
Support Python in RefDetect
VLADISLAV MUKHACHEV, University of Twente, The Netherlands

Refactoring is an essential technique required by every codebase at some
point in its lifecycle. Its purpose is to improve the project’s structure while
preserving its functionality. However, after multiple changes, it can be chal-
lenging to clearly identify what changes were made and how they were
implemented. Refactoring detection tools have been developed to address
this issue by informing users of the types of refactorings performed be-
tween two project versions. One such tool, and the subject of this paper, is
RefDetect.

RefDetect employs a unique, language-agnostic approach, allowing it to
be extended to support any programming language. This paper describes the
unique details and challenges encountered during the development process
to support Python in RefDetect. We explain RefDetect’s structure, examine
the differences between its primary language, Java, and Python, describe
the approach used to overcome these differences, and evaluate its detection
capabilities using a set of test cases. This paper not only focuses on the
tool’s implementation but also provides a comparison of object-oriented
programming principles among robust languages like Java, C++, Kotlin, and
Python.

Additional Key Words and Phrases: RefDetect, Python, refactoring detection,
refactoring

1 INTRODUCTION
Refactoring is a well-known technique used to improve the design
of a system and prepare it for new extensions while maintaining
the software’s behaviour intact [4]. It is primarily performed in
a semi-automated way — manually, with tool support — and the
scope of changes can range from modifications to a single function
to alterations spanning multiple documents.
Verification of the changes requires a complete understanding

of the system, code reading skills, and knowledge of the benefits
of refactoring. Due to that only the most experienced developers
are qualified enough for this task and would need to spend a lot of
time to not miss anything in a hurry. This step not only requires an
experienced developer’s attention but also significantly increases
the time of the whole process. Furthermore, researchers whose work
is based on the benefits of refactoring need to apply the process of
verification on hundreds of projects which could take months of
manual work.
To address this issue, tools for detecting refactoring have been

developed. Their main purpose is to find changes in between two
project versions and classify them on refactoring types. Such a tool
would reduce the required expertise from a developer on the stage
of verification by pointing to and naming the changes.
There are multiple tools that can detect refactoring, of which

this paper focuses on RefDetect. The tool has been developed by

TScIT 41, 5 July 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Hemati Moghadam et al. [9] and is based on a novel language-
neutral technique. Its accuracy of refactoring detection on the corpus
of Java projects has been compared to the current at the time of
the study state-of-the-art tool and showed better results, which
proves the usefulness of the novel approach. In this paper, the tool
is extended to support Python — the most popular object-oriented
programming (OOP) language, according to a survey conducted
among developers on thewell-known developer community website,
Stack Overflow [10]. This extension process involves developing a
new language-specific component for the tool — a parser to extract
all necessary information from the source code of Python projects.
The paper begins by providing background knowledge about

RefDetect in Section 2. Section 3 addresses related work on refactor-
ing tools for Python and section 4 introduces the research question
of the study. Section 5 delves into the challenges encountered and
the solutions developed during the parser’s development. Section
6 covers the evaluation of the parser’s reliability and accuracy in
information collection. Finally, Section 7 outlines potential future
improvements to further enhance the tool and concludes the re-
search paper.

2 BACKGROUND
RefDetect consists of two parts: an interchangeable language-depen-
dent part which parses the source code of the input project, in this
study we will refer to it as the analyser and language-independent
differential algorithm which relies on output of the analyser to
determine changes between two program versions, we will refer to
it as detector. The tool was initially created in Java for Java projects
but was designed to be language-agnostic. You can see the process
and structure of RefDetect in Figure 1. Theoretically, an analyser can
be developed for any programming language. The implementation
of an analyser for one language can differ significantly from its
implementation for another, as it highly depends on the available
technologies for extracting information from the code and developer
preferences. The only requirement is that it produces an accurate
SourceInformation object.

2.1 SourceInformation object
The SourceInformation object serves as the final output of the anal-
yser and the main input required by the detector for refactoring
detection. It consists of multiple data structures that hold various in-
formation about the project structure, including details such as pack-
age names, class names, inheritance relationships among classes,
declared methods and fields within classes, connections between
classes through method calls, field accesses, and instantiation of
classes within methods, and string representations of classes.

