
processes and reduce human error.

References
[1] 2015. Jupyter Notebook. https://docs.jupyter.org/en/latest/
[2] 2018. Apache’s Public Corpus. https://spamassassin.apache.org/old/publiccorpus/
[3] 2018. Papers with code - bert: pre-training of deep bidirectional transformers for

language understanding. https://paperswithcode.com/paper/bert-pre-training-
of-deep-bidirectional

[4] 2020. Python 3.9.0. https://www.python.org/downloads/release/python-390/
[5] 2022. Bigscience Bloom. https://huggingface.co/bigscience/bloom
[6] 2022. ImageNet. https://paperswithcode.com/sota/image-classification-on-

imagenet
[7] 2022. Multi Task Language Understanding. https://paperswithcode.com/sota/

multi-task-language-understanding-on-mmlu
[8] 2022. Pathways Language Model Paramters. https://research.google/

blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-
breakthrough-performance/

[9] 2023. . https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
[10] 2023. Claude AI. https://claude.ai/
[11] 2023. Data Breaches Report 2023. IBM Corporation. https://www.ibm.com/

downloads/cas/E3G5JMBP
[12] 2023. PaLm 2. https://ai.google/discover/palm2/
[13] 2023. unraveling the landscape of large language models: a systematic review

and future perspectives. Journal of Electronic Business & Digital Economics 3, 1
(2023), 3–19. https://doi.org/10.1108//JEBDE

[14] 2023. What are Large Language Models (LLMs)? https://www.ibm.com/topics/
large-language-models

[15] 2024. Beau GitHub. https://github.com/BCJonkhout
[16] 2024. ChatGPT. https://chatgpt.com/?oai-dm=1
[17] 2024. code for the paper evaluating large language models trained on code.

https://github.com/openai/human-eval
[18] 2024. A collection of phishing samples for researchers and detection developers.

https://github.com/rf-peixoto/phishing_pot/
[19] 2024. Cortex XSOAR: Security Orchestration and Automation. https://www.

paloaltonetworks.com/cortex/cortex-xsoar
[20] 2024. Falcon LLM. https://falconllm.tii.ae/
[21] 2024. Google. https://www.google.com/
[22] 2024. ISO/IEC 27001:2022. https://www.iso.org/standard/27001
[23] 2024. Meta’s Llama3. https://llama.meta.com/llama3/
[24] 2024. Microsoft Defender voor Office 365. https://www.microsoft.com/nl-

nl/security/business/siem-and-xdr/microsoft-defender-office-365
[25] 2024. NIST CSF. https://www.nist.gov/cyberframework
[26] 2024. Northwave Cybersecurity. https://northwave-cybersecurity.com/
[27] 2024. Ollama. https://ollama.com/library
[28] 2024. OpenAI’s Artificial Intelligence Deal Valuation. The New York Times (16

feb 2024). https://www.nytimes.com/2024/02/16/technology/openai-artificial-
intelligence-deal-valuation.html

[29] 2024. Qwen. https://huggingface.co/Qwen
[30] 2024. Snort - Network Intrusion Detection & Prevention System. https://www.

snort.org/
[31] 2024. Splunk. https://www.splunk.com/
[32] 2024. What is the Difference Between XDR vs. SIEM? https://www.

paloaltonetworks.com/cyberpedia/what-is-xdr-vs-siem
[33] 2024. Zeek IDS. https://zeek.org/
[34] 1kg. 2024. Ollama : What is Ollama? - 1kg - Medium. https://medium.com/@1kg/

ollama-what-is-ollama-9f73f3eafa8b
[35] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[36] Ehsan Aghaei, Xi Niu, Waseem Shadid, and Ehab Al-Shaer. 2022. Securebert: A
domain-specific language model for cybersecurity. In International Conference on
Security and Privacy in Communication Systems. Springer, 39–56.

[37] Jeanine Banks and Tris Warkentin. 2024. Gemma: Introducing new
state-of-the-art open models. Google. Available online at: https://blog.
google/technology/developers/gemma-open-models/(accessed 6 April, 2024) (2024).

