Explainable Forecasting Models For Load Forecasting

ANANT TRIVEDI, University of Twente, The Netherlands

Electricity grids face rising demand from population growth and renew-
able energy integration, creating a crucial need for efficient and explainable
forecasting models. The research seeks to evaluate the performance and
interpretability of Facebook (FB) Prophet and LSTM (Long-Short-Term Mem-
ory) under data constraints compared to Transformer-based solutions such
as PatchTST (Patch TS Transformer). This study performed exploratory data
analysis (EDA) on a decentralized electricity grid in the Netherlands and
predicted the power consumption of a company using the above-stated mod-
els. The methodology uses accuracy metrics: (i) Mean Square Error (MSE),
(i) Mean Absolute Error (MAE) and SHapley Additive exPlanations (SHAP)
for the explainability of models. FbProphet showed efficiency for short-
term forecasting from 15-minute to 1-hour intervals, making it suitable for
real-time operational decisions. PatchTST performs consistently for longer
horizons (>= 6 hours), benefiting long-term planning and resource allocation.
LSTM models require further tuning or additional data to improve accuracy.
PatchTST or FbProphet can be selected based on the specific forecasting
horizons and availability of training data. In future, these models can forecast
load profiles inside a given company to gain insights into the utilization of
energy within a company. Additionally, it can expand on explainability tools
for Transformer-based models.

Additional Key Words and Phrases: Load forecasting, Explainability, Trans-
formers, FbProphet, LSTM, PatchTST

1 INTRODUCTION

The Dutch electricity grid is becoming increasingly busy, driven
by population growth and industrial expansion. Furthermore, the
transition from natural gas to electricity and the rise of electric
vehicles will increase the electric demand, leading to insufficient grid
capacity to transport all the electricity generated in the Netherlands
[37]. To develop a flexible energy system that aligns energy supply
and demand effectively, the integration of technologies is essential.

Smart grids are electricity networks that use digital technologies,
sensors and software to manage the load in real time. They pro-
vide an in-depth understanding of electricity usage by identifying
key consumption patterns. Smart grids coordinate the needs and
capabilities of grid operators and electricity market stakeholders.
Advancement in technology motivates researchers to develop ma-
chine learning tools that can learn and obtain insights to manage
energy infrastructures.

The goal of data-driven techniques is to create models to fore-
cast/predict energy consumption or load demands [8]. Time Series
Forecasting (TSF) plays a crucial role in this context [42]. Forecast-
ing energy allows companies to understand future energy demands,
infrastructure development, and reducing power losses. It is neces-
sary to predict energy demand for power operators to ensure cost-
and energy-efficient decisions about power generation scheduling,
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system reliability, and power optimization. Finally, producing en-
ergy in environmentally friendly ways and meeting the increasing
energy demand can be achieved through the insights of forecasting
models [43].

Depict these advantages forecast energy demands have limita-
tions. When analyzing Time Series (TS) data, it is crucial to use
appropriate methods that account for the temporal dependencies
and potential changes in distribution over time. Traditional spatial
statistics methods that assume independence and identical distribu-
tion are unsuitable for TS data because of inherent restrictions. This
research uses solar energy TS data for a specific company where
the above assumptions do not hold. For example, power consump-
tion depends on time exhibits non-stationarity and the value at a
one-time stamp is often influenced by the value at the previous time
point. Additionally, seasonal variations and weather conditions can
cause significant fluctuations in energy consumption patterns over
time.

Due to these limitations, conventional forecasting methodologies,
such as moving averages, trend analysis, and exponential smoothing,
are widely used to solve the energy TSF [12]. However, Artificial
Neural networks (ANN) are more efficient than statistical models
because traditional time series methods rely solely on linear nu-
merical calculations and do not incorporate in-context information
[16, 39].

More robust deep learning models such as Recurrent neural net-
work (RNN) [1], LSTM [1, 29, 35, 39] are used to model TS data.
The neural networks have played a crucial role in modelling the
non-linearity present in the complex load profiles [29]. Deep learn-
ing models such as transformers have shown faster training speeds
and negligible inference times with comparable accuracies with
other SOTA machine learning models [32, 36]. They also provide
probabilistic forecasts, which offer insights into the uncertainty of
predictions. Understanding the range of possible outcomes is crucial
for decision-making in the energy sector [30].