As for the detector, it is unaffected by the specific programming
language analysed, as long as the analyser correctly fills the Sour-
ceInformation object. Assuming all implementation requirements
are met, the combined new analyser and detector should accurately

1

TScIT 41, 5 July 2024, Enschede, The Netherlands Vladislav Mukhachev

Fig. 1. Flowchart of RefDetect, taken from original study [9]

detect refactorings, thereby expanding the range of supported lan-
guages.
The language-agnostic design was validated through functional

versions for both C++ [9] and Kotlin [7, 8], with all three versions
achieving impressive results and establishing themselves as valid
competitors to state-of-the-art refactoring tools for these languages.
Importantly, the implementation of analysers for these languages did
not encounter significant unresolved complications, underscoring
the tool’s adaptability. However, it is important to note that all three
languages strictly adhere to traditional OOP principles, using clear
and enforced mechanisms for encapsulation, inheritance, polymor-
phism, and abstraction. They rely on static typing and compile-time
checking, which enforces a disciplined and predictable structure in
code. This structured and predictable nature of C++, Kotlin, and the
original source language facilitated the development and integration
of their respective analysers.

In contrast to Java, the Python version of the tool presents unique
challenges and opportunities due to Python’s approach to OOP.
While Python supports OOP principles, it does so with much greater
flexibility. It allows for dynamic typing, duck typing, and multiple
inheritance, and it relies on conventions rather than strict enforce-
ment. This versatility facilitates its use in various contexts but can
result in less predictable and more flexible code structures. Further-
more, these structural differences introduce numerous challenges
in the implementation of the analyser, which must be addressed to
ensure reliable and accurate information extraction for subsequent
analysis by the detector.

3 RELATED WORK
Since the functioning of the detector component of the tool is be-
yond the scope of this paper, we will refrain from discussing the
specific algorithms employed by other refactoring detection tools
in general. Instead, our focus will be on Python-specific tools, the
results obtained, and the methodologies used to extract information
from the source code of Python projects.

PyRMiner [3], developed by Tsantalis et al., was the first attempt
to create a refactoring detection tool for the Python language. Their
approach is unique; they first convert Python code to Java code
and then feed this Java code into another refactoring detection

tool for Java — RMiner [13]. This technique, in theory, should al-
low PyRMiner to support all the refactoring types that RMiner
supports. However, in their paper, the tool was evaluated only for
method-level and refactoring types, despite RMiner being capable of
detecting class-level refactoring types as well. This limitation arises
because PyRMiner was specifically designed for machine learning
Python projects, and as a result, the tool does not adequately cover
OOP projects. Consequently, we have not adopted the techniques or
technology from this paper as RefDetect must be capable of working
with OOP projects.

Atwi et al. introduced PyRef [2] as the first native Python refac-
toring detection tool. While inspired by RMiner [13], unlike PyR-
Miner [3], PyRef does not rely on program language translation
or third-party refactoring detectors. To extract information from
project source code, they utilise the built-in ast module [11] and
adopt a similar information modelling approach as RMiner. They
evaluated their tool against PyRMiner using three randomly selected
projects, achieving improved results. However, like PyRMiner, PyRef
only supports method-level refactoring types and does not address
type inference, a gap which our study aims to explore.
RefDetect’s language-neutral technique is based on using a lan-

guage-specific parsing algorithm to get information from code and
package it in a SourceInformation object. This is then handled as
input for a differential algorithm, which manipulates data from
SourceInformation to detect 27 different types of refactoring. This
structure allows to expand list of supported languages by only im-
plementing a new parsing algorithm, without the need to modify the
rest of the tool, as far as SourceInformation is being filled accurately.
In the original study [9], it was made for Java and, to demonstrate
its language-agnostic properties was subsequently evaluated on C++
projects and performed well compared to state-of-the-art on both
languages. However, in the following dataset [8] and comparative
study [7] the goal of which was to make it possible to use RefDetect
on Kotlin, some implementation problems were present. The reason
was the lack of a good parser for this language and the difference
in language features such as type inference. It increased the com-
plexity of the tool and required some meticulous add-ons to the
implementation of the parsing algorithm. Nevertheless, RefDetect
still performed better than the state-of-the-art, which again proves
its flexibility.

4 PROBLEM STATEMENT
The goal of this study is to extend RefDetect to support Python.
Despite its popularity among developers [10], there are currently
only two notable refactoring detection tools available for Python:
PyRef [2] and PyRMiner [3], with PyRef being considered state-
of-the-art. However, these tools support fewer refactoring types
compared to RefDetect’s capability in its Java version, with PyRef
and PyRMiner supporting 9 and 18 types respectively, while RefDe-
tect supports 27. All these factors make Python an ideal candidate for
inclusion as a next supported language in RefDetect. Nonetheless,
Python’s significant differences from Java, even more noticeable
than those with Kotlin [7], present considerable implementation
challenges. These challenges require a precise set of requirements
for project analysis to ensure the tool functions accurately.

