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This paper explores the possibility of using drones to create visual feedback
to help runners understand their running patterns better. Specifically, this
paper presents a study modelled on top of our novel yet technical design
and concludes with a functioning lo-fi prototype.

Using IMU which was onboarded on Crazyflie, measurement of human
motion was done in this study. Following the data collection, motion design
was completed employing Laban Motion Analysis before moving on to the
final part of the study. In this part, the focus is on utilising drone motions to
create artistic representations of runners’ running patterns.

Evaluated on Technology Acceptance Model questionnaires collected
from 6 runners. The outcome of this study measures the drone’s efficiency
and usefulness in helping runners gain insight into their running patterns.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs), commonly referred to as "drones,"
are versatile tools with a vast potential across civilian applications.
Over recent decades, drone technology has revolutionized various in-
dustries, including aerial photography, agriculture [9], surveillance
[6], and delivery services [1]. In the world of robotic development,
drones have emerged as a new trend, indicating a promising future
in Human-Robotic Interaction.

Similar to other robotic devices, drones can also be expressive in
their interaction with humans. As stated by Cui et al. [4], expressive
drones can indeed be created by employing Laban Motion Analy-
sis which particularly focuses on the connection between human
motion and its corresponding drone motion. Taken a step further,
pioneers Sharma et al. [10] and Eriksson et al. [5] further enhance
the adoption and uptake of the Laban Effort System. Their efforts
contributed to revealing an opportunity – a drone that is capable of
meaningfully expressing human emotions while flying.
Meanwhile, observed by Van Rheden et al. [13], running has

witnessed a surge in popularity over recent decades, becoming one
of the most widely practised forms of exercise worldwide. Moreover,
beingmore than a sole exercise, running also forms the basis of many
well-known sports events such as marathons. Having witnessed the
competitive transformation of running, young athletes who strive to
continually refine their running techniques are now in need of a new
way of training - Away that should not only make running engaging
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for the runners but also motivate runners to actively participate in
the run.
Interestingly, as proven by Balasubramaniam et al. [2], a well-

designed drone can also be utilized as a potential running com-
panion. Moreover, as demonstrated by Mueller and Muirhead [8]
and Graether and Mueller [7], the utilization of drones in running
certainly enables efficient communication between the runner and
the drone through immediate feedback. By incorporating LED lights
and dynamic mid-air movements, the feedback can also be upgraded
to hold personal significance for the runner. Alternatively, grounded
on the discovery provided by Cui et al. [4], the insights provided by
Eriksson et al. [5] and Sharma et al. [10] align closely with the objec-
tives of this study, showcasing the potential of drone technologies
in enhancing user experiences and prompting deeper self-reflection
and optimization of actions. In essence, just as the dancers adjusted
their movements in response to drones[5]. In this study, we aim to
empower individual runners to re-calibrate their running patterns
through the interpretation of meaningful artistic drone representa-
tions.

Fig. 1. Expected Application of the Research.

1.1 Objective and goals
This study prioritises using Crazyflie drones 1 and the involvement
of 5 runners as bridges to understanding runners’ behaviour, while
6 other runners served as prototype testers. Based on different tasks,
the study is divided into two different objectives.
The first objective of this study is to understand the runners’

behaviour. The objective is composed of two parts. The first part
is to investigate the runners’ running habits and observations of
drone presence during running activities. This process is done by
conducting individual interviews with runners from different ex-
perience groups. The second part is carried out through numerous
raw body-motion data collection using the installed IMUs on the
human body.
Following the first objective, the second objective is to adapt

dronemotion based on humanmotion. This objective consists of two
1(More information on https://www.bitcraze.io/)
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parts: Firstly, investigate methods which convert raw data collected
in the first objective into meaningful information such as drone
motion, etc. Secondly, to develop an interactive prototype using
two Crazyflie systems (figure 8) and methods concluded from the
previous step. One drone would be used as an IMU to track motion.
The second drone will then adapt the recorded movements and
illuminate accordingly, creating a synchronized motion and light
display based on the captured human body movements.

Based on the objectives stated above, the final goal of the study is
to conclude with a Human-Drone-Interaction prototype composed
of two Crazyflie drones. The drone can transform the running pat-
tern generated by the runner into meaningful artistic representation
feedback. Upon observing the artistic representation, the runner
should be able to quickly interpret the feedback and adapt their
running patterns into a more optimized form.