However, these models come with certain limitations. Deep neu-
ral networks (DNN) overfit on small datasets and struggle with
vanishing/exploding gradient problems. Extensive preprocessing,
dealing with missing values, noise reduction, and normalization are
also some challenges of DNNs. Usually, these model struggle with
explainability because of their complex architecture [19]. The pa-
per by Zeng et al. mentions that transformers suffer from temporal
information loss, which is crucial for TSF.

This research compares the performance and explainability of
different deep neural networks (DNNs) with other machine learning
techniques for load forecasting. It aims to identify the most effective
approach for enhancing energy grid efficiency by evaluating these
models based on data size constraints, computation efficiency, and
explainability.

The first section of the study, related work, discusses various
modules and technologies applied for predicting energy demands.
The following section formulates the research problem, detailing the
main research questions and breaking into focused sub-questions.
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Following, the methodology section explains the approaches taken
to perform the experiments. The results section then analyzes the
outcomes of these experiments. Finally, the paper mentions some im-

provements that can be made in future work and conclusion of this work.

2 RELATED WORK

Exploratory data analysis (EDA) is a method of evaluating or com-
prehending sensor data to derive insights and key characteristics
[5]. Tyralis et al. (2017) highlight the importance of EDA in under-
standing TS data. The paper mentions the graphical representation
of data showing cyclic and seasonal behaviour in data. The aim is "to
find the unexpected’, for instance, identifying misleading patterns
or missing values in data. It complements the model building based
on the findings of EDA [6]. The book [38] presents advantages like
dimensional reduction and regression analysis to identify signifi-
cant variables and build predictive models via the EDA framework.
It enables exploration of the relationship between meteorological
variables and power output through correlation analysis. These pro-
vide insights into factors influencing power generation, leading to
improved prediction accuracy [23].

Innovative and sophisticated techniques such as Transformers
networks are emerging in forecasting and predictive modelling [24].
PatchTST is tailored for multivariant TSF and self-supervised repre-
sentation learning [28, 33]. It exhibits consistently strong predictive
performance across various types of TS. Lemishko and Landi (2024)
mentions its proficiency in capturing complex patterns, making it
superior to other DNNG. Essentially, PatchTST segments the TS into
multiple patches to serve as input tokens for transformers. This
segmentation reduces the redundancy in data [34]. The model can
consider the presence of patches or sudden fluctuations in TS data
because of its sophisticated analysis of patterns [15].

While other transformers used point-wise attention, using every
time step as an input token, PatchTST aggregates multiple tokens
called patching. Point-wise attention has a clear disadvantage of loss
of local information. For example, a single time or pixel does not
inform anything about the TS data or image. Patching has resulted in
a reduction in MSE values by 21% and 16.7% on MAE for supervised
learning and close to 30% to 50% reduction for similar metrics for
unsupervised models [33].

PatchTST uses self-attention mechanisms to focus on relevant
patches, enabling it to extract meaningful features and relation-
ships from data [15, 34, 45]. The model also supports Channel-
Independence (CI). It allows different channel inputs to process in-
dependently. For example, if the data includes temperature and
humidity columns, there will be two input channels to the Trans-
former. Predictions from each channel are concatenated for the final
predictions. Nie et al. (2023) explains the architecture and working
of PatchTST in more detail. The paper [47] mentions that CI proved
to work well with Convolutional Neural networks (CNN). Similarly,
the paper [33] performed an ablation study on PatchTST, where
they combined patching and CI. It showed slightly better results in
comparison with other transformers.

Most of the literature regarding PatchTST is long-term forecasting
with a horizon of a minimum of 3 days. It is relatively new and has
not undergone extensive testing [28]. Hence, it remains to be seen
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how efficiently it will perform in practical applications and short-
horizon forecasting. Building upon this literature, our study aims to
compare the predictive abilities of PatchTST for short-term electric
load forecasting.