2

Support Python in RefDetect TScIT 41, 5 July 2024, Enschede, The Netherlands

Based on that, the research question of this study is:

To what extent can RefDetect support refactoring detection in
Python object-oriented projects compared to its functionality in
Java?

This main research question can be answered with the following
two sub-questions:

(1) To what extent can a Python object-oriented project be accu-
rately represented by a filled Java-based ‘SourceInformation‘
object?

(2) How many types of refactorings can be detected in Python
object-oriented projects compared to Java and what are the
classification metrics of the tool?

5 FROM JAVA TO PYTHON
In contrast to Java, the Python version of the tool presents unique
challenges and opportunities due to Python’s approach to OOP.
While Python supports OOP principles, it does so with much greater
flexibility. It allows for dynamic typing, duck typing, and multiple
inheritance, and it relies on conventions rather than strict enforce-
ment. This versatility facilitates its use in various contexts but can
result in less predictable and more flexible code structures.

5.1 Requirements for input project
These less predictable and more flexible code structures conse-
quently hinder the precise representation of Python’s OOP concepts
within the SourceInformation object. Some aspects of Python’s
OOP implementation do not align accurately with the framework
provided by SourceInformation. Acknowledging this problem, and
since the implementation of the detector falls outside the scope of
this study, we could not modify the structure of SourceInforma-
tion. Therefore, to develop a compatible version of the analyser for
Python, we had to omit certain language functionalities, specifi-
cally those that conflict with traditional OOP principles. If the input
project’s structure heavily depends on these functionalities, the
tool may fail to accurately grasp its structure due to its inability to
recognize these relationships. For the tool to be used correctly, we
have established a set of project requirements to ensure it accurately
captures the project’s structure. Additionally, as a precaution, fail-
ing to follow this guideline could potentially result in errors during
the analyser’s execution, serving as a clear warning to users about
serious issues.

5.1.1 Module Concept and Module-Level Entities. In Python, the file
structure revolves around the concept of modules. Each file serves as
a module that can encompass multiple module-level entities such as
classes, functions, and variables. This approach diverges from typical
OOP languages where all entities are encapsulated within classes.
Consequently, this structure poses challenges for representation
within SourceInformation. As a result, we exclude module imports
unless they relate to external libraries and avoid analysing entities
outside the class scope to ensure reliability and consistency in our
analysis approach.

Fig. 2. Module import and class import statements syntax

As an example of module import, Figure 2 includes 2 import
statements; we will focus on the bottom one initially. Although syn-
tactically correct, this statement imports the entire module Animal.
To access the Animal class from this module within the imported file,
one would need to call Animal.Animal. In contrast, the statement
above in the same figure imports the Animal class directly, allowing
the class to be accessed simply by calling Animal.

5.1.2 Naming convention and multiple classes. Additionally, as a
consequence of the aforementioned requirement, each file in the
implementation of the analyser should exclusively contain a single
class at themodule level.We heavily rely on namematching between
the file and the class within our implementation. The reason for
this comes from the Java structure, where each file can contain only
one public class, i.e., accessible from outside the file, and its name
must match the name of the file. Therefore, a single file cannot
contain multiple classes as this would lead to name mismatches and
potential inconsistencies in our analysis process.

5.1.3 Multiple Inheritance. In SourceInformation, while analysing a
class, we store its parent class if it exists. The data structure used for
this purpose maintains a one-to-one mapping, with the current class
as the key and its direct parent as the corresponding value. Singleton
inheritance is standard in traditional OOP, allowing for the addition
of interfaces if greater abstraction is necessary. However, Python
supports multiple inheritance, and the concept of interfaces is not
inherent in basic Python. Consequently, we only capture the first
parent of a class in our analysis and omit any additional parents.
Therefore, input projects should aim to avoid classes with multiple
parents.

Besides the requirements outlined above for the input project,
several additional challenges were encountered during the imple-
mentation of the Python analyser.