1.2 ResearchQuestion
To achieve the objectives above, the following research questions
require an answer: “How can we make an expressive drone system
which provides intuitive feedback for the runner to understand their
running patterns?".
In addition to the main research question, we also conclude sev-

eral sub-research questions:

• Which variable provides the most information on the runner
during running?

• Where to install the IMU drone to get the best reading?
• What are easy-to-understand artistic representations of dif-
ferent running patterns?

• What are the benefits that people expect from this artistic
representation drone?

2 RELATED WORK
Our work is related to 1) technology-driven training, and 2) Human-
Drone-Interaction Experience in Running.

2.1 Technology-Driven Training
Cesarini et al. [3] utilizes different sonification methods to assist in
the refining of swimming techniques for swimmers. Similarly, the
integration of drone technology across different activities has also
resulted in enhanced performance and introspection for individuals
engaging in physical exercise. Using the same sonification technique,
Stienstra et al. [11] designed and developed a system that provides
feedback on the technique of a professional speed-skater. This is
done by visually mapping their skating skills to make the skater
more aware of their form.

2.2 Human-Drone-Interaction Experienced in Running
Treurniet et al. [12] suggested numerous uses of expressive drones,
specifically referring to emotional interaction between drones and
humans. Such a study mentions potential bonds between the run-
ner and the drone through effective communication during the
run. Moreover, as proven in the previous section, smart interaction
such as visual mapping can provide additional insight to athletes.
Similarly, through the help of drones, the runner can visualize the

running pattern objectively and directly through a series of mim-
icking movements expressed by the drone.

Referencing the study conducted by Eriksson et al. [5] regarding
drones associated with performers on stage, dancers must adjust and
refine their movements in response to drone cues. As highlighted
by Balasubramaniam et al. [2] and reinforced in their related work
of utilizing drones in detecting runners’ running pace, drones create
a symbiotic relationship - A rhythm connecting the movements of
a dancer’s body with the movements of a drone. Correspondingly,
the dancers gain deeper insights into the performance. A similar
symbiotic relationship could be represented in this study with the
runner-drone interaction. This interaction helps runners gain aware-
ness of their running patterns, subsequently aiding in improving
their exercise routines and overall health by addressing nuances that
may not be readily perceptible without technological assistance.

3 FROM HUMAN MOTION TO DRONE MOTION
In this section, we will provide a more detailed explanation of how
human motion is translated to drone motion. This includes steps
to collect, analyse, transform and convert motion from human to
drone basis.

3.1 Human Motion Detection
Based on observation of runners’ lower-body motion during this
study, human running gait is interpreted as two separate phrases in
terms of calf swings: calf fully stretched, and calf full contraction.
Each swing is composed of these two actions, which is also known
as one stride. To accurately capture these aspects of human motion,
the first step is to strategically place the IMU drone, the second step
is to locate methods to capture human motions.

IMU drone positioning. IMU reading can vary in accuracy de-
pending on where they are placed on the body. Insights from an
online blog written by Ben Horsley 2 and experiments conducted
by Watanabe et al. [15] emphasize the significance of human body
parts such as feet, calf, thigh and hip during running. In particular, a
technique referred to as "stride control" quantifies the leg swinging
frequency and force exerted by runners during leg swings. Under
inspiration from this technique, the "stride control" and the stride
length of the runner are measured by attaching an IMU to the side
of the calf.

Due to constraints related to the drone’s size and limited research
time, as well as to mitigate potential issues arising from the drone’s
physical structure, that could adversely affect the running experi-
ence. We chose to position the IMU drone on the outer side of the
left calf. In this way, the weight of the drone can be ignored by the
runner during running, and the physical frame of the drone will not
easily collide with objects in the environment.

Variable Selection. The use of the stabilizer module onboard
Crazyflie provided us with various choices in terms of variables
which can be used to measure human running motion, running
direction, including "pitch", "roll", "yaw", (figure 2).

2(Article can be found in https://insidethenumbers.netlify.app/post/imu-placement/)
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Fig. 2. Crazyflie sense of direction

We aim to align the onboard IMU with the level of the calf hence
using either the stabilizer variable "pitch" or "yaw". To find out the
best variable that can accurately track human motion, we ran 6
strides in a window of 200 seconds and collected the generated data.

Fig. 3.
(Left): Result generated by "Yaw" Variable
(Right): Result generated by "Pitch" variable

As shown in both graphs (figure 3), there are multiple peaks
with negative angles. This can be explained by the fact that human
calves need to naturally stretch outwards during running. Thus,
each negative peak indicates the completion of a stride.

