Verifying the performance benefits of caching probabilities in

probabilistic databases

MATTEO SCHUT, University of Twente, The Netherlands

Additional Key Words and Phrases: Probabilistic Databases, Probability
Caching

ABSTRACT

Probability calculation has been observed to dominate performance
for some queries in probabilistic databases. Current probability
storage structure is suspected to be sub-optimal. This paper focuses
on researching possible performance benefits of caching
probabilities in probabilistic databases, focused on the probabilistic
database management system DuBio. Controlled experiments have
been run to measure performance benefits while accounting for
different queries, database structures and server delays. This paper
presents results showing under which circumstances caching is
advisable.

1 INTRODUCTION

In recent years, an increasingly large amount of applications have
had to deal with uncertain data. For this reason, a significant effort
has been made to research the effectiveness of probabilistic
databases, where uncertainty can be included within a parameter
of a data value as a probability [7]. Due to the increasing
importance of these data management systems, improving
performance is of significant interest.

At the University of Twente, an implementation has been made
as an extension of PostgreSQL called DuBio. In this extension,
probabilities are represented through Binary Decision Diagrams
(BDDs, see section 2.2). To calculate the probability of a BDD, a
user-defined "Dictionary’ object has to be searched through for
each variable in the BDD, which can become quite slow for
multiple BDDs. This paper researches the performance benefits of
storing probabilities in a column next to the BDDs.

Storing probabilities in this way can be seen as permanent
caching. Caching function results is a well-studied subject of
research, commonly called memoization. Memoization has been
around for quite some time, and as outlined by Maux (2022), can
prove to be quite effective [4]. Memoization has also been applied
to a different PostgreSQL extension [3] to achieve promising
results. Similar memoization techniques have been used when
researching probabilistic databases [5], however, these works all
focus on temporarily storing function results. If function
arguments rarely change, as is the case for this research, cache can

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Table 1. Example table DuBio

ID | suspect BDD

1 | ’Frank’ | BDD(’car=1 & color=2")
Frank’ | BDD(’car=2 & color=1")
’Amy’ | BDD(car=2 & color=1’)

be stored more permanently.

2 BACKGROUND
2.1 Probabilistic Databases

Probabilistic databases are designed to store uncertain data,
meaning that if one is unsure about the value of a certain variable,
all possibilities can be stored next to the probability of it being that
value [7]. Probabilistic databases can also store the relation
between variables, meaning the probability of a database entry
being true can be composed of multiple variables being true or
false.

An example could be a witness at a crime scene unsure about
their observations. The witness is unsure whether they saw a
Honda or a Mazda, but is 90% sure the car was red. You know from
police reports that the only people in the area at the time were
Frank and Amy. Frank owns a green Honda and a red Mazda and
Amy owns a red Mazda.

In DuBio, the probability of each person being a suspect can be
stored by including all possibilities in a table, and changing the
variables in each BDD to represent that possibility. This is shown
in Table 1. Here, car=1" is Honda, ’car=2’ is Mazda, ’color=1’ is red
and 'color=2" is green. If, for example, police confirm it to have been
a green car, then the probability of ’color=1" becomes 0. This would
mean that every BDD containing ’color=1" can be removed from
the suspect table, leaving Frank as the only suspect.

2.2 Binary Decision Diagrams

Binary decision diagrams are tree graphs that can represent a
boolean expression of any length [2]. They are composed of a root
node and several child nodes, each node containing a boolean
variable. Traversing the tree from the root node will result in the
solution to the boolean expression. An example is visualized in
Figure 1. In DuBio, they are represented as seen in Table 1.

2.3 Dictionary

The dictionary is a user-defined PostgreSQL object in the DuBio
extension which stores probabilities of boolean variables. Every
time a probability needs to be retrieved, the dictionary will execute

TScIT 41, July 5, 2024, Enschede, The Netherlands

f-AvBC

Fig. 1. Example of a boolean expression represented as a binary decision
diagram with a depth of 3. Taken from [7].

a binary search operation to find the variable. Variables and
probabilities can be added, deleted, or updated with a single query.

