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Visual Place Recognition (VPR) is the process of identifying and retrieving

images captured at the same location as a given query image. The intro-

duction of VPR pipelines in applications such as autonomous driving and

mobile robot localization makes it crucial that models perform image re-

trieval tasks consistently under challenging conditions such as image blur,

lossy compression, or even domain changes such as weather and time of

day. Our standardized benchmark compares multiple state-of-the-art VPR

pipelines on synthetically generated test datasets to mitigate the effects of

uncontrollable variables caused by the image capturing process. Results

show how vision transformer backbones are consistently more robust to do-

main changes and image corruptions compared to traditional convolutional

neural network backbones.
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Evaluation Framework, Image Corruption, Image Translation

1 INTRODUCTION
Visual Place Recognition (VPR) is used to denominate the process

of figuring out the location of a given query image. It is an es-

sential component for the navigation of mobile robots [12], and

autonomous driving [8]. Most approaches present in the literature

treat VPR as an image retrieval problem. Assuming that a data-

base of related geotagged images exists, the algorithm is tasked to

retrieve the closest matches to the given input. Current state-of-the-

art place recognition strategies handle this retrieval process with a

two-stage pipeline [20, 35], or as a single-stage pipeline by skipping

post-retrieval re-ranking algorithms to reduce latency [14, 5, 2, 19,

3, 16].

(1) Image features are extracted into a compact feature vector.

Pairwise comparisons are made between the query vector

and every other image in the database. Using either Euclidean

distance or cosine similarity, the best matches are returned

based on a distance metric.

(2) A post-processing stage refines the results using several re-

ranking algorithms.

A critical aspect of VPR systems lies in the ability to identify task-

relevant regions in an image. Query images are rarely perfect, indi-

cating that scenes frequently contain distracting elements or signifi-

cant domain changes such as night and day shifts, temporary occlu-

sions, or even image capture corruptions [4]. The ability of a model

to withstand such changes is defined as robustness. In this study, we

define the alterations impacting these queries as corruptions. These

corruptions can be classified into two main categories: short-term

and long-term. Short-term corruptions are represented by common

disruptions present in images captured with a mobile camera. We
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will take a subset of the corruptions proposed by Hendrycks and

Dietterich: defocus blur, motion blur, zoom blur, elastic transforma-

tions and JPEG compression artifacts [11]. Long-term corruptions

are defined as temporary domain shifts caused by weather, season

or time of day shifts. Using CycleGAN-Turbo [25], one of the latest

works in the field of GAN models, we generated two long-term

corrupted datasets: night time and rainy weather starting from a

single ground truth subset of the MSLS validation dataset. [32]

2 PREVIOUS WORK

2.1 Robustness in Visual Place Recognition
The need for robust models in VPR is inferred from the applications

in which this technology is applied. Previous studies examined the

robustness of several state-of-the-art VPR pipelines for daytime and

nighttime changes. GaN architectures were used to synthetically

generate day-to-night images from an unpaired dataset, removing

the need for paired data [22]. The results indicate that using syn-

thetically enhanced datasets yields better results than a less diverse

real dataset. However, the paper does not address other potential

domain changes, such as weather or seasonal variations, or the po-

tential for generating artificial datasets for robustness evaluation.

As our contribution, we show how one-step conditional models

such as CycleGAN-Turbo [25] can be used to generate synthetic

domain changes that extend beyond day-to-night changes, such as

clear to rainy, while also preserving image details without using

edge detectors. Fine-tuning was used to improve the robustness of

existing architectures against out-of-distribution low-light pictures

with promising results [18]. U-Net was used as a normalization

layer before a VGG backbone to enhance the feature extraction

process, resulting in better descriptors and overall performance [15].