Under comparison, pitch-generated data contains a large amount
of noise peaks. While the yaw-generated data contains highly visi-
ble stride patterns with relatively less amount of noise. Thus, yaw
rotation is the most suitable variable for revealing the angle at which
human runners’ calves rotate.
With certain angles set as thresholds, activation signals are re-

leased to indicate the completion of a counted stride. Consequently,
such measurement also allows us to accurately track down the time
interval between continuous strides. This not only pinpoints the
striding frequency of the runner but also reflects the running pace
of the runner.

3.2 Motion Design Based on Laban Motion Analysis
During this study, our drone motion design incorporates Laban
Motion Analysis. As stated by von Laban [14], "Laban’s complete
framework, Laban Motion Analysis (LMA)", is a method for ob-
serving, describing, visualizing and notating human motions. This
theory covers four different movement parameters - body, shape,
space and effort. During this study, we adapt the Laban Effort
System(LES) to the drone motion design during running, as it re-
flects a deeper insight into how the pattern of the target runner is
constituted.

The Laban Effort System uses four parameters – Space, Weight,
Time and Flow, to describe motion generated by the drone in a rela-
tively closed space.Where each parameter can be two values. During

this study, only three out of these four parameters are adapted in
various contexts to describe the drone motion when representing
the runner’s movement.

Space: constituted of either "indirect" or "direct", defines the
movement of the drone in the space. "Indirect" resembles a rela-
tively relaxed drone motion with a larger swinging angle. While
"direct" refers to a straightforward and aggressive drone motion
with a smaller swinging angle.

Weight: defines the different impacts on drone body weight
during a motion. This component is built on top of two extremes,
"strong" and "light". Specifically, "strong" refers to a fast, forceful
and powerful drone motion. While "light" explains the slow, relaxed
drone motion that resembles the calm state of the runner.

Time: relates to the drone speed during the execution of motions.
In terms of this study, two extreme cases are defined: "quick/sudden"
which instructs the target drone with a fast, urgent movement in
the least amount of time, and "sustained", which constitutes the
opposite of the factor "quick/sudden", represents a slower-speed and
relaxed motion.

With a clear understanding of LES parameters used during this
study, here we visualize our design to transform human lower-body
motions into drone motions. Based on the frequency of human
strides, our motion design is divided into three different patterns:

Fast motion can be visualized by blinking Green LED and a set of
"Direct", "Strong" and "Sudden" drone motions;

Fig. 4. "Direct", "Strong", "Sudden"

Moderate motion can be displayed by a blinking Yellow LED and
a set of "Direct", "Strong" and "Sustain" drone motions.

Fig. 5. "Direct", "Strong", "Sustain"

Slow motion can be showcased by a blinking Red LED and a set of
"Direct", "Light" and "Sustain" drone motions.

Fig. 6. "Direct", "Light", "Sustain"
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3.3 "Talking" Drones
During this study, two Crazyflie drones(figure 8) were used: the
wingless drone is used as an IMU sensor to detect calf movement
and the airborne drone is used to mimic these movements based on
the sensor’s readings.

Communication between Crazyflie drones is achieved wirelessly
through a designated radio firmware known as CrazyRadio3. But
to maintain the communication between several Crazyflie drones,
CrazyRadio would also require a base station. This base station can
be implemented on any device using Crazyflie Python API while
pairing with a CrazyRadio 2.0 dongle 4. However, to ensure the
mobility of this study, we chose a laptop running Windows 11 to
serve as the base station. Additionally, to distinguish these two
Crazyflie drones during communication, each Crazyflie drone was
assigned a unique radio address and operated on a distinct radio
channel with a transmission rate of 2 MB/s.
Upon establishing a connection from the base station to each

Crazyflie drone, the base station will first request the sensor drone
to pass the latest collected raw data. When the base station fully
receives the raw data, it proceeds to analyse the data, and then
process it into the corresponding set of drone motion controls using
Crazyflie "MotionCommander"5. After transmitting the set of drone
motion controls over to the airborne drone using CrazyRadio, the
airborne drone is then directed to execute a series of drone motions.
Sequentially, the runner should attempt to adjust their running pace
based on the observed drone motions. Meanwhile, the sensor drone
equipped by the runner collects the new measurement and sends it
back to the base station to repeat the same procedure.(figure 7).