Angelopoulos et al. (2019) mentions the wide use of neural net-
works for energy forecasting. RNNs are used for quarterly energy
demand forecasting of Australia, France, the USA, Spain and Greece
[13, 31]. A bidirectional stacked LSTM decomposes TS data to re-
duce the impact of irregular patterns [4]. The model consists of
neural network layers and different memory blocks called cells. The
cells are helpful in information retention [27]. The research Cascone
et al. (2023) mentions that vanilla LSTM predictions for household
energy consumption used an attention mechanism and sequence-to-
sequence algorithm. LSTMs have a memory mechanism that stores
information learned from past inputs and couples it with the current
input to deduce the output [2].

According to Korstanje (2021) in his book, "The LSTM cell adds
long-term memory in an even more performant way because it
allows even more parameters to be learned. This makes it the most
powerful [Recurrent Neural Network] to do forecasting, especially
when you have a longer-term trend in your data. LSTMs are one of
the state-of-the-art models for forecasting at the moment".

Gupta et al. (2017) mentions using FbProphet for predicting solar
energy generation. The model forecasts TS data using an additive
approach. Non-linear trends are fitted based on yearly, weekly, and
daily seasonality and holiday effects [41]. FbProphet has robust
methods for handling missing data and outliers; it works best with
TS data having strong seasonal effects and several season-wise
historical data [17]. The model uses Seasonal and Trend decompo-
sition using LOESS (STL), which entails identifying and modelling
these components using mathematical and statistical methodolo-
gies. Stefenon et al. (2023) explains that these methodologies: (i)
linear regression used to model the trend component of a TS, (ii)
Fourier series used to model the seasonality component of a TS and
(iif) binary indication for certain days used to describe the holiday
component of a TS.

Prophet results show that it outperforms classical statistical and
machine learning approaches [44, 48]. It is designed to handle fore-
casting on data which has multi-seasonality features. Prophet is a
good alternative for forecasting season TS data [4]. This research
implements the FbProphet model on electricity data under multi-
ple data constraints to check the performance of the model and its
usability in the energy industry.

3 PROBLEM STATEMENT

Power prediction has been extensively researched and has various
approaches. It already has been designed, tested and shown to work
reasonably well. As mentioned in the previous section, transformers
have better accuracy and training times than RNNs and traditional
machine learning models for TSF. Nonetheless, transformers have
problems like quadratic complexity and inductive bias, which make
them less efficient and unsuitable to put the models in production.
Additionally, the literature about the explainability of deep learning
models is scarce, especially in the field of TS [10]. Explainability
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is necessary to characterize accuracy, fairness, transparency and
outcomes in Al-powered decision-making [20].

This exploration aims to verify the truthfulness of these claims
on deep learning models in the context of TS.

3.1 Research Question

How does the performance and interpretability of transformers and
deep learning models for load forecasting change under limited data?

To be able to answer this, we shall further mention the following
sub-questions:

3.1.1 S$Q1: How can computational complexity be effectively mea-
sured and compared across different machine learning architectures
such as FbProphet, PatchTST, and LSTM in the context of load
forecasting?

3.1.2 $Q2: How can popular Explainable AI (XAI) tools be used
to improve the interpretability of deep learning models?

4 METHODOLOGY
4.1 Exploratory Data Analysis (EDA)

EDA facilitated understanding of the sensor data and helped to gain
insights into a specific company in a solar energy park. Figure 1
represents the workflow in this research. Power data was collected
from a solar energy business park in the Netherlands. It contains
instantaneous and apparent power values with 15-minute time inter-
vals. Literature reviews on solar energy forecasting showed a strong
correlation with meteorological data. Therefore, weather data was
accessed from the Dutch National Weather Service and combined
with power dataset.

Columns for weekends, holidays, work time, and the year were
added to check their correlation with power. Plotting was the most
crucial part of EDA, containing Histograms and Box-plots amongst
others. Figure 2 shows the power consumption of a company over a
year. It provides a visual of general trends in the times series. For
example, the graph shows a discrepancy in power values between
2023 and 2024, as the earlier months of 2024 do not exhibit similar
values to those in 2023.