Even though both papers show how different normalization and

fine-tuning techniques can increase retrieval performance, they do

not show how their optimizations affect a model’s performance

under other domain changes such as weather. Several other bench-

marks have examined CNN and Transformer-based VPR processes

on day-night, occlusions, and seasonal changes, albeit, without us-

ing synthetic images [31, 2, 6]. We propose an evaluation framework

which allows large-scale augmentation of existing datasets, thus en-

abling researchers to examine a model’s robustness under multiple

types of short-term and long-term corruptions. To our knowledge,

the only previous research that addresses multiple short-term cor-

ruptions in VPR applications is Smit’s research which is used as a

starting point for this study [30].

2.2 Vision Transformers (ViT) and Convolutional Neural
Networks (CNN)

Traditionally, CNNs were used as a backbone in VPR due to their

ability to extract highly informative feature maps from images. Al-

most all state-of-the-art architectures use a ResNet-50, ResNet-101

[10] or VGG-16 backbone [29], depending on the available memory
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Figure 1. Corruptions. Comparison between the original image and the seven proposed short-term and long-term corruptions. All the short-term corruptions
presented in the figure are of severity level five. The nighttime and rainy images are generated using CycleGAN-Turbo. The original image is retrieved from the
Mapillary Street Level Sequences validation dataset.

and processing resources for training. Most image retrieval pipelines

extract local descriptors using CNN backbones, and then use a pool-

ing layer to create a latent space embedding. When a query image is

given to such system, it undergoes the same process, and then, based

on a distance metric, its distance to the nearest possible matches is

computed to retrieve a ranking of the most similar images inside

the database. Later revisions of such systems use popular aggrega-

tion methods such as GeM [26] and NetVLAD [3] which remained

state-of-the-art for VPR applications until the recent advent of vi-

sion transformer based architectures [2, 35, 31]. Vision transformers

operate by converting images into a series of flattened 2D patches,

which are subsequently fed into an encoder along with their respec-

tive patch and position embeddings [9]. ViT backbones are utilized

in VPR to extract robust local descriptors, which are subsequently

combined into a final, global descriptor [13]. A recent study shows

the potential of transformer-based architectures to extract power-

ful descriptors from a small dataset, with recall rates equivalent to

or sometimes even better than current CNN-based state-of-the-art

approaches. The main proposition is that VPR can be considered

a regression task rather than a classification task, with the added

benefit of avoiding computationally expensive tasks such as dataset

pair-mining and re-ranking [17].

3 PROBLEM STATEMENT
The choice of a representative dataset is an ongoing challenge

in the domain of VPR. For training, the most used datasets are

Mapillary-SLS [32] and most recently, GSV-Cities [1] due to their

extensive coverage of both urban and rural images from all around

the globe. The usage of comprehensive datasets ensures that VPR

models can derive high-quality descriptors that perform well on

novel datasets. However, these datasets do not cover an equally

distributed amount of challenging conditions such as weather, sea-

son and time of day changes due to the difficulty of capturing such

data at a large scale. Image-to-Image translation can bridge this

gap by allowing researchers to both augment existing datasets and

create corrupted versions of existing validation and test sets. This

research will focus on the latter, where we use algorithmically gen-

erated corruptions to compute a subset of short-term corrupted

images [11], and a CycleGAN-Turbo [25] model to create a subset of

long-term corrupted images, mainly clear-to-rainy and day-to-night

corruptions. Multiple benchmarks have been proposed to analyze

the performance of VPR pipelines. Although most tests share the

same MSLS validation dataset as a de facto standard, not all models

and image retrieval strategies are tested in the same way among

benchmarks. Since image retrieval is amultistage process, even small

differences in one component of the process can cause noticeable

changes in performance. It is important, therefore, to standardize

the process of benchmarking VPR pipelines to ensure consistent

points of reference for further research. We combine the processes

of data augmentation and model evaluation by extending the stan-

dardized benchmarking tool proposed in [6] (See Appendix 6). The

proposed framework can be used to augment existing datasets with

short-term and long-term corrupted images to both, train or test

place recognition pipelines. Compared to previous methods [23,

22], our framework offers a systematic way of augmenting datasets

and evaluating VPR pipelines at a larger scale with more diverse

corruption types. By augmenting a subset of the MSLS validation

dataset, we aim to answer the following research question:

How do state-of-the-art place recognition architectures per-
form when exposed to corrupted query images?