5.2 Parsing Python code
The pivotal component in developing an analyser is the technology
used to extract information from the source code of the input project.
In the Java implementation, the Spoon library was utilised, which
offers a high-level API for parsing. This facilitated a less meticu-
lous implementation of the analyser by providing access to complex
relationships such as binding context and type inference. For the
Python implementation, an ideal technology would have similar
API functionality. However, it was not identified during the research

3

TScIT 41, 5 July 2024, Enschede, The Netherlands Vladislav Mukhachev

phase of the study. We initially considered employing ANTLR [12]
alongside its Python grammar [1] for our analysis. However, we
determined that this approach would be overly complex, prompting
us to explore alternative solutions. Subsequently, we decided to uti-
lize the Python astmodule as our preferred option [11]. Evaluating
this decision requires an examination of its distinct strengths and
weaknesses, as detailed below:

Pluses:
• Provides access to first-hand code information, essentially
exposing the internal data structures that the Python compiler
utilises to interpret and process the code.

• Supported by Python language maintainers, ensuring ongo-
ing support and updates of grammar aligned with language
developments.

• Implementation is flexible, readable and the module is built
into the Python standard library, making it widely accessible
and straightforward to integrate.

• Parsing with the ast module is highly efficient, resulting in
minimal execution time.

Minuses:
• Requires a deep understanding of Python’s abstract syntax
and semantic rules, often with sparse or limited documenta-
tion examples for guidance.

• Requires the implementation of visitor patterns for consistent
traversal of the abstract syntax tree (AST) across different
node types.

• Lacks a higher-level API, necessitating workaround solutions
for detecting complex relationships in the code structure.

With this module, we were able to parse files, produce an AST tree
of nodes and extract all the basic information from them. However,
information stored inside nodes is limited and to completely fill the
SourceInformation object the biggest challenge of implementation
followed. It is similar to a problem that was faced in the implementa-
tion of the analyser for Kotlin [7]. Namely, we had to find a solution
for binding context and type inference.

5.2.1 Type inference. As Python uses dynamic typing, information
about types is not accessible in the nodes from the produced AST.We
anticipated this issue from the start, as it is a well-known property of
the language and was mentioned in the study of the state-of-the-art
as an unresolved issue [2]. However, type information is heavily
utilised by the detector, so the ambiguity of the saved information,
such as assigning the type "Any" to all entities and function returns,
would impact the accuracy of the tool.

We added a check for type annotations in assignment expressions
and function signatures and could specify it as a requirement for
the input project, but this is only a partial solution. To address
this, we developed an algorithm for type approximation based on
initialisation to constants. This algorithm defines the type of the
constant and assigns it to the variable information. If the variable
was accessed in the same context, such as for initialising another
variable, its type could be inferred and used.

However, for complex types such as objects, lists, dictionaries,
and so on, this method did not work well, as types could be reliably
defined only from constants. To improve this, we utilised an external

Fig. 3. Example of inheritance

library, Jedi [6], which can infer types over the file. If there was a
specification of a type for the selected variable, Jedi would return
this type. Despite this, the issue was not fully resolved, as it was
not uncommon for the library to return empty results for variables,
and inferring deeper into inter-file relations would be too costly in
terms of execution time.
We were unable to find another approach to this problem, and

with the deadline approaching, we decided to proceed with this
method and compare the results of the approach with and without
type annotations.

5.2.2 Binding context. In SourceInformation, we save the relation-
ships of class entities being called in other parts of the project. When
an entity is accessed through an object, the necessity for Python
to import utilised external files in the current file becomes advan-
tageous. We check what the object was initialised to, and if it is a
class, we examine the import statement to precisely define which
class it is. This avoids ambiguity when several classes in the project
have the same name. Consequently, we save this relationship in the
SourceInformation.
Furthermore, one of the main concepts of any OOP language is

inheritance. To determine if an entity, which can be either a field
or a method, was inherited, after parsing all the project files, we
iterate over saved in SourceInformation parent-child relationships.
For that, we saved the names of the classes and their parents in a
one-to-one relationship. For each class, we check if an entity called
through self. is defined in the parent class. If so, then the entity
was actually called from the parent class. You can see an example
in Figure 3 where class A is a parent class with field f1 and on the
left side under the "Before" label, access to field f1 in child class B
results in access to parent. In other cases, if a method or a field was
initialized in the child class itself, we consider it overwritten. This
would mean that self. corresponds to the child class, instead of
the parent class, you can refer to the right side of an example in
Figure 3 under the "After" label.