Fig. 7. Drone Wireless Communication

4 STUDY
To learn about runners’ running technique and their thoughts on
using drones to understand the human running pace, and to re-
fine our motion design, we conducted several individual interviews
and prototype tests. In the following subsections, we described the
involved participant pool, the study design, the procedures and
measurements followed throughout the study, and the data analysis
conducted to evaluate the study outcomes.
3(More information on https://github.com/bitcraze/crazyradio-firmware)
4(CrazyRadio 2.0 dongle detailed in https://www.bitcraze.io/products/crazyradio-2-0/)
5(Crazyflie API MotionCommander https://www.bitcraze.io/documentation/repository/
crazyflie-lib-python/master/user-guides/sbs_motion_commander/)

4.1 Participant Pool
This study is composed of individual interviews with 5 (3 males, 2
females) participants and a prototype testing with 6(5 male and 1
female) participants, which added up to a total of 11 participants.
All 11 participants in the study have identical ages in the range
between 20 - 30 (Mean = 24.09; median = 24; std. dev. = 3.0), with
different years of running experience (1-10 years, mean = 6.2 years).
Specifically, 2 male and 1 female participant are experienced runners;
3male and 1 female participant are intermediate runners; The other 3
male participants, and 1 female participant are beginners in running.
All runners involved in the study ran outdoors 2-4 times every week
with each run covering 5 - 8 km (Mean = 6.54 km; median = 6.75 km;
std. dev. = 1.107). Experienced participants prefer to run outdoors,
but beginners and intermediate participants tend to run indoors at
a gym. The participants were recruited from local channels around
the university and were compensated with snacks and water for
their involvement in the study. Before the study, the participants
had never used or operated a drone.

4.2 Study design
To fully answer our main research question, "How can we make
an expressive drone system that provides intuitive feedback for
the runners to understand their running patterns?", we split our
study into two main activities: individual interviews and prototype
testings.
In this study, individual interviews usually take place indoors

in isolated meeting rooms of the Interaction Lab at the University,
to use Crazyflie drone for visualising scenarios of running with
drone presence. Moreover, to ensure a comfortable interview for
the interviewee and a clear understanding of their valuable insights
from various aspects, each interview is designed to last 1 hour or
less. The conversation between the researcher and the interviewee
is also relaxed and slow with short and simple but carefully clarified
interview questions.

Similarly, prototype testing in this study also takes place indoors
in meeting rooms of the Interaction Lab at the University, to pre-
vent unexpected drone crashes caused by the outdoor environment.
During each prototype test, two Crazyflie 2.0 drones are used, this
includes a reaction drone and a sensor drone (Figure 8). To recreate
the training environment for the runners, the participant equipped
with a sensor drone is offered to run beside the reaction drone either
with or without a treadmill.

To prevent damage from accidental crashes caused by drone mal-
functions in the motors or propellers, the flight altitude is constantly
maintained around 0.4 meters above the ground. Additionally, the
reaction drone is also programmed with obstacle avoidance capa-
bilities within a 0.5-meter range. In the event of an emergency or
unforeseen collision, the user can hover their hand over the top of
the drone, which will force it to land immediately. To ensure the
safety of the participants in the experiment, the reaction drone is
kept at least one meter away from the runner and the observer.

4.3 Procedure and Measurements
During the study, two main activities required the participation
of human subjects – an individual interview and a prototype test.
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Fig. 8. Reaction Drone(Left), Sensor Drone(Right)

Before the start of each activity, the participating runners were
asked to sign a consent form and were briefed about the activity’s
objectives in the corresponding context.

Individual Interview: To avoid biases and potential miscon-
ceptions from group discussion, the interviews were conducted
personally and sessions were separated. The interviewees were in-
formed about the potential risks in the process, such as privacy leaks,
and provided a clear explanation of the procedure for collecting per-
sonal information. Which can be rejected based on the interviewee’s
willingness. The interview occurred in separate sessions among 5
different interviewees, and they were grouped based on running
experiences.

During the interviews, the interviewees were presented with dif-
ferent running scenarios, both with or without the involvement of
drones. They were allowed to personally simulate these scenarios
for a few minutes. Subsequently, interviewees were instructed to
answer four different questions immersed in no-drone-presence
running scenarios and another four different questions immersed in
running scenarios with drone presences. By the end of the question
discussion, the interviewees were also introduced to two unidenti-
fied drone motions that simulate the asynchronous running patterns.
They were instructed to interpret the meaning behind the motion
and explain how the representation related to the referred human
body movement.
It is worth noting that responses gathered from individual in-

terviews were influenced by the interviewee’s personal running
experience. This approach aimed to fulfil the first objective - to
understand a runner’s behaviour, which could be used as a refer-
ence for translating human motions to drone motions. Additionally,
the result of the individual interview will also assist in a better
understanding of runners’ perceptions of drone presence.