Figure 3 showed seasonality in power values. Therefore, a pattern
of peak demand for power occurred at specific intervals; it was
future-verified by weekly box plots. Monthly box plots revealed less
consumption of energy in the summer season and higher peaks in
power during the winter season. As shown in Figure 2, a similar
pattern of high power consumption begins in October 2024.

Finally, Dickey-Fuller Tests determined numerically the station-
ary of the data. The data showed non-stationarity because it failed
the null hypothesis test. It proves that the data depends on time and
exhibits trends and seasonality. It correlates with the findings above
and shown in figure 2 and 3.

4.2 Facebook (Fb) Prophet

FB Prophet uses a decomposed TS model with three main model
components: trend, seasonality, and holidays [41].

y(1) = g(t) +s(2) + h(1) + &1 )
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Fig. 1. EDA workflow.
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Fig. 2. This figure shows the average weekly power consumption over the
entire dataset. Higher peaks are observed starting from October and con-
tinue throughout the remainder of 2024.
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Fig. 3. This figure shows the seasonal composition of the TS data. Monthly
trends of peak power consumption can be seen in the data.

The equation (1) includes g(t) (trend), s(t) (seasonality), and h(t)
(holidays).
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In this study forecasting, the mean power consumption represents
the carrying capacity, modelled using the logistic growth model :

c
90 = kG —m) @

where C is the carrying capacity, k the growth rate, and m an offset
parameter.

Fourier variables handle seasonal patterns, while holidays and
events are incorporated as binary indicators, assuming their effects
are independent.

The Prophet model requires specific naming conventions for its
input. In this study, the data frame columns were renamed to ’ds’
for datetime and ’y’ for the target variable. The target variable was
mean power consumption before being used as inputs to the model.
Adding regressors in the Prophet model allows it to use external
information to improve the accuracy and interpretability of TS
forecasts. For instance, including *work hours’ and *weather data’ as
regressors before training the model transforms it into a multivariate
forecasting approach. After fitting, the model predicts different
forecasting horizons and its evaluation metrics were recorded for
further analysis.

4.3 Patch TS Transformer (PatchTST)

PatchTST incorporates a framework containing patching and channel-
independence. Nie et al. explains the core architecture of PatchTST;
they implemented a vanilla Transformer encoder and simple linear
head for decoding. Patching splits the original multivariant TS into
separate univariant TS. Both use the same model weights during
training. So, the model learns the average loss across different TS in
the training process. Figure 4 provides an overview of the patching
mechanism [25]. In the test channel, the model only makes predic-
tions of the respective channel, so it does not affect the predictions of
others. The shared ’Backboard’ indirectly learns all the information
from different channels.

2l 3[ 4] 5] 6] 7] 8 38 [7
Patching _2 .i 6 _3‘ P=4
with §=2 3 (5 [7 (8"
4l (6 [8 [8)

Fig. 4. By setting patch length(P) = 4 and stride(S) = 2 with sequence
length(L) = 8, four patches are generated as shown in this figure.

In this research, a python virtual environment to implement
patchTST is created with a conda environment and pip as our pack-
age manager. A bash script was created for installing dependencies,
Jupyter kernels, and download IBM git repositories. HuggingFace
transformer model and IBM tsfm package are used for data prepro-
cessing during the implementation of PatchTST. The following steps
were taken during the implementation

o First, load and prepare the data this includes accessing elec-
tricity and weather data. Separate time and forecast columns,
determine the amount of historical data for the input as con-
text length and set the forecast horizon and batch size. Split
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the data into train, valid and test in the 'ForecastDFDataset’
class of IBM tsfm package.

o Secondly, configure the PatchTST and create a model. It sets
the weights for the model. Configurations determine the num-
ber of input channels based on the forecasting columns and
set prediction length equal to the forecasting horizon. The
number of attention heads was a constant of 16 and 3 hidden
layers were applied in the model.

o Thirdly, for training transformer package use Training Argu-
ments, Early Stopping Callback, and Trainer classes.

Overall, the PatchTST model demonstrates a powerful approach
to TSF, effectively handling the complexities of multivariate data
while maintaining high prediction accuracy and efficiency.

4.4 Long-Short-Term Memory (LSTM)

LSTM uses transfer functions referred to as activation functions
within the LSTM unit to transform and process input data. There
are two types of functions: sigmoid and hyperbolic tangent (tanh).