[38] Matthias Bastian. 2023. Gpt-4 has more than a trillion parameters-report. The
Decoder 3 (2023).

[39] Misha Bilenko. 2024. Introducing Phi-3: Redefining what’s possible with SLMs |
Microsoft Azure Blog. https://azure.microsoft.com/en-us/blog/introducing-phi-
3-redefining-whats-possible-with-slms/

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[41] Mohamed Amine Ferrag, Mthandazo Ndhlovu, Norbert Tihanyi, Lucas C Cordeiro,
Merouane Debbah, Thierry Lestable, and Narinderjit Singh Thandi. 2024. Rev-
olutionizing Cyber Threat Detection with Large Language Models: A privacy-
preserving BERT-based Lightweight Model for IoT/IIoT Devices. IEEE Access
(2024).

[42] Intezer. 2022. SOC Analyst Training: How to Detect Phishing Emails. https:
//www.youtube.com/watch?v=Xrzsu-FFvu8

[43] Aikaterini-Lida Kalouli, Annebeth Buis, Livy Real, Martha Palmer, and Valeria
De Paiva. 2019. Explaining simple natural language inference. In Proceedings of
the 13th Linguistic Annotation Workshop. 132–143.

[44] Michail E. Klontzas, Salvatore Claudio Fanni, and Emanuele Neri. 2023. Introduc-
tion to Artificial Intelligence. https://doi.org/10.1007/978-3-031-25928-9

[45] George Kurtz and CrowdStrike. 2024. CROWDSTRIKE 2024 GLOBAL
THREAT REPORT. https://go.crowdstrike.com/rs/281-OBQ-266/images/
GlobalThreatReport2024.pdf

[46] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language
representations. arXiv preprint arXiv:1909.11942 (2019).

[47] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[48] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[49] LogRhythm. 2024. LogRhythm SIEM Security & SOC Services. https://logrhythm.
com/

[50] mistralai. 2024. Official inference library for Mistral models. https://github.com/
mistralai/mistral-inference

[51] Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse
Simoes, Sahaj Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti
Aggarwal, et al. 2023. Orca 2: Teaching small language models how to reason.
arXiv preprint arXiv:2311.11045 (2023).

[52] MITRE. 2024. MITRE ATT&CK. https://attack.mitre.org
[53] Mahdi Namazifar, Alexandros Papangelis, Gokhan Tur, and Dilek Hakkani-Tür.

2021. Language model is all you need: Natural language understanding as question
answering. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 7803–7807.

[54] UCI NLP. 2024. DROP: A Reading Comprehension Benchmark Requiring Discrete
Reasoning Over Paragraphs. https://huggingface.co/datasets/ucinlp/drop

[55] Ertugrul Portakal. 2023. Claude 2 Parameters (Parameter Size, Context Window...).
https://textcortex.com/post/claude-2-parameters

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[57] Gopinath Rebala, Ajay Ravi, Sanjay Churiwala, Gopinath Rebala, Ajay Ravi, and
Sanjay Churiwala. 2019. Machine learning definition and basics. An introduction
to machine learning (2019), 1–17.

[58] Help Net Security. 2021. Rapid increase in security tools causing alert fatigue
and burn out - Help Net Security. https://www.helpnetsecurity.com/2021/03/22/
security-tools-increase/

[59] siemxpert. 2023. Phishing Email Analysis. https://www.siemxpert.com/blog/
phishing-email-analysis/

[60] Freya Thomson. 2022. Cybersecurity strategies: fighting alert fatigue and building
resilience. https://www.openaccessgovernment.org/fighting-alert-fatigue-and-
building-resilient-cybersecurity-strategies/139904/

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
Advances in neural information processing systems 30 (2017).

[62] HanXiang Xu, ShenAo Wang, Ningke Li, Yanjie Zhao, Kai Chen, Kailong Wang,
Yang Liu, Ting Yu, and HaoYu Wang. 2024. Large Language Models for Cyber
Security: A Systematic Literature Review. arXiv preprint arXiv:2405.04760 (2024).