Prototype Testing: Runners recruited for prototype testing were
thoroughly briefed on the safety procedures and informed of their
rights to withdraw from the study at any time. During the experi-
ments, all runners were instructed to remain as close to the centre of
the room as possible while facing the drone positioned one meter in
front of them. Before each run, the sensor drone was safely attached
to the outer side of the left calf using a black strap with buckles
to prevent the drone from detaching. If the runner reported any
discomfort caused by the frame of the sensor drone, it would be

re-positioned to another spot on the outer side of the left calf. Once
the runners were ready to begin the test run, they were given the
option to run either with or without a treadmill.
Participants who chose to run without the treadmill were in-

structed to complete three separate runs at slow, moderate, and
fast paces. Meanwhile, they were also instructed to maintain each
pace for 2-3 minutes based on their interpretation of the drone’s
motions and onboard LED signals. For participants who chose to
run on the treadmill, a treadmill set at slow, moderate, and fast
pace would be provided to precisely control their running speed. In
each of the three different paces, these runners were instructed to
maintain their running patterns for 2-3 minutes, according to their
interpretation of the drone’s movements and the onboard LED.

Shortly after each run, runnerswere given time to rest and provide
additional comments on the drone’s expressions during the run.
This was followed by a brief TAM (Technology Acceptance Model)
questionnaire and an interview to learn about their experiences
with the drone during the experiment.

4.4 Data Analysis
The measurement collected during prototype testing consists of
the sensor data received from the onboard stabilizer which mea-
sures the angles of the calf movement, verbal descriptions from
runners regarding their experience with drones during experiments,
and runners’ perceptions of the prototype gathered from the TAM
questionnaire.

Using the TAM questionnaire, the participants can connect their
running experience with the current prototype in the controlled
environment and their past running experience in outdoor environ-
ments. Received responses are then grouped and evaluated in four
dimensions related to runners’ perceptions: Perceived Usefulness,
Perceived Ease of Use, Attitude Toward Using, and Behavioral Inten-
tion to Use. The evaluations based on these four dimensions can not
only help validate the usefulness of the prototype targeted by this
study but also provide valuable feedback for future improvements.
Additionally, the raw sensor data collected from the stabilizer

is refined into stride time intervals, step counts, and stride counts.
These outputs help track down the running patterns of the target
runners. The audio recordings of the individual interview before the
technical development and the short interview after the prototype
testing were manually transcribed and checked. Before being stored
and archived, the audio and video collected during the study were
anonymised and analysed.

The responses to the TAM questionnaires were evaluated follow-
ing the instruction provided by the author of the questionnaires
through email request. For each dimension of the questionnaires,
the responses were associated with 4 different questions to the 5-
item Likert scale (Strongly Disagree, Disagree, Neutral, Agree, and
Strongly Agree), which is converted into data points that vary from
1 to 5, and visualized in Figure 9. To further analyse each dimension,
a series of bar graphs are created and related descriptive statistics
are calculated through an external website6. The series of bar graphs
and their statistics were purposed to reflect the runners’ responses
to the TAM questionnaire (shown in Figure 10). In the following

6https://www.statskingdom.com/advanced-boxplot-maker.html
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Fig. 9. Box Plot Illustrating Responses to the TAMQuestionnaire, Providing
Insights into the Runners’ Experience of Running with a Drone.

section, we utilized the graphs and collected interview data to delve
deeper into the experience of the runner running alongside a drone.

5 RESULT AND ANALYSIS: RUNNER’S PERCEPTION OF
EXPRESSIVE DRONE

5.1 Interview feedback
Different interviewees proposed different types of artistic represen-
tation. The most commonly suggested type of artistic representation
involved using the drone to simulate the runner’s tempo during
runs. Specifically, the drone’s swing movement can be utilized to
represent runners’ strides, while the swing distance can indicate the
strength of the runner’s step and stretching angles of calves or legs.
Additionally, some interviewees recommended employing abnormal
drone movement to simulate unbalanced low-body movement. For
instance, side-wiggling can signify asynchronous striding patterns
and sudden altitude changes can indicate inconsistent leg-lifting.
80 per cent of the interviewees agree that our prototype will

improve their running patterns by allowing runners to constantly
observe their running patterns. 20 per cent of the interviewees
disagree with the point stated above and continue to comment that
the drone’s presence may cause unnecessary disturbance to the run.
Some interviewees also agree that our prototype has the potential
to adjust their running habits, claiming that "constant training with
drones seems fun and can encourage me to do more training".