The sigmoid function forms gates within the unit and is defined
as:

S0 = —— )

The tanh function scales the output of the LSTM, compressing
values to the range of -1 to 1. Both functions regulate their outputs
within specific bounds: [0, 1] for sigmoid and [-1, 1] for tanh.

Figure 5 illustrates a unit across three-time slices: the current
time (t), previous (t-1), and next (t+1).

cupt ? @
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Fig. 5. LSTM unit over three-time slices. The value 7 is the output from
the unit; the values (x) are the input to the unit, and the values c are the
context values. The output and context values always feed their output to
the next time slice. The context values allow the network to maintain the
state between cells.

This research followed the tutorial to construct the LSTM [18].
The implementation involves a windowing mechanism; it takes N
values and predicts the future values. A full explanation of window-
ing can be found in an article by Jaffry (2022).
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Forecasting Horizons 15 mins 1 hour 6 hours 12 hours 24 hours 72 hours
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
5 3 0.1365 0.0856 0.3171 0.1532 | 0.6358  0.2579 | 0.6704 0.3169 | 0.8227 0.3661 2.089 0.5157
E 6 0.1628 0.0912 0.2789 0.1542 | 0.3877  0.2395 | 0.4658  0.2879 | 0.5282  0.3175 | 0.8417 0.4245
% 9 0.1427 0.0833 0.2337  0.1389 | 0.3470 0.2297 | 0.4291 0.2791 0.4728  0.3064 | 0.8420 0.4142
A 11 0.0908 0.0770 0.1529 0.2555 | 0.2103  0.362 0.3282 0.2605 | 0.3962 0.2946 1.077 0.446
E 3 17.4846 4.1815 16.7437  4.0913 | 11.6589 3.1985 | 16.7605 3.8403 | 13.8631 3.0502 | 13.4139  2.9205
& 6 13.8677 3.7239 12.9210  3.5937 | 9.1863  2.8195 | 10.4903 3.0341 8.6155  2.5659 | 11.5404  2.4955
92 9 0.0087 0.0932 0.0358  0.1670 | 2.9682  1.0216 | 10.6783 2.3569 | 6.3241 1.8232 | 55.2313 4.2814
- 11 225.7363  15.0245 | 112.9643 9.7215 | 70.8524 7.0514 | 56.5692 6.0387 | 66.3052 6.5145 | 85.1121 7.1748
3 4.3807 1.1527 4.7026 1.1166 | 11.8845 2.2535 | 6.3714  1.4202 | 8.3304 1.7906 | 8.1513  1.6080
E 6 2.4467 0.8648 4.4097 1.0957 | 3.9949 1.0639 | 6.2420 1.3954 | 5.2666  1.2939 | 4.0198  1.1483
A 9 2.4527 0.8258 2.4398 0.8452 | 2.3188  0.7928 | 3.0974 0.9121 | 5.1845 1.2690 | 4.4372  1.2655
11 2.9874 1.1054 2.4820 0.9858 | 3.6675 1.2458 | 3.6024 1.1329 | 3.2171 1.1510 | 4.0005 1.3012

Table 1. Multivariate long-term forecasting results. The research used training lengths T € {3,6,9, 11} months of solar energy dataset. The best results are in

bold and the second best is underlined.

4.5 XAl (Explainable Al)

For the Fb Prophet model, additional regressors are external vari-
ables included in the TSF model to improve its accuracy by providing
more explanatory power. The coefficients of these regressors indi-
cate how changes in these variables affect the model’s predictions.
The coefficients are numerical values that quantify the impact of each
regressor on the forecasted value. A positive coefficient indicates
that as the regressor increases, the model’s prediction improves. A
negative coefficient indicates that as the regressor increases, the
forecasted value decreases. The credible for each coefficient identi-
fies whether the regressor is meaningful to the model. If the interval
includes zero, the regressor has a statistically significant impact on
the forecast [14].

Zhang et al. (2021) uses SHapley Additive exPlanation (SHAP) to
measure the explainability of the forecasting models. SHAP value
measures the impact of each feature on the model’s prediction re-
sults; it increases the transparency of the black box forecasting
models such as neural networks. This research aims to use the same
techniques on LSTM to validate the explainability of the energy TS
dataset.