3 RESEARCH QUESTION

The research question this research aims to answer is:

Under which circumstances would the caching of probabilities in a
BDD type of a probabilistic database result in better performance?
The main question can be answered by first answering these sub-
questions:

e SQ1: Which queries are impacted performance-wise by
caching probabilities in a BDD type?

e SQ2: Which database parameters are impacted performance-
wise by caching probabilities in a BDD type?

4 METHODOLOGY
4.1 Research Objective

The objective of this research is to measure the performance
benefits of caching. Here, caching is done by adding a new column
to a table, which stores the probability of the binary decision
diagram in the same row. It is expected that this will make
retrieving probabilities faster, but if the probabilities in the
dictionary are updated, then the cache also needs to be updated. An
extra column will probably also negatively impact the performance
of most regular PostgreSQL queries, such as inserting rows into the
table. The goal of the experiments is to determine to what degree
these queries are impacted.

4.2 Standardization

To find the performance difference of caching, different queries need
to be run on a table with caching and one without caching. To make
sure results can easily be compared with one another, the parameters
suspected to have a significant impact on query performance have
been standardized in Table 2.
Each parameter has a base value and a test range.

Base values are the default value of a parameter, from which the
database will be set up. For each test case, unless stated otherwise,
assume the database is constructed using the standard parameters
listed. Each base value was chosen to be the value within the test
range with the fastest average execution time, such that

Matteo Schut

Table 2. Base values and test ranges for all database parameters

B
Variable ase Test range
value
Amount of possibilities
. 10 1-10
per variable (AOPPV)
Dictionary size 2520 2520 - 25200
Row count 2520 2520 - 25200
Column count 2 2-20
BDD Size 1 1-10
P ERITI
BDD combinator ‘& & ;)r| ,”l,'& ’

Table 3. Dictionary with size 6 and AOPPV of 2

aaa=1:0.5 | aaa=2:0,5
aab=1:0.5 | aab=2:0,5
aac=1:0.5 | aac=2:0,5

experiments can be run as fast as possible.

Test range is the range across which a parameter will be varied to
measure the impact of that specific parameter on performance.
When varying a parameter, all other parameters are fixed at their
respective base values. The upper limits of the ranges are not that
high, however, higher upper limits would take longer to execute
and would lead to increasingly diminishing results. The
expectation is that assumptions can be drawn for larger values by
extending observed trends.

BDD size is the number of variables in the binary decision
diagram, and BDD combinator is the combinator that provides the
relation of all variables between each other within a BDD. An
example of a BDD of size 4 with combinator ’&’ (indicating an "and’
relationship) would be:

BDD('aaa = 5& (aab = 5& (aac = 5 & aad = 5))’)

The test range of column count, the number of columns in a table,
begins at 2. This is because in addition to the BDD column, an ID
column was chosen to also always be present. The table with
caching has one more due to the cache being stored in a separate
column.

The dictionary can be represented by the number of variables

and the amount of possibilities per variable (AOPPV). The AOPPV
is consistent across all variables in the dictionary.
To test the size and complexity of the dictionary separately, the two
parameters used to create the dictionary will instead be AOPPV
and dictionary size, the number of variables multiplied by the
AOPPV. An example of a dictionary with size 6 and AOPPV of 2 is
shown in Table 3.

The base value of AOPPV is set at 10, because initial testing
showed that a higher AOPPV resulted in faster dictionary lookups.
The average AOPPV is not expected to exceed 10 in a regular
database, so 10 is chosen as the highest AOPPV that will be tested.
Dictionary size is set at 2520, as that is the lowest common multiple

Verifying the performance benefits of caching probabilities in probabilistic databases

III ?

35 40 45 2
Milseconds Millseconds

Frequency
5 2 =
F_--I
frequency
F-_

0
25 B0 25 00 RS B/ N5 40 45 950 000 1050 100 150 1200
ilseconds Millseconds

Fig. 2. Show server delay. In the first image, the query was run on a table
with 25 rows, the second 252 rows, the third 2520 rows, and the fourth 25200
rows. All histograms are composed of 300 runs and 50 bins.

of 1 through 10. This way AOPPV can be varied freely without
having to change the dictionary size.

Row count, the amount of rows in a table, is also set at 2520 for
similar reasoning.