9

https://docs.jupyter.org/en/latest/
https://spamassassin.apache.org/old/publiccorpus/
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
https://www.python.org/downloads/release/python-390/
https://huggingface.co/bigscience/bloom
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://research.google/blog/pathways-language-model-palm-scaling-to-540-billion-parameters-for-breakthrough-performance/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://claude.ai/
https://www.ibm.com/downloads/cas/E3G5JMBP
https://www.ibm.com/downloads/cas/E3G5JMBP
https://ai.google/discover/palm2/
https://doi.org/10.1108//JEBDE
https://www.ibm.com/topics/large-language-models
https://www.ibm.com/topics/large-language-models
https://github.com/BCJonkhout
https://chatgpt.com/?oai-dm=1
https://github.com/openai/human-eval
https://github.com/rf-peixoto/phishing_pot/
https://www.paloaltonetworks.com/cortex/cortex-xsoar
https://www.paloaltonetworks.com/cortex/cortex-xsoar
https://falconllm.tii.ae/
https://www.google.com/
https://www.iso.org/standard/27001
https://llama.meta.com/llama3/
https://www.microsoft.com/nl-nl/security/business/siem-and-xdr/microsoft-defender-office-365
https://www.microsoft.com/nl-nl/security/business/siem-and-xdr/microsoft-defender-office-365
https://www.nist.gov/cyberframework
https://northwave-cybersecurity.com/
https://ollama.com/library
https://www.nytimes.com/2024/02/16/technology/openai-artificial-intelligence-deal-valuation.html
https://www.nytimes.com/2024/02/16/technology/openai-artificial-intelligence-deal-valuation.html
https://huggingface.co/Qwen
https://www.snort.org/
https://www.snort.org/
https://www.splunk.com/
https://www.paloaltonetworks.com/cyberpedia/what-is-xdr-vs-siem
https://www.paloaltonetworks.com/cyberpedia/what-is-xdr-vs-siem
https://zeek.org/
https://medium.com/@1kg/ollama-what-is-ollama-9f73f3eafa8b
https://medium.com/@1kg/ollama-what-is-ollama-9f73f3eafa8b
https://azure.microsoft.com/en-us/blog/introducing-phi-3-redefining-whats-possible-with-slms/
https://azure.microsoft.com/en-us/blog/introducing-phi-3-redefining-whats-possible-with-slms/
https://www.youtube.com/watch?v=Xrzsu-FFvu8
https://www.youtube.com/watch?v=Xrzsu-FFvu8
https://doi.org/10.1007/978-3-031-25928-9
https://go.crowdstrike.com/rs/281-OBQ-266/images/GlobalThreatReport2024.pdf
https://go.crowdstrike.com/rs/281-OBQ-266/images/GlobalThreatReport2024.pdf
https://logrhythm.com/
https://logrhythm.com/
https://github.com/mistralai/mistral-inference
https://github.com/mistralai/mistral-inference
https://attack.mitre.org
https://huggingface.co/datasets/ucinlp/drop
https://textcortex.com/post/claude-2-parameters
https://www.helpnetsecurity.com/2021/03/22/security-tools-increase/
https://www.helpnetsecurity.com/2021/03/22/security-tools-increase/
https://www.siemxpert.com/blog/phishing-email-analysis/
https://www.siemxpert.com/blog/phishing-email-analysis/
https://www.openaccessgovernment.org/fighting-alert-fatigue-and-building-resilient-cybersecurity-strategies/139904/
https://www.openaccessgovernment.org/fighting-alert-fatigue-and-building-resilient-cybersecurity-strategies/139904/

TScIT 41, July 5, 2024, Enschede, The Netherlands Beau Jonkhout

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 From Artificial Intelligence to Large Language Models
	2.2 From Transformers To LLMs
	2.3 Available Large Language Models
	2.4 Key Steps in Security Alarm Analysis

	3 Evaluation Methodology
	3.1 Preparation
	3.2 Computation
	3.3 Interpretation

	4 Applying the Framework
	4.1 Preperation
	4.2 Computation
	4.3 Results

	5 Conclusions
	6 Limitations
	7 Future Work
	References