• What types of corruptions are relevant for place recognition?

• How do transformer-based approaches compare to CNN back-

bones?

• How do state-of-the-art VPR pipelines perform under queries

affected by short-term and long-term corruptions?
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Figure 2. Margins of error. Each dot on a line represents the mean recall
value for k𝜖[1,5,10,20] of a given model starting from left to right. The
colored bands show the span between the minimum and maximum value
recorded when testing on the five random dataset shuffles.

4 METHODOLOGY

4.1 Corruption Types
Short-Term Corruptions. ImageNet-C [11] represents a natural

starting point for generating realistic short-term corruptions. Its

collection of corruptions represents a standard benchmark for image

classification tasks. Out of 15 types of algorithmically generated

corruptions proposed in the paper, only five are used in the bench-

mark. The first category, blurs, frequently occurs in robotics and

autonomous driving because of the swift motion of the cameras

mounted on robots and vehicles. Defocus blur occurs when an image

is out of focus. Motion blur is introduced when a camera is moving

quickly at the moment of capture. Zoom blur occurs when a camera

rapidly moves towards an object to be captured. The second cate-

gory is image compression, represented by JPEG compression, which
is a lossy compression algorithm often used to reduce file size for

low-latency media streaming. The last category is transformations,

where elastic transformation is used to stretch or contract small

regions of an image. Examples of the aforementioned corruptions

are shown in Figure 1. Each short-term corruption has five levels of

severity, resulting in 25 distinct short-term corruptions (see Appen-

dix 7).

Long-TermCorruptions.Taking inspiration from theMulti-Weather

City dataset [23], which used similar techniques to generate various

weather, season and temporal domain changes, we use a pre-trained

CycleGAN-Turbo model to generate two types of corruptions. Day
to night domain translations to test a model’s robustness against tem-

poral changes and clear to rainy to test robustness against weather

changes (See Figure 1). CycleGAN-Turbo offers a novel approach

to image translation by using a one-step pre-trained text-to-image

model capable of generating realistic images. By combining this

model with a condition encoder that uses skip-connections, images

can be translated to different domains with less artifacts compared

to older GAN models. The datasets used to train the generative

model are BDD100k [34], which contains diverse driving images

under day and night conditions, and DENSE [7] which includes

foggy driving images taken from the ’dense-fog’ dataset split.

4.2 Evaluation Data
For our evaluation and corrupted dataset generation, we use the

Mapillary Street Level Sequences (MSLS) dataset. It is a large-scale

heterogeneous dataset containing images from both urban and sub-

urban areas captured in 30 major cities across six continents [32].

Each short-term corruption has 5 corrupted sets, one for each sever-

ity level. The long-term corruptions only have one set each. In total,

the number of datasets used in one experiment, including the origi-

nal queries, is 28. To reduce computing overhead, all the corrupted

datasets are created from a random sample of 1000 images taken

from the MSLS validation split. To ensure that our sampling does

not bias the results relative to using the entire validation dataset,

we generated five random dataset shuffles of the same size and

computed the variance in recall rates across these shuffles for our

long-term corruptions, since these tests affect each VPR pipeline’s

performance the most. The results show the shuffles can indeed

affect the recall rates of a given model by 1-3%, but not enough to

significantly affect the outcome of our testing (See Figure 2).

4.3 Implementation Details
To ensure the consistency and reproducibility of results, we extend

the visual place recognition benchmark proposed by Berton et al.