4.6 Performance evaluation index

This research trained the models on different batch sizes and forecast
horizons to check the model performance. The training sizes were
3, 6, 9 and 11 months of data and forecasting horizons for 15 mins,
1, 6, 12, 24, and 72 hours. Essentially, it helped to evaluate model
performance under different data constraints. It was important to
check how much data was needed for a specific model to produce
accurate results.
The configuration of the device that this research used is:

(1) CPU Server
CPU: 64 cores/128 threads /1024 Gb memory.
(2) GPU Server
Nvidia A10 / CPU: 56 cores/112 threads / 256 Gb memory.

The general evaluation metrics of the TS prediction models are
as follows:
Mean absolute error (MAE)

N
1 .
MAE = & D Ipi =il ©
i=1

Mean square error (MSE)
1 n
MSE=— 3 (% = 1) ©)
=

5 RESULTS
5.1 Multivariant forecasting

Table 1 provides insight into PatchTST, LSTM and FbProphet mod-
els’ predictions with the actual power values for each forecasting
horizon, using MSE and MAE as evaluation metrics.

5.1.1 General Observations.

o Best Performances: FbProphet achieves the lowest MSE for
the 15-minute and 1-hour horizons, while PatchTST performs
better for longer horizons when more training data is avail-
able. This result correlates with transformer-based models
requiring more information to make forecasts.

e Training Data Impact: Across all models, more training
data generally leads to better performance, as indicated by
lower MSE and MAE values.

5.1.2  Analysis of Forecasting Performance. For a prediction hori-
zon of 15 minutes, FbProphet outperforms PatchTST in terms of
MSE (FbProphet MSE = 0.008700, PatchTST MSE = 0.0908), indicat-
ing better prediction accuracy. However, PatchTST has a slightly
lower MAE (PatchTST MAE = 0.0770, FbProphet MAE = 0.093200),
suggesting that the average absolute error is smaller.

Moving to 1-hour predictions, PatchTST achieves a lower MAE
when trained on more data (PatchTST MAE = 0.127100 for 11
months, PatchTST MAE = 0.138900 for 9 months), indicating fewer
large deviations in predictions. However, FbProphet significantly
outperforms PatchTST in terms of MSE (FbProphet MSE = 0.035800),
suggesting better accuracy compared to PatchTST (PatchTST MSE
=0.152900 for 11 months, PatchTST MSE = 0.233700 for 9 months).
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FbProphet is designed to handle TS data with seasonality and sea-
sonal components are more predictable. The model’s assumptions
about seasonality and trends might not hold for longer horizons. The
lower MAE value of PatchTST indicates that on average the model
performs better than FbProphet. Additionally, PatchTST’s perfor-
mance improves with more training data, as seen in 1-hour horizon
predictions, with reduced MAE, indicating fewer large deviations.

As the forecasting horizon increases to 6 hours, performance
degrades with less training data for PatchTST (PatchTST MSE =
0.2103 for 11 months, PatchTST MSE = 0.347000 for 9 months),
yet PatchTST shows consistent performance across different train-
ing sizes. Similar patterns were observed in 12-hour predictions
(PatchTST MSE = 0.328200 for 11 months, PatchTST MSE = 0.429100
for 9 months).

Day-long forecasting remains relatively stable with increased
forecasting horizons but shows a slight increase in error metrics
with less training data (PatchTST MSE = 0.396200 for 11 months,
PatchTST MSE = 0.472800 for 9 months).

However, the LSTM model shows a significant increase in error
metrics with a 72-hour horizon (LSTM MSE = 4.0005 for 11 months,
LSTM MSE = 8.1513 for 3 months) and performs worse with less
training data, indicating higher sensitivity to the amount of train-
ing data. As the prediction horizon increases, the model’s error
accumulates, leading to higher MSE and MAE values.

5.1.3  Analysis of Training Time. Figures 6, ?? show the training time
for the forecasting horizons and different training sizes. The results
show that an increase in training data decreases the training time
of PatchTST. In contrast to FbProphet the training time increases
with larger training size.