4.3 Server delay

During initial testing, it was found that query execution times are
significantly affected by delays on the server side. A query that
calculates the probability of every BDD in a table was run on several
tables, shown in Figure 2.

These histograms show that queries are sometimes impacted by
delays. The delays appear random, especially at lower execution
times, thus can not be filtered out systematically. To combat this,
all query results will be averaged over 100 runs.

Unfortunately, this does not completely get rid of inconsistency, as
delays tend to group up. Consecutive runs of a query tend to have
the same execution time and delay, and the length of each sequence
of delayed runs also seems random.

The histograms in Figure 2 show that a variation of at least 20%
needs to be accounted for, and at least 100% at lower average
execution times.

4.4 Performance measurements

Measuring the performance of a query is done by analyzing the
time the server took to execute the query. This is done by prefixing
"EXPLAIN ANALYSE’ to each query, which creates a query plan
and shows the execution time. All execution times are measured
using this prefix.

TSclT 41, July 5, 2024, Enschede, The Netherlands

From here on out, all query results represent the execution time of
a query on a table without cache minus the execution time on a table
with cache. This will be called the ’benefit’ of a query, representing
time gained by caching per execution of that query.

4.5 Sub Question 1

SQ1 is stated as: Which queries are impacted performance-wise by
caching probabilities in a BDD type?

The only way the performance of queries can be impacted by
caching is if a clear split can be observed between performance on
a table with caching and a table without caching, or in other words,
if the benefit of a query deviates significantly from 0.

Queries can be split into two different types: DuBio-specific queries
and regular PostgreSQL queries.

The only DuBio-specific queries that are impacted by caching

are queries that use or calculate probabilities, or queries that
update the dictionary. The former involve calculation from BDD
and dictionary if there is no cache, and retrieval of cache if there is
cache. The latter causes the cache to become outdated, which
necessitates updating the cache.
To measure these operations, representative operations have been
selected. Retrieving Probabilities on a table with cache means
retrieving the ’probability’ column, and on a table without cache
means calculating the probabilities for each BDD. Updating cache
on a table with cache means updating the dictionary and then
updating all cache, and on a table without cache means only
updating the dictionary.

Most regular PostgreSQL queries are suspected to be negatively
impacted by an extra column, but there are too many to test. Most
queries run on a table are either retrievals or insertions, therefore
representative queries can be chosen for each type. The queries
chosen are selecting all columns of a table, and inserting 'x’
columns into a table. ’x’ is initially set at 1000, as 1000 is deemed
high enough to see a relation.

All SQL queries can be found in Appendix B.

If the benefit of a query consistently and significantly differs
from 0 then the query will be taken into account for the research
question. To test this, all queries will be run while fixing all database
parameters to their base values, only varying row count across its
test range.

4.6 Sub Question 2

SQ2 is stated as: Which database parameters are impacted
performance-wise by caching probabilities in a BDD type?

The six database parameters to be tested are the parameters
described in Table 2. To answer the question, the benefit of all
impacted queries found in SQ1 will be tested while varying all
parameters over the test ranges also outlined in Table 2. Measuring
the change in benefit of each parameter individually is done by
fixing all other parameters to their base values.

TScIT 41, July 5, 2024, Enschede, The Netherlands

If the benefit of a query consistently and significantly differs
between different values for each parameter, the parameter can be
considered to influence the benefit of that query. Thus the parameter
will be taken into account for the research question.

4.7 Research Question

The research question is stated as: Under which circumstances
would the caching of probabilities in a BDD type of a probabilistic
database result in better performance?

The results from SQ1 and SQ2 will tell which queries and
parameters significantly impact whether caching is advisable.

To answer the research question, the benefit of all selected
queries will be compared multiple times, each time with random
amounts for each parameter. The amounts for each parameter are
randomly chosen between the test ranges shown in Table 2, except
for row count and dictionary size.

Row count and dictionary size are instead chosen
logarithmically, to test lower amounts more. This is due to the
difference between 10 and 13 being magnitudes higher than
between 1000 and 1003. Both are also capped at 10000, as execution
times would become too large if both parameters randomly were
chosen to be a high number.