4

Support Python in RefDetect TScIT 41, 5 July 2024, Enschede, The Netherlands

Fig. 4. Refactoring types supported by RefDetect [9]

6 EVALUATION
To evaluate the tool’s ability to detect refactorings we created a set
of test cases. An integral aspect of these test cases is their coverage
of all supported class-level, method-level and field-level refactoring
types by RefDetect, in total 18 refactoring types. The types are pre-
sented in Figure 4. The number differs from the aforementioned 27
types as we do not include separate test cases for composite refactor-
ings. Additionally, since Python lacks support for interfaces, we do
not include the Extract Interface refactoring type. For each type, we
stipulated a minimum of 3 test cases to account for subtle variations
that might be overlooked during implementation. To streamline
the process of generating examples for each refactoring type, we
opted to leverage test cases from the Java version of the program.
To answer the first sub-question we have identified the structural
differences of Java and Python test cases to list them as concepts
which are not supported either because Python does not have a
workaround to replicate refactoring type or a SourceInformation
is not capable of representing Python structure. Furthermore, to
answer the second sub-question, we decided to use the recall, preci-
sion, and F1-score of the detected refactorings. We calculate them
using these formulas.

Precision =
of correct refactorings

of recommended refactorings

Recall =
of correct refactorings
of true refactorings

F-score = 2 × Precision × Recall
Precision + Recall

6.1 First sub-question
By comparing versions of test cases in Java and Python, we ob-
served that, for the majority, the structure could be extracted cor-
rectly. However, some test cases under the "Inline Class" refactoring
type involved inner classes and a combination of public and pri-
vate classes within the same file. We were unable to accurately
interpret the structure of these test cases due to the requirements
outlined in Section 5.1.2 of this paper. Additionally, we excluded
the "Extract Interface" refactoring type, as Python does not natively
support interfaces, as mentioned in Section 5.1.3. We decided not
to incorporate workarounds for this limitation within the scope of
this study. Furthermore, we did not add test cases utilizing Python’s
multiple inheritance feature, as they could not be represented in the
SourceInformation, and the current version of the detector does not
support this concept.
To provide a general answer to the first sub-question, a Python

OOP project can be fully and accurately represented if the specified
requirements are met. Future versions of the analyser and detector
may include support for the missing concepts and reduce the re-
quirements for input projects. concepts and reduce requirements
for the input project.

6.2 Second sub-question
In total, we ran the tool on 63 test cases, covering 18 refactoring
types, as the Python version does not support Extract Interface refac-
toring type. We have calculated the chosen classification metrics
and obtained the following results. Precision was 0.951, as three test
cases resulted in the detection of incorrect refactoring types. Recall
was 0.983, as one test case had no refactorings detected. Finally, the

5

TScIT 41, 5 July 2024, Enschede, The Netherlands Vladislav Mukhachev

F-score was 0.966. Therefore, despite some limitations in handling
certain Python-specific constructs, the tool demonstrates robust
capability in detecting refactorings with a high degree of accuracy.
However, the tool still requires evaluation on real projects for the
results to be more reliable for end users.

7 CONCLUSION
The implementation of the language-dependent part of RefDetect [9]
relies significantly on the OOP rules of the target language and
the available technology for parsing the source code of the input
project. Despite the challenges encountered in the implementation
for Python, we successfully developed a working prototype and
provided a detailed explanation of the methods used to address
these challenges. The use of the ast module [11] with the Visitor
pattern [5] resulted in efficient and readable code, comprising no
more than 1,000 lines.
The tool is designed to support a certain number of refactoring

types, yet it still requires evaluation on real large-scale applications
to be compared with state-of-the-art tools, a task that could not
be covered by this study. Nonetheless, we have identified potential
improvements to enhance the tool and approach for even better
results. Future work should focus on conducting comprehensive
evaluations to validate the effectiveness and robustness of the tool
in diverse, real-world scenarios, as well as on these improvements:

• Support forModule concept: Implementing support for the
module concept would enable the tool to recognize the use of
inner classes, multiple classes within the same file, and global
variables and methods. This enhancement would eliminate
the necessity of the requirements outlined in Sections 5.1.1
and 5.1.2, consequently broadening the scope of acceptable
input projects. However, achieving this would necessitate
modifications to both the analyser and detector components
of the tool.

• Support for Java Concepts Present but Not Enforced
by Python: Implementing support for class variables, which
are similar to Java static fields, would enhance the tool’s
functionality. Additionally, adding support for Abstract Base
Classes (ABC) interface declaration, which was previously
avoided due to it not being a norm for Python developers,
would be beneficial. Incorporating the ability to recognize
modifiers based on naming conventions would further im-
prove the tool’s capabilities. These changes would require
modifications only to the analyser component of the tool.

• Enhance Recognition of Python-Specific Patterns:
Python has many flexible features that do not have direct ana-
logues in Java, such as list comprehensions, properties, deco-
rators, metaclasses, and more. Incorporating these features
would necessitate extensive changes in both components of
the tool: the analyser and the detector.