The larger training size of PatchTST for smaller horizons can be
correlated with patching. In this research, the forecasting horizon
and patch length remained the same. However, because 15-minute
intervals create smaller patches or windows compared to 24 hours,
training with 15-minute patches involves more data and conse-
quently takes longer. Longer sequences during patching avoids
memory constraints and facilitate quicker training speeds.

Despite PatchTST’s accurate results as discussed in previous sec-
tions, it is computationally costly. The training at its peak was close
to 5 hours to predict a horizon of 15 minutes. However, this training
time was reduced by 80 % when a predicting window was increased
to 12 or 24 hours.

5.2 XAl study

5.2.1 FbProphet. Figure 8 represents the bar plot of coefficient-
credible intervals for Fb Prophet. Each bar represents the coefficient
value of a regressor and the length of the bar indicates the magnitude
of the coefficient. The black dots and horizontal lines through them
represent the credible intervals of the coefficients. The following
are the results drawn from the coefficient-credible intervals:

(1) Significant Regressor: All regressors have narrow credible
intervals that do not include zero, indicating that they all
have statistical effects on the predictions.

(2) Positive Impact: 'Month’,"Week Number’, 'Is Weekend’, and
’Is Peak’ all have positive coefficients, meaning they increase
the forecast value.
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Fig. 6. This figure shows the training time of different forecasting horizons
for PatchTST.
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Fig. 7. This figure shows the training time of different forecasting horizons
for Facebook Prophet.

(3) Negative Impact: 'Quater’, 'Is Holiday’, ’Is Weekend’, "T’
(temperature), and ’SQ’ (sun), ’DR’ (wind) have negative co-
efficients, meaning they decrease the forecast value.
Magnitude of Impact: The most impactful regressors are
’Is Weekend’ and ’Is peak’, and given their large coefficients,
indicating they significantly influence the forecast values.
These regressors have logical inferences. During the weekend
no company uses their offices leading to a low/minimal power
consumption. Contrarily, it makes sense for 'Is peak’ to have
the highest significance because a peak in energy is during the
morning work hours of an office. Figure 9 shows the increase
of consumption from 8:00 am to 9:30 am, reflecting the start
of the workday when employees arrive at the office, turn on
lights, computers, and other office equipment, leading to a
noticeable spike in energy demand.

(4

=

The model’s performance can be improved with negative impact
regressors removed.
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Fig. 8. This figure shows the coefficient with credible intervals for the
Facebook Prophet.

Weekly and daily seasonality decomposition can be seen in fig-
ure 9. Understanding these seasonal patterns helps explain what
the model is learning from the data. The model identifies regular
patterns in the data. Weakly seasonality shows how the forecasted
value is affected by the day of the week, with higher values on Mon-
day and Tuesday and lower on Saturday and Sunday. Significant
peaks in the morning around 10:00 AM and lower values in the early
morning and late afternoons are shown in daily seasonality.

These patterns are incorporated into the model to improve its
accuracy. The model adjusts its predictions based on the learned
weekly and daily patterns, leading to more accurate forecasts that
reflect real-world behaviour. The prophet model performs better
by explicitly modelling seasonality with strong seasonality compo-
nents.

The model learns the regular fluctuations in the data, leading to
reliable forecasts. These results are later helpful in businesses and
organizations in making informed decisions, optimizing operations
and improving efficiency based on the predicted trends.
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Fig. 9. This figure shows daily and weekly forecast components for the
Facebook Prophet.

TSclT 41, July 5, 2024, Enschede, The Netherlands

High
obis_9_7_0_mean cm  see . el 2 .
DD =
is_peak b
0 T 5 ;g
o ) s
= is_weekend 3 v
© 2
4 ©
g sQ F b
DR £
is_worktime $
is_holiday H

Low

00 01 02 03 04 05 06
SHAP Value (Impact on Model Output)

Fig. 10. This figure shows the Shap summary plot for the LSTM.

5.2.2 LSTM. TimeSHAP is a model-agnostic recurrent explainer
that builds upon KernelSHAP and extends it to the sequential do-
main [7]. SHAP value represents the contribution of each feature
to a model’s prediction for an individual data point. Positive SHAP
values push the predictions higher and negative values pull it lower.
Every instance of the training dataset appears as its point. Exam-
ining how the SHAP values are distributed reveals how a variable
may influence the model’s predictions [11].