[6] (See Appendix 6), which allows fine-grained control over all the

components of a VPR pipeline. A query image is first normalized

using the benchmark repository’s default mean and standard devi-

ation values. Afterwards, the query image is pre-processed using

hard-resizing according to each backbone’s supported input dimen-

sions. In the case of transformer-based VPR pipelines, the image is

resized to a 1:1 aspect ratio with the height and width divisible by

the encoder patch height and width dimensions. Each VPR pipeline’s

backbone is initialized using their publicly provided weights. VPR

approaches that use re-ranking will have an additional step to per-

form post-processing prediction refinement. The inference batch

size is defaulted to 16 images. L2 normalization is applied by default

before pooling.

5 EXPERIMENTS AND RESULTS
We conduct a comparative analysis of the baseline ResNet-50 and

NetVLAD architecture against state-of-the-art VPR pipelines by

assessing their robustness to significant domain changes using long-

term corruptions and their consistency in performance against in-

creasing severity levels for each short-term corruption.

5.1 Experimental Setup
Models. For testing, we chose VPR systems that utilize both convolu-

tional neural network (CNN) backbones (NetVLAD [3], CosPlace [5],

MixVPR [2] and GCL [16]), and vision transformers (ViT) (SelaVPR

[20], DINOv2SALAD [13], CricaVPR [19], and ViT-R50-MSE [17])

to understand better how each type of backbone handles both short-

term and long-term corruptions. This list includes the majority of

top-performing models on the MSLS validation dataset. All models

are pre-trained on either MSLS [32], SF-XL [5] or GSV-Cities [1].

NetVLAD andMixVPR use a ResNet-50 [10] backbone. GCL is tested

using a ResNeXt101 [33] backbone. CosPlace uses a ResNet101 back-

bone. DINOv2SALAD, CricaVPR and SelaVPR all use a pre-trained

3
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Table 1. Tested models overview. Each model is pre-trained and tested using their publicly available weights. Wherever possible, instead of using the full
480x640 resolution of the dataset, we use 375x500 (61% of the original resolution) which is a good compromise for geo-localization tasks [6]. All models are
tested using their best-performing descriptor dimensions. No PCA was used during testing. * ViT-R50-MSE uses ResNet-50 to extract a feature map which is
then projected and flattened to the embedding dimensions required by the ViT model’s encoder.

Network Backbone Aggregation Reranking Features Dim Training Dataset Resolution (HxW) Size (MB)

NetVLAD ResNet-50 NetVLAD no 65536 MSLS 224, 224 33.2

NetVLAD ResNet-50 NetVLAD no 65536 MSLS 375, 500 33.2

SelaVPR DINOv2 GeM + Local Adapt yes 1024 MSLS 224, 224 1363.5

ViT-R50-MSE ViT-R50 - * no 768 MSLS 384, 384 374.53

GCL ResNeXt101-x32d GeM no 2048 MSLS 480, 640 331.7

DINOv2SALAD DINOv2 SALAD no 8448 GSV-cities 322, 322 335.7

CricaVPR DINOv2 GeM + Crica Encoder no 10752 GSV-cities 224, 224 407.3

MixVPR ResNet-50 MixVPR no 4096 GSV-cities 320, 320 41.6

CosPlace ResNet-101 CosPlace no 2048 SF-XL 375, 500 178.5
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Figure 3. R@1 results obtained by applying blur corruptions to the evaluation dataset. On the y-axis, the corrupted recall (CR@1) is shown, and on the x-axis,
the severity level of the corruption is shown; the higher the severity, the heavier the corruption effect is applied to the image. All transformer-based VPR
systems are marked with the letter (x), whereas the ones that use CNN backbones are marked with a circle (◦).

DINOv2 vision transformer backbone. ViT-R50-MSE uses a hybrid

transformer with knowledge distilled from a ResNet-50 backbone.

An overview of each tested VPR system and its components can be

found in table 1.

Metrics. When validating, a database image is deemed a match for

a given query if its GPS location falls within a 25-meter radius of the

query and the discrepancy in viewing angles is less than 40 degrees.