• Support for Multiple Parent Classes: Extending the tool
to handle multiple inheritance would address a requirement
from Section 5.1.3, thus broadening the scope of acceptable
input projects. This would require changes in the detector

component of the tool and a slight modification of the anal-
yser, as it already saves the information but is unable to set it
in the SourceInformation object.

• Batch Parsing for Enhanced Context and Type Infer-
ence: Instead of parsing files individually, parsing all files
simultaneously could provide a more reliable, faster, and
straightforward implementation of binding context and type
inference, ultimately improving the tool’s precision and per-
formance.

• Documentation for the SourceInformation object: Specif-
ically for the Python implementation, documentation is no
longer necessary since the SourceInformation has been fully
populated. However, for future extensions to support addi-
tional languages in RefDetect, comprehensive documentation
would significantly facilitate the development of new analy-
sers. In the current version, the developer had to manually
inspect the output of the Java version to understand the re-
quired information, which is not efficient or scalable.

REFERENCES
[1] ANTLR Project. 2024. Python 3 Grammar for ANTLR. https://github.com/antlr/

grammars-v4/blob/master/python/python3/Python3Lexer.g4. Accessed: 2024-06-
30.

[2] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi, Gabriele Bavota, and Michele Lanza. 2021. PYREF: Refac-
toring Detection in Python Projects. In 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM). 136–141. https:
//doi.org/10.1109/SCAM52516.2021.00025

[3] Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022. Dis-
covering Repetitive Code Changes in Python ML Systems. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 736–748. https:
//doi.org/10.1145/3510003.3510225

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[6] David Halter et al. 2024. Jedi - an awesome autocompletion, static analysis and
refactoring library for Python. https://pypi.org/project/jedi/. Accessed: 2024-06-
30.

[7] Sandu-Victor Mintuş. 2023. Supporting New Programming Language in RefDetect.
http://purl.utwente.nl/essays/96107 Bachelor’s thesis, Universiteit Twente, The
Netherlands.

[8] Iman Hemati Moghadam, Mohammad Mehdi Afkhami, Parsa Kamalipour, and
Vadim Zaytsev. 2024. Extending Refactoring Detection to Kotlin: A Dataset
and Comparative Study. In Proceedings of the 31st IEEE International Conference
on Software Analysis, Evolution and Reengineering, ERA Track (SANER). https:
//doi.org/10.5281/zenodo.10465265

[9] Iman Hemati Moghadam, Mel Ó Cinnéide, Faezeh Zarepour, and Mohamad Aref
Jahanmir. 2021. RefDetect: A Multi-Language Refactoring Detection Tool Based
on String Alignment. IEEE Access 9 (2021), 86698–86727. https://doi.org/10.1109/
ACCESS.2021.3086689

[10] Stack Overflow. 2023. Stack Overflow Developer Survey 2023: Most Pop-
ular Technologies - Programming, Scripting, and Markup Languages.
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-
programming-scripting-and-markup-languages Accessed: 2024-06-29.

[11] Python Software Foundation. 2008. Python 3 Documentation: ast – Abstract
Syntax Trees. https://docs.python.org/3/library/ast.html. Accessed: 2024-06-29.

[12] Terence Parr. 2024. ANTLR: ANother Tool for Language Recognition. ANTLR
Project. https://www.antlr.org Accessed: 2024-06-30.

[13] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering 48, 3 (2022), 930–950. https://doi.org/
10.1109/TSE.2020.3007722

6

https://github.com/antlr/grammars-v4/blob/master/python/python3/Python3Lexer.g4
https://github.com/antlr/grammars-v4/blob/master/python/python3/Python3Lexer.g4
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1109/SCAM52516.2021.00025
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1145/3510003.3510225
https://pypi.org/project/jedi/
http://purl.utwente.nl/essays/96107
https://doi.org/10.5281/zenodo.10465265
https://doi.org/10.5281/zenodo.10465265
https://doi.org/10.1109/ACCESS.2021.3086689
https://doi.org/10.1109/ACCESS.2021.3086689
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://docs.python.org/3/library/ast.html
https://www.antlr.org
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722

	Abstract
	1 Introduction
	2 Background
	2.1 SourceInformation object

	3 Related work
	4 Problem statement
	5 From Java to Python
	5.1 Requirements for input project
	5.2 Parsing Python code

	6 Evaluation
	6.1 First sub-question
	6.2 Second sub-question

	7 Conclusion
	References