Figure 10 shows a summary of plot SHAP values for the LSTM
model. The Y-axis indicates the feature names in order of importance
from top to bottom. Mean power consumption (obis_9_7_0_mean)
has the highest importance for the model’s prediction. This result
makes sense because LSTM uses windowing which takes mean
power as an input in training. Mean power has red rots for for
larger SHAP values meaning that higher values of mean power
result in a positive SHAP. Higher power values can be corresponded
with peak consumption patterns during the day which is a good
indication of the model’s learning. Positive SHAP values indicate
features that push the prediction towards positive outcomes.

The summary plot in figure 10 indicates that rain (DD), ’is_-
worktime’, and ’is_holiday’ are the least significant features for
LSTM model. These features have their lower values close to a SHAP
value of 0.0, they do not help in predicting the power consumption
values. These results partially counter-checks with Fb Prophets
feature importance results, as shown in figure 8.

Wind (DD) and Temperature (T) showed a slight positive impact
on SHAP value with higher values. The fluctuation in temperature
and wind has a positive significance in power consumption. Higher
wind speeds can lead to increased power consumption. For example,
chilly wind leads to higher heating demand in cold climates. Simi-
larly, higher temperatures increase the demand for air conditioning,
also driving up power consumption.

6 FUTURE WORK

This research focused on forecasting the power consumption of a
specific company in a solar energy park. It performed TSF using
PatchTST, LSTM and FbProphet models. In the future, the same mod-
els can be used to forecast the load profiles inside a given company
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to gain insights into the utilization of energy within a company. For
example, if a company has multiple devices such as servers, heaters
and charging stations, these models can predict the energy produc-
tion from these devices. The business can optimize its operation
schedules to minimise energy use during peak hours, thus reducing
overall energy costs.

Different batch sizes could have been experimented with to fine-
tune the models. Especially, with PatchTST it would be interesting
to observe if batch sizes affect the inference times of the model for
multiple forecasting horizons. For LSTM, multiple-layer architec-
tures can be used to verify the accuracy of the model. Additionally,
more data could have been used to find more patterns for the model
to predict better.

This research can be expanded by searching and implementing
explainability tools for Transformer models specifically in the field
of TSF. Islam et al. (2024) proposes a framework for transformers
that helps to understand the impact of past observations, but also
predict their impact on future values. It showed changes in future
importance over past time steps but also predicted the sensitivity of
these features in future horizons.

7 CONCLUSION

This research investigated the performance of PatchTST, LSTM, and
FbProphet models for multivariate time-series forecasting in the
context of energy sector applications. The study evaluated these
models across various forecasting horizons, assessing their sensitiv-
ity to training data size, and exploring their interpretability through
XALI techniques.

FbProphet demonstrated superior accuracy for short-term fore-
casting intervals ranging from 15 minutes to 1 hour, leveraging its
ability to capture daily and weekly seasonal patterns. In contrast,
PatchTST excelled in longer forecasting horizons, particularly 6
to 24 hours, benefiting from increased training data. Leveraging
FbProphet for short-term forecasting can optimize energy opera-
tions, facilitating responsive adjustments to demand fluctuations
and market dynamics.

Despite the lack of explainability tools for Transformers, this
research successfully discovered and implemented XAI methods for
FbProphet and LSTM. Coefficient values for regressors helped to
find the positive impact columns for the model. ’Is peaktime’ was
the most impactful regressor and had the maximum positive impact
on the model’s accuracy.

Analysis of SHAP values for the LSTM model revealed mean
power consumption as the most significant predictor, aligning with
the windowing approach. Additionally, the positive influence of
wind and temperature fluctuations on SHAP values emphasises their
role in driving power consumption, reflecting real-world heating
and cooling demands.

This research contributes an understanding of multivariate time-
series forecasting models in the energy sector, highlighting their
diverse strengths and applications while testing their performance
across different forecasting horizons and under varying data condi-
tions.

Anant Trivedi
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