5.2 Experiment feedback
5.2.1 Technology Acceptance Model Result. The summary of the cal-
culated statistical values was as follows: Perceived Usefulness (Mean:
3.2; SD: 0.91); Perceived Ease of Use (Mean: 3.3; SD: 0.8975); Attitude
Toward Using (Mean: 3.75; SD: 0.829) and Behavioral Intention to
Use (Mean: 3.375; SD: 1.07). Combined with the result portrayed in
figure 9, the cross-reference showcased noticeable results.
Summarized on the above bar graphs(10), positive acceptance

can be spotted among most runners who participated in the test,
especially in terms of ease-to-use and behavioural intention-to-use.
Moreover, this result is interestingly coherent with runners’ positive
attitudes observed during interviews.

However, to gain a more comprehensive understanding of the run-
ners’ perspectives.We need to delve deeper into each bar graph(Figure
10).

Perceived Usefulness: In this dimension, the objective is aimed
at evaluating runners’ perception of the drone’s usefulness during
running. However, the overall mean (3.2) for perceived usefulness
did not reflect a prominent positive trend nor fully portray run-
ners’ opinions toward drone usage. Supplement added by the bar
graph(Figure 10) in graph(a) indicated that Our current design of
drone motion as a representation of running patterns can be easily
interpreted by most runners(Q1). But when it comes to portraying
the striding frequency of the runners, participants reported that it
is less obvious than expected(Q2). This can be explained by the la-
tency accumulating whenever the reaction drone attempts to switch
motions during the run. However, this defect did not necessarily
force runners to have a negative image of the drone. Graph(a) also
showcased that drone presence had raised motivation among run-
ners to continue training for better performance(Q3). What’s more,
most runners comment on drone usefulness with a positive-neutral-
trending after experiencing the prototype(Q4). This is evident from
the possible fact that the current prototype may lack options to
uniformly reflect human running patterns, but integrating drones
can indeed elevate the running experience for participants, and
motivate runners to participate in more training with the prototype.

Perceived Ease of Use: The objective of the dimension is aimed
at evaluating the runner’s perspective on how easily the prototype

Fig. 10.
(a) "Perceived Usefulness"
(b) "Perceived Ease of Use"
(c) "Attitude Toward Using"
(d) "Behavioral Intention to Use"
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can be set up and used. However, since the current implementation
is merely an initial prototype, the startup sequence was commented
by some runners as "over-complicated". Sequentially, as is shown in
graph(b) in Figure 10, most runners during testing found start-up
procedures hard to follow, and surprisingly, drones were also diffi-
cult to use(Q1). This difficulty can be explained by the participant’s
lack of drone experience and multiple Crazyflie sensor malfunctions.
Moreover, we observed that without instructions, some runners can
find it difficult to interpret certain patterns of drone motions (Q2,
Q3), which leads to confusion and a lack of motivation on a personal
basis (Q4).
Attitude Toward Using: The attitude of runners toward drone

usage is one important piece of information that we must investi-
gate in this study. Thus, we employed this dimension to extract the
runner’s perception of drone usage during running. Despite vari-
ous defects existing in the prototype, the overall mean score(3.75)
indicates a positive trend. What’s more, as shown by graph(c) in
Figure 10, most runners enjoy the drone presence(Q1) as well as find-
ing drone usage creating engaging experiences during training(Q2).
Moreover, most runners agree that the prototype can indeed provide
various beneficial feedback to their running technique(Q3). Hence,
these runners uniformly hold a positive attitude toward the drone
feedback system(Q4). This result, explained by various participants,
is a common agreement on the valuable potential of the conception
behind the prototype.
Behavioral Intention to Use: Despite the positive attitude ob-

served in the dimension "Attitude Toward Using", the prototype
remains insufficient. As reported by a few runners, this prototype
has negatively impacted their opinions regarding their potential
future use of drones in running.