Row count and dictionary size do need to be adjusted slightly if
they are not divisible by AOPPV. Therefore the full process of
choosing values for these two parameters is as follows: First a
random floating point number x between 1 and 4 is chosen, then
the following function is applied:

value = 10 — 10* mod AOPPV

4.8 Implementation Details

Recreating the experiments can be done by running the code [6].
Some specific implementation details are listed below:

(1) The first column in a table is always the IDs, and the last
(or second to last when caching) is always the BDDs. When
adding a column, a ‘VARCHAR (255)’ column is inserted in
the middle.

(2) The names of all variables in the dictionary are chosen
consecutively from the set:

{‘aaa’, ‘aab’, ..., ‘zzz’}

as seen in Table 3.

(3) To test all possibilities of a variable, BDDs are composed
differently according to the row number. A BDD of size 1 is
composed as such:

BDD(‘aaa = X’),
where
X = rowNumber % AOPPV

(4) The first variable in any BDD is always ‘aaa’, then ‘aab’, and
so forth, as seen in the example BDD in section 4.2.

Matteo Schut

(5) To revert the state of the database to where it was before the
query was run, some queries in Appendix B are surrounded
by 'BEGIN;’ and 'ROLLBACK;’.

(6) Updating the dictionary is done by setting the probability of
’aaa=1" to 100% and all other possibilities of "aaa=x" to 0%, as
seen in Appendix B.

5 RESULTS
5.1 Sub Question 1

The results can be found in Figure 3. This shows that the
DuBio-specific queries have a clear impact on whether to cache or
not, however the other two seem to hover around the Oms mark.
Selecting seems to average -0.025ms, and inserting 1000 rows
seems to average 0.4ms per query execution. The benefit of the
DuBio-specific queries both range between the hundreds and the
thousands of milliseconds. This means that the expected
randomness from the DuBio queries significantly overpowers the
variation of regular PostgreSQL queries, so should not be taken
into account for further testing.

Inserting rows into a table can be influenced by row count in
two different ways. Because the number of rows the table already
possessed before inserting 1000 rows does not significantly impact
the benefit of this query, a new test was done where the number of
rows inserted on a table constructed using the base parameters was
varied between 2520 and 25200. The results of this are pictured in
Figure 4.

This figure has a much higher variance than the previous
insertion query, as the query execution times from which the
difference is taken is much larger. The maximum observed
difference is 10.9 milliseconds when inserting 25200 rows, which
still gets significantly overshadowed by the randomness obtained
from running the DuBio functions on tables with 25200 rows.

This can be seen by the fact that at a row count of 25200 rows,
retrieving probabilities results in a benefit of 2378 milliseconds, and
if a variation of 20% needs to be taken into account, 10.9 ms only
accounts for 2.2% of that randomness.

For all of these reasons, only the DuBio queries significantly
impact the efficacy of caching probabilities in a BDD type, and are
the only queries that will be taken into account for the research
question.

5.2 Sub Question 2

From the results of SQ1, only the retrieving probabilities and
updating cache queries need to be taken into account. These
queries are incredibly similar though, as cache updating is done by
calculating the probabilities of all BDDs in a table, which is the
same thing that happens when retrieving probabilities on a table
without cache. If a significant difference can be observed with the
retrieving probabilities query, the same will hold for updating
cache. Therefore the only query that needs to be tested for all

Verifying the performance benefits of caching probabilities in probabilistic databases

500 — Update Cache — Retrieve probabilties

150 2000

1000
1500
1250

-1500

Milliseconds

1000

Milliseconds

1750
2000 50

2250

2500 0

5000 10000 1000 20000 25000 0 500 10000 15000 20000 25000
Row count Row count

050 — Insert 1000 rows 0025 — select
0000

0025

0050

williseconds
williseconds

0075

0100

030
0125

025 0150
5000 10000 1000 20000 25000 5000 10000 15000 20000 25000
Row count Row count

Fig. 3. Representative queries run on a table while varying row count
between 2520 and 25200

— Insert x rows

Milliseconds

5000 10000 15000 20000 25000
Row count

Fig. 4. Inserting 2520 - 25200 rows into a table

parameters is retrieving probabilities.

Row count was already tested in Figure 3, and a clear correlation
can be seen.
Dictionary size, as pictured in Figure 5, also shows an extremely
clear correlation between dictionary size and execution time. The
same goes for AOPPV in Figure 6.

BDD size and combinator have been combined in Figure 7.

Conclusions can not yet be drawn though, as all results seem to
only significantly differ through a sequence of delayed executions.
To test this definitively, a test was run comparing the largest

TSclT 41, July 5, 2024, Enschede, The Netherlands

700 -

600

500

400

Milliseconds

300 A

200 -

100 4

0 2000 4000 6000 8000 10000
Dictionary size

Fig. 5. Execution times when varying dictionary size

600 -

550

500 A

450 1

400 4

Milliseconds

350 A

300 A

250 A

Fig. 6. Execution times when varying AOPPV

difference shown in Figure 7 ('not & and ’not | at BDD size 8).
This resulted in a normal distribution with a mean difference of
0.03 milliseconds, from which it can be reasonably assumed these
two combinators have the same execution times.

BDD size was also rerun, and a new graph was found in which all
execution times vary inconsistently between 241 and 254. This is a
percentage difference of only 5.4%. A 5.4% percent difference is
indistinguishable from randomness when single executions can
vary by up to 20%. The same goes for column count, which has a
3.1% percent difference.

For all the reasons listed above, only AOPPV, dictionary size, and
row count will be taken into account for the final research question.

TScIT 41, July 5, 2024, Enschede, The Netherlands

Function Plot

330 1

320

310

300

Milliseconds

™~]

@ o

S S
\ L

270 1

260 A

250

2 4 6 8 10
BDD Size

Fig. 7. Execution times when varying BDD size and combinator

231+

230

229 4

Milliseconds

226

225

224

Column amount

Fig. 8. Execution times when varying column amount

5.3 Research Question

From the results of SQ1, only the retrieving probabilities and
updating cache queries need to be taken into account, and from the
results of SQ2 only AOPPV, row count and dictionary size need to
be taken into account.

Both remaining queries; retrieving probabilities (R) and updating
cache (U), were run with random parameters 5000 times. The
results of this are shown in Figure 9. This clearly shows a few
things.

The first is that at larger execution times the execution times of
R and U become roughly equal, as the ratio tends to one. This
means that for large tables and dictionaries, caching becomes a
good idea if one retrieves more than they update.
The second notable observation is that, with lower execution times,
more variation is expected for the ratio between U and R.

Matteo Schut

3
3 —44
=
I
< 54
-6 4 II
::
7 °
® Update cache o
-89 ® Retrieve probability o

—4000 -3000 —-2000 -1000 0 1000 2000 3000 4000
Execution time (ms)

Fig.9. Comparing the execution times of Updating cache (U) and Retrieving
probabilities (R) against the ratio U/R

Indubitably this is at least partly due to delays becoming a more
significant factor at lower execution times, as seen in section 4.3.

The scale of Figure 9 makes it hard to observe the variation at
lower execution times. Figure 10 shows this more clearly, by
multiplying all values of U by -1 and then logging both U and R.
In this new figure the ratio between R and U is very visible. The
lower the ratio is below -1, the higher the distance between green
and red data points. This graph also shows that the ratio between U
and R more consistently approaches -1 when U > 10! and R > 107,
as the ratio then stays between the range —2 < ratio < —0.5.

The ratio can also be mapped against the parameters, to see how
they influence the ratio, as is done in Figure 11. Here logged
dictionary size and row count are shown against the ratio.

Each green dot is linked to a blue dot with the same ratio value.
Using this information, it is clear to see that most extreme ratios
(lower than —2) are composed with a combination of a dictionary
size lower than 10! and a row count between 10? and 10%7.

Mapping AOPPV onto Figure 11 does not show any new

information, all extreme ratios are spread out over the whole range
of AOPPV.
The ratio could also be logged to show the data points between 0
and 1 better, however, no new trends can be found by doing this.
There are also only 24 data points out of 5000 above —0.5,
suggesting that they are the products of server delay.

6 CONCLUSION

In this paper, a comprehensive performance analysis of caching
probabilities next to binary decision diagrams in the probabilistic
database DuBio was conducted. The comparison has been based on
query execution time reported from the server while accounting
for server delay within those execution times. First was established

Verifying the performance benefits of caching probabilities in probabilistic databases

[OV e
.

Ratio U/R

™ @ Update cache
@ Retrieve probability

-05 0.0 0.5 10 15 2.0 2.5 3.0 35
Logged execution time

Fig. 10. Comparing the logged execution times of Updating cache (flipped
across the y-axis, —U) and Retrieving probabilities (R) against the ratio U/R

Ratio U/R

0 @ Dictionary size ®
81 ® @ Row count ®
T T T T T T T
10 15 2.0 25 3.0 35 4.0

Logged execution time

Fig. 11. Comparing the logged values of dictionary size and row count
against the ratio U/R

that there are only two queries that make a significant performance
difference between caching and not caching, namely retrieving
probabilities and updating cache. In most cases, caching tends to
improve the retrieval of probabilities to about the same degree
that it negatively affects updating cache. This does not hold in
specific conditions outlined in section 5.3. Following this observation
we recommend database builders to include caching if users are
expected to query probabilities more than that they update the
dictionary.

7 DISCUSSION

The recommendation from the conclusion only applies to the
worst-case scenario.
Assume both updating cache and retrieving probabilities take 1000

TSclT 41, July 5, 2024, Enschede, The Netherlands

milliseconds. If a user were to retrieve slightly before an update, no
slowdown would be experienced. If they were to retrieve 800ms
after an update was started, they would only experience a
slowdown of 200ms. However, they would still be better off with
cache as retrieving probabilities is always 1000ms faster with cache.
Updating cache is usually done in batches, after new information
has been discovered. This means that during usual operation, only
positive benefits will be perceived.

The reason for the patterns in some graphs is not currently known,

however there is a theory based on the collected data as to why
Figure 5 has the shape it does. The dictionary is looked through
using binary sort, and BDDs are only created using the first few
variables in the dictionary. This creates a situation where, when
the dictionary size exceeds 2%, a huge increase in execution time is
accompanied.
This could have been mitigated by distributing variables over all
BDDs in the table such that the average amount of lookups is equal
to the average amount of lookups for that dictionary size. It is
speculated that using this method the graph would take the shape
of a linear function. No significantly different outcomes are expected
however.

8 FUTURE RESEARCH

Four factors are limiting the scope of this paper which could be
researched further.

First off, this research is solely focused on one table, instead of a
whole database. This paper does not research whether database
structure affects query execution time, so conclusions in this paper
cannot automatically be extended to multiple tables. Whether it
can is outside the scope of this research.

Second, this research is solely focused on a whole table, without
considering what happens when only a specific part is queried.
Updating the dictionary could be done on a variable-to-variable
basis, so updating all cache is not necessary. The same is probably
also true for retrieving probabilities, calculating the probability of a
subset of the BDDs in a table is probably faster than calculating the
probability for all BDDs.

Third, storing probabilities next to BDDs can be done in a
multitude of ways. This research is only concerned with adding a
new column next to the BDD column, however storing it in the
same PostGreSQL object is also a possibility. Researching the best
way to update cache could be especially promising for future
research. If cache can be updated concurrently, such that it would
not lock all tables during the operation, caching would become
purely beneficial.

Lastly, only a few queries were tested, even though a lot more
had a small impact on performance. These were currently omitted
because the benefit of all of these queries were indistinguishable
from delay for queries with larger execution times. The problem of
adjusting for uncertainty in query execution time has already been

TScIT 41, July 5, 2024, Enschede, The Netherlands

subject to a great deal of attention (eg. [1], [8]). If such methods can
be applied successfully here, other queries could become viable for
research.

REFERENCES

[1] M. Akdere et al. “Learning-based query performance modeling and prediction”.
In: ICDE, pages 390-401 (2012).

[2] Sheldon B. Akers. “Binary Decision Diagrams”. In: IEEE TRANSACTIONS ON
COMPUTERS, VOL. ¢-27, NO. 6 (1978).

[3] Madeleine Mauz. Using Postgres Hash Table Extension in Compiled Functional-Style
SQL UDFs. 2022.

[4] StephenE.Richardson. “Caching Function Results: Faster Arithmetic by Avoiding
Unnecessary Computation”. In: 11th Symposium on Computer Arithmetic (1992).

[5] Anish Das Sarma, Martin Theobald, and Jennifer Widom. “Exploiting Lineage
for Confidence Computation in Uncertain and Probabistic Databases”. In: 2008
IEEE 24th International Conference on Data Engineering (2008).

[6] Matteo Schut. DuBio-data-generator. https://github.com/DutchOzz/DuBio-data-
generator. 2024.

[7] Dan Suciu. Probabilistic databases. Morgan Claypool, 2011.

[8] Wentao Wu et al. “Uncertainty Aware Query Execution Time Prediction”. In:
Proceedings of the VLDB Endowment (PVLDB), Vol. 7(14) (2014).

A APPENDIX A

An attempt was made to model the performance benefit of caching.
This was done for the retrieving probabilities query by extracting
functions from Figures 3, 5, and 6, such that they represent the
modelled benefit in milliseconds when varying only one variable.
Extracting the functions was done loosely, as execution times could
vary.

The extracted functions were:

o AOPPV: f(q) = 107 128:loga+2:61 4 559

e Dictionary size: g(d) = 2 L2logd/7.36] _ (0 06175+ (d—2L2logd])

e Row count: h(r) = 0.091 = r +3.24
They all go through one point, the point at which the input variable
is at its base value, outlined in Table 2. The execution time at this
point was determined to be 232,2.
The functions were then combined such that the combined function
represents the rate of change from 232,2, by tracking the percentual
change from 232,2. The complete formula was determined to be as
follows:

R(a,d,r) = 232,2 % f(a)/232,2 g(d)/232,2 * h(r) /232, 2
Which can be reduced to:
R(a, d,r) = 1/232,22 % f(a) * g(d) = h(r)

This function was then tested against actual values by choosing

random values for parameters in the same way as in section 5.7.

The function worked very well at higher execution times. At lower
execution times (<200) however, more than half of the predicted
execution times were more than 1.5 times off of the actual
execution times.

For this reason, this method was not used for answering the
research question. The function likely did not work due to high
randomness in the amount of server delay present at lower execution
times, as demonstrated in Figure 2. If randomness was able to be
predicted, or reduced by a different server, this method could likely
have been able to accurately predict query benefit.

B APPENDIX B

Matteo Schut

Table 4. Queries with the SQL queries run to test them.
AOPPV = 3, Column count = 4, and BDD size = 1 for simplicity

Probabilities
Query cached SQL query
Retrieve SELECT _sentence,
probability yes probability FROM table
SELECT t._sentence,
Retrieve prob(d.dict, t._sentence)
probability ne AS probability FROM table
t, dictd
BEGIN; UPDATE ._dict
Updating SET dict = upd(dict,
cache yes ‘aaa=1:1;aaa=2:0;aaa=3:0");
ROLLBACK;
BEGIN; UPDATE ._dict
SET dict = upd(dict,
Updating ‘aaa=1:1;aaa=2:0;aaa=3:0");
yes UPDATE table SET
cache . .
probability = prob(d.dict,
_sentence) FROM ._dict d;
ROLLBACK;
SELECT both SELECT * FROM table
BEGIN; INSERT INTO
INSERT table (id, a, b,’_s?nte’nce)
INTO x yes values (1, ’al’, b1’,
BDD(’aaa=1"))::x times;
ROLLBACK;
BEGIN; INSERT INTO
INSERT table (1d a, b, _senten,ce,’
INTO x no probability) values (1, ’al’,
b1’, BDD(aaa=1"), 1/3)::x
times; ROLLBACK;

https://github.com/DutchOzz/DuBio-data-generator
https://github.com/DutchOzz/DuBio-data-generator

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Probabilistic Databases
	2.2 Binary Decision Diagrams
	2.3 Dictionary

	3 RESEARCH QUESTION
	4 METHODOLOGY
	4.1 Research Objective
	4.2 Standardization
	4.3 Server delay
	4.4 Performance measurements
	4.5 Sub Question 1
	4.6 Sub Question 2
	4.7 Research Question
	4.8 Implementation Details

	5 RESULTS
	5.1 Sub Question 1
	5.2 Sub Question 2
	5.3 Research Question

	6 CONCLUSION
	7 DISCUSSION
	8 FUTURE RESEARCH
	A Appendix A
	B Appendix B