The primary evaluation metric utilized is recall@k (R@k), which

represents the proportion of queries in which at least one correct

image is selected from its k-nearest neighbours. VPR architectures

typically execute similarity searches between global descriptors

employing the L2 norm, followed by the Euclidean distance.

5.2 Results
Throughout this section, we investigate how each type of corruption

affects the absolute recall values for each model. Specifically, we

will first examine the effects of blurring corruptions, focusing on

the difference between convolutional neural networks and vision

transformers. Secondly, we analyze the overall robustness against

compression artifacts and transformations. We then move to the

analysis of long-term corruption robustness across all recall rates

and the sensitivity of models against considerably large domain

changes.

5.2.1 Blurring Corruptions. Place recognition systems must con-

sider the environmental conditions in which they operate. Blurring

is common when dealing with query images captured by moving

subjects like robots and autonomous vehicles. The level of blurring

depends on the speed of the subject and the camera’s characteristics,

particularly the shutter speed. To address this, we conduct tests at

five different levels of blur severity.

Discussion. Plots of the results are shown in figure 3. Compared to

other types of short-term corruptions, such as elastic transformation

and compression, blurring effects have a steeper impact on the per-

formance of the models. This effect is explainable by analyzing the

drop in performance caused by increasing the severity level. Blur-

ring effects hide essential details in pictures, such as building facades,

road markings and foliage. A general trend amongst all the blurring

corruption results is the increased robustness of transformer-based

networks compared to CNN backbones. While newer aggregation

methods such as CosPlace and MixVPR tend to offer competitive

performance with DINOv2-based architectures at severity level 1,

as the severity level increases, the performance of CNN backbones

4
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Figure 4. R@k results for k 𝜖 [1,5,10,20]. The y-axis contains the CR@k
values for the night-corrupted images; the x-axis contains the values for
the clear-to-rainy corrupted images. Each model is represented by the four
recall values, with the leftmost point being CR@1 and the rightmost point
on the x-axis being CR@20.

generally decreases at an increased rate compared to the DINOv2

VPR pipelines. In general, MixVPR and CosPlace offer the best per-

formance compared to other CNN backbones; however, it should be

noted that MixVPR is based on a ResNet-50 backbone, which is a

considerably lighter variant compared to CosPlace’s ResNet-101. For

the vision transformers category, DINOv2SALAD is generally the

top-performing architecture, closely followed by SelaVPR, which

uses re-ranking. Vit-R50-MSE’s performance is more similar to the

CNN top performersMixVPR and Cosplace than to its DINOv2 trans-

former counterparts. The difference can be attributed to the much

more extensive pre-training process used in DINOv2 compared to

the one used in Vit-R50. ResNeXt101-GCL is competitive with the

computationally more expensive NetVLAD aggregation running on

a lower 224x224 resolution under motion and zoom blurs, indicating

that GCL could be a viable alternative when defocus blurs are not

common. Moreover, these results demonstrate that various training

approaches, such as regression in the case of Vit-R50-MSE, as well as

classification in CosPlace, can generate robust descriptors without

the need for expensive pair-mining commonly used in contrastive

learning techniques.

5.2.2 Compression and Transform Corruptions. Various VPR
applications necessitate specialized cameras to manage the con-

ditions the subjects face. For instance, vehicles and robots might

need gimbal systems to stabilize their camera on all six degrees of

freedom due to the inertia caused by fast movement changes. One

consequence caused by small shifts in the perspective of the camera

is elastic transformation. JPEG compression, conversely, arises from

a lossy compression technique employed to decrease the image file

size before sending it over a network.

Discussion. The results of this experiment are presented in figure

5. Elastic transformations and JPEG compressions do not signif-

icantly degrade a model’s performance as the severity increases.

This indicates that CNN’s and transformer backbones are generally
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Figure 5. R@1 results obtained by applying elastic transformation and
JPEG compression to the evaluation dataset. The formatting of the chart is
identical to Figure 3.

quite robust against these types of corruptions. The only excep-

tion that can be noted is ResNeXt101 GCL, whose performance

follows a downward trend under JPEG compression as the sever-

ity level increases. It should be mentioned that GCL achieves its

best performance using PCA, but we did not utilize it in our exper-

iments. MixVPR and CosPlace show compelling results, being on

par with their transformer-based counterparts in JPEG compression

and closely behind SelaVPR and DINOv2SALAD in elastic transfor-

mation. Vit-R50-MSE performs better than ResNet-50 at 375x500,

but achieves lower results than MixVPR.

5.2.3 Long-term Corruptions. An important aspect of outdoor

VPR applications is the ability of a model to recognize places under

more difficult domain changes. While datasets such as MSLS offer

sub-tasks such as summer to winter to test such challenges, we find

that the image pairs often contain inconsistencies, including slightly

different fields of view that could affect the experiment’s results.

Our test includes a novel way of handling this test by generating

images using a GaN model, which ensures that the field of view

of our images remains constant after the domain translation. We

test two domain changes, day to night and clear to rainy weather,

which are some of the most common corruption cases in outdoor

VPR images.

Discussion. The results of our experiment can be seen in figure

4. The presented chart places each long-term corruption on one

axis and a dashed line along y=x. A model performs equally well on

both domain changes if the recall rates follow the reference y=x line.

If the performance of one model is higher on one domain change

than the other, then its results will be closer to that corruption’s

axis. The results indicate that all models perform better against

the rainy corruption. This effect is explained by the fact that the

night-time generated images tend to shadow out important details

in the pictures, whereas the rainy corruption is less severe in this

regard. DINOv2-based VPR pipelines consistently outperform their

CNN-based counterparts on both types of corruption. Moreover,

DINOv2-based pipelines perform consistently well across both do-

main changes because their results are closer to the standard y=x

line. DINOv2SALAD is the best-performing model at R@1, closely

5
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Table 2. R@1 results. The "Clean" column contains the non-corrupted validation set results. The average R@1 value across all severity levels is presented for
short-term corruptions. For long-term corruptions, as there are no severity levels, the actual R@1 values are displayed. Each horizontal line divides the models
based on their training dataset. The first section is trained on MSLS, the second on GSV-Cities, and the third on SF-XL. All models marked with a * symbol are
transformer-based. The best-performing ViT-based VPR system results are bolded, whereas the best CNN-based system results are italicized.

Model Clean Defocus Blur Motion Blur Zoom Blur Elastic Transform JPEG Compression Rainy Night

NetVLAD (224x224) 67.4 63.3 66.5 65.0 68.1 69.5 62.2 48.5

ResNeXt101 GCL 72.4 55.6 63.3 66.7 68.7 66.3 58.2 44.7

NetVLAD 375x500 76.8 69.6 71.6 73.8 76.2 75.3 72.4 65.2

ViT-R50-MSE
∗

80.3 74.0 78.5 77.0 78.4 78.6 74.6 54.7

SelaVPR
∗

87.1 87.0 87.4 87.0 87.3 86.6 85.8 82.0

CricaVPR
∗

84.9 84.0 84.1 83.5 84.2 83.8 82.5 78.6

MixVPR 84.0 77.5 80.2 81.3 82.7 82.9 81.4 64.8

DINOv2SALAD
∗ 88.1 87.2 88.1 88.1 87.7 87.2 87.2 86.0

CosPlace 86.6 78.7 81.5 82.8 84.6 85.3 85.6 68.0

followed by SelaVPR with re-ranking. The results for R@5, R@10

and R@20 are very similar among all transformer-based networks.

MixVPR and CosPlace achieve the highest results in the rainy cor-

ruption with R@1 values of 81.4 and 85.6, respectively. However,

they achieved lower results in the night-generated images, with

R@1 values of 64.8 for MixVPR and 68 for CosPlace. NetVLAD

achieves good results using the higher resolution 375x500 images,

with R@1 values of 72.4 for the rainy corruption and 65.2 for the

night corruption. It is interesting to analyze how NetVLAD clusters

can generalize well on night-time images compared to the other,

newer CNN-based approaches. ResNext101 with GCL offers compar-

ative results with ResNet50+NetVLAD on R@10 and R@20; however,

it cannot achieve the same performance on R@1 and R@5 without

applying PCA. Vit-R50-MSE is slightly ahead of ResNet50+NetVlad

375x500 on the rainy corruption, but it achieves lower overall results

on the night corruption.

5.2.4 R@1 Robustness Overview. The experiments performed

during this research captured recall rates for values of k𝜖[1,5,10,20].

Given the extensive amount of data collected, we will focus solely

on analyzing the R@1 values to demonstrate each model’s capability

to accurately retrieve an image captured at the same location from

the database. The results can be found in table 2.

Discussion. The best R@1 performance is achieved by the DI-

NOv2SALAD architecture. It achieves impressive results under all

scenarios, including the night-time long-term corruption where

the loss compared to the clean dataset is only 2.4%. It is closely

followed by SelaVPR, which uses re-ranking, an expensive post-

processing stage. CricaVPR achieves solid results at a lower reso-

lution compared to DINOv2 and a bigger descriptor size. ViT-R50-

MSE achieves lower results than CricaVPR, but it surpasses the

performance of ResNet-50 at 375x500 in all corruptions except the

long-term nighttime corruption. However, these results show how

regression-based hybrid architectures can surpass the performance

of models with considerably larger descriptor dimensions trained on

the same dataset. For CNN-based architectures, CosPlace is the best

performing method. It achieves comparative results with ViT-based

pipelines on multiple tests, including the rainy long-term corruption.

However, its performance on the night corruption is 13.5% lower

than CricaVPR, which achieved the second lowest results out of

the four tested ViT pipelines, further highlighting the advantage

of the pre-trained DINOv2 backbone in these systems. Compared

to other CNN backbones, MixVPR achieves high results using a

ResNet-50 backbone, showing the advantages the MixVPR all-MLP

aggregation method offers.

A common pattern highlighted by these results is the consistent

robustness of DINOv2-based backbones against corruptions that

hide essential details of the picture. A potential explanation for

these results could be attributed to the large-scale pre-training of

the DINOv2 foundational model compared to the other backbones

present in the tested VPR systems. A foundation DINOv2 [24] model

is pre-trained on 142 M images compared to the 1.2 M images used

in IMAGENET-1K [27], the model used to pre-train the ResNet-50

foundation model.

6 CONCLUSION AND FUTURE WORK
This study expands upon previous works to introduce a novel ro-

bustness testing methodology for VPR pipelines that generates re-

producible, fast and comparable results. Expanding upon the work

of Berton’s deep visual benchmarking tool [6] and Smit’s work on

short-term corruption evaluation for VPR [30], we create an au-

tomated way of generating short-term and long-term corruptions

for any available VPR dataset. Moreover, the flexibility offered by

the benchmarking framework enables researchers to perform ab-

lation studies to further review the performance of their models

against commonly occuring image corruptions. We believe that

our experiments showcase a new perspective upon VPR pipeline

testing, one that is crucial for creating robust models that are able

to perform well on out-of-distribution data. Firstly, we show how

DINOv2-based networks are consistently more robust against all

types of corruptions compared to their CNN counterparts. Secondly,

we discover an interesting pattern in the results of all blur cor-

ruptions where DINOv2-backed pipelines’ performance decreases

much slower compared to CNN’s. Thirdly, we observe how newer

approaches to VPR such as MixVPR and CosPlace offer much more

compelling results using newer, more efficient aggregation methods

compared to older implementations such as NetVLAD. Lastly, we

show how other training approaches such as regression in the case

of ViT-R50-MSE, as well as classification in CosPlace can achieve

similar to state-of-the-art performance on multiple corruptions with

backbones trained on less data compared to DINOv2. Along with
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all the results, we showcase a novel approach to robustness