Nonetheless, the overall mean score(3.375) of this dimension was
controlled near neutral evidently due to the presence of runners
with extremely positive and extremely negative insight on the us-
age frequency and future usage. According to graph(d) in Figure 10,
future usage of such a prototype was favoured by the majority, but
a few participants explained that the usage of the prototype mis-
aligned with their training (Q1). However, the graph also indicated
a positive trend in possible future usages (Q4), this can be explained
by the fact that most runners agree on the fact that frequent use
of our prototype drone can encourage runners to do extra training,
and positively improve their running experience.
5.2.2 Runner’s Additional Comment On Drone Experience.

Pros. Runners who participated in testing reported that the ex-
pressive drone provided positive feedback on their running patterns.
By using drone motion to recreate meaningful representations of
the runners’ movements from different perspectives, the system
helped them improve their runs by giving a clear image of their own
running pace. This motivated them to continue training to achieve
a balanced running pace. In addition, the runners noted that this
application could be useful for long-distance runners, as it can help
identify abnormal or periodic stride frequencies during training. Fur-
thermore, various experienced runners with a technical background
reported that such a system seems to fit alongside a gamification
design. They mentioned the joy of the drone’s companion, which
can merge into a sense of achievement when runners aim to reach a

more balanced state of drone motion. Moreover, some runners also
stated that such a prototype offers a greater amount of freshness
and direct interaction compared to other existing technology as
running assistants, such as VR, AR, etc.
Cons. However, the runners involved in the test also reported

that the drone’s motions could sometimes be outdated as the run
progressed. For example, a runner might already be on their third
stride while the drone is still executing motions for the second
stride. This lag confused their current running patterns. Moreover,
the prototype may not be beneficial for short-distance runners, like
100-meter sprinters, who maintain high to extremely high stride fre-
quencies. Some runners also mentioned that this application might
only be suitable for those with a strong awareness of their run-
ning patterns. Due to the previously mentioned latency, beginners
might be confused by their running patterns and unsure of what
to follow or how to optimize when observing the drone’s motions.
It is worth noting, that the attached sensor drone can also lead to
potential physical damage through direct physical contact between
the runners’ calf and the sharp end of the drone frame.

6 DISCUSSION
Through the implementation of the Duel-Crazyflie prototype and
runners’ feedback in TAM questionnaires, this study explored the
unknown potential of drones as running companions which posi-
tively enhances runners’ understanding of their running patterns.
In the following subsections, we discuss and conclude the limitation
of this study, we also combined runners’ suggestions alongside our
observations into solutions which can be applied in the future.

Drone Communication: Initial testing indicates minor commu-
nication delays between two Crazyflie drones whereby the initializa-
tion of the program takes some time to complete, most likely due to
threading in Python. During the prototype testing, such latency can
be ignored, as interpreted by the runner. Nonetheless, during the
communication, occasional lags exist for every 5-6 transmissions
based on observation from LED changes and drone motions. But
when monitored from the central hub, it particularly appears as
freezing log output which assumes for 2 to 3 seconds, such latency
is suspected to be related to the information processing handled
by the central hub. According to the Crazyflie forum 7, the poten-
tial solution for such latency can be logging at 10Hz for future
development.
Sensor Drone: Sensor drone performance did not reach our ex-

pected standard. The observation of collected data from the stabilize
module embedded in the Crazyflie indicates unstable readings dur-
ing several tests. Under heavy movement, sometimes the angle
detected by the IMU did not display an obvious spike which is
expected from the very specific patterns of movement. This prob-
lem has the potential fix of lowering the threshold values. On the
other hand, enforcing lower threshold values could trigger the LED
changes or movement signal earlier than expected, which caused
unwanted confusion for the runner.

Moreover, during this study, we could only track one leg with our
sole drone IMU, hencewe focused our technical development around
synchronised running. To simulate edge cases where asynchronous

7https://forum.bitcraze.io/viewtopic.php?t=4767
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running patterns could have occurred, we simulated related drone
movement to the participants and asked our participants if they
could understand this movement. The result was that 80 per cent
of our participants managed to correctly interpret the movement
performed by the drone. Therefore, in terms of future development,
the advice is to position another IMU/Drone IMU on the outer of
the right calf to accurately track down and pinpoint the right leg
movement. In this way, edge cases such as asynchronous running
patterns can be resolved and maintain the least amount of confusion
for the runner.
When the drone is positioned on the outer of the left calf, the

strap with the buckle may exert excessive pressure on both the top
and bottom of the drone. This can cause damage to the Crazyflie
physical extension, such as the LED ring on the bottom of the drone.
Future development should secure the sensor drone in the same
position using alternative methods, such as a pouch that is as large
as the Crazyflie drone itself. Moreover, attaching the sensor drone
to the runner’s calf may result in physical damage to the runner.
It is therefore recommended to provide additional protection for
future participants or to remove any sharp edges from the drone
frame.
Data Processing: Various tests have proven, that sensor read-

ing requires more calibrations and effective analyzing to be able
to align closely to the runners’ calf motions. Specifically, the raw
data requires better sampling methods to avoid noise during data
collection and to accurately track each stride.
It has come to our attention that the preset thresholds used to

translate human motion to drone motion are not suitable for some
runners. This has resulted in either overcounting or undercount-
ing of steps and strides. Upon comparing different sets of running
patterns collected during testing, we have observed that runners
have different striding angles. However, the preset threshold does
not account for these individual differences. As a temporary solu-
tion, an additional measurement run was included in the prototype
testing to identify the specific striding angles of each runner. For
future development, we recommend implementing methods that
can automatically calculate the stride angles of different runners,
taking into account individual factors such as height, stride length,
and average stride time.
Python synchronization locks were used to transform human

motion into drone motion one at a time, but this process prolonged
the motion-to-motion transformation and led to gradual delays,
resulting in visual latency discussed in the following sections.

Reaction Drone: Due to the accumulating latency caused by the
reaction drone’s efforts to connect multiple movements, the drone
often fails to synchronise the corresponding drone motion with
runners’ strides. In some specific cases, the drone also fails at taking
off either due to low thrust caused by a low battery or loss of control
triggered by unknown disturbances from the environment. However,
in the general case, the drone can perform as expected but its roll
motion needs additional balancing for stabilization which could be
achieved with a higher accuracy in the tracking of runners’ lower-
body motions. A more meaningful representation of the runner’s
running pattern can also be designed based on the more reliable
reading of the runner’s lower body motion, such as motions of
ascending or descending in according to the height of lifted legs or

a circling flight around the runner with drone speed as an indicator
of runner speed.
On the other hand, due to the short battery life of the Crazyflie

drone, the experiment can only last for up to 20 minutes before the
power runs out. As the only airborne Crazyflie, the reaction drone is
prone to losing power quickly. Therefore, it is recommended to find
ways to extend the battery life of the Crazyflie drone or consider
using similar drone products with longer battery life.

Population Sampling: Due to time constraints, the participant
population was large enough to maintain the current study with a
sufficient amount of information and insight during the individual
interview, but not large enough to provide additional evidence of
the efficiency of the prototype to extend the prototype testing nor
allow the intake of additional insight during individual interviews.
Therefore, it is recommended to introduce a larger population to the
interview and testing of the prototype in future studies, which will
not only prolong the study to contain information up to saturation
but also introduce valuable insight within the target scope and aid
in the future development of the prototype.
Future study design: The participant responses are promising

and positive; However, the prototype remains incomplete compared
to existing running technology. Therefore, despite the solutions
mentioned above, the primary target of the future study should
focus on the complete transformation from an indoor environment
to an outdoor environment. This will include but not be limited to 1)
Possible updates to the drone selection for achieving an optimised
level of thrust and weight handling; 2) Optimized flight time intro-
duced by a larger power supply; 3) Outdoor testing with carefully
selected participants possessing various running experiences, etc.
More importantly, 4) Properly captures the asynchronous move-
ment patterns, such as using multiple sensors to pinpoint abnormal
strides or utilizing better methods to support analysis on identifying
abnormal strides.

7 CONCLUSION
In our study, we used two Crazyflie drones and a laptop as a base sta-
tion to raise runners’ awareness of their running patterns, achieved
through a prototype with the potential to enhance runners’ expe-
rience without significant side effects. Before developing the pro-
totype, we conducted individual interviews to understand what
factors runners consider important when running with or without
drones. Aligned with perceived recommendations, we proceed to
shape the initial prototype. We then rigorously validated the proto-
type across four dimensions - perceived usefulness, perceived ease
of use, attitude toward using, and behavioural intention to use with
a diverse group of runners. Similar to the outcome concluded by
Balasubramaniam et al. [2], received responses provided valuable
insights into potential drone roles and modifications, catering to
runners with different purposes and experiences, and setting the
stage for future research. Based on our findings and the discussion
section, future studies will focus on enhancing the outdoor envi-
ronment while capturing asynchronous movement patterns. This
will further connect the prototype to the runner, providing greater
motivation for training and a better understanding of their running
pattern.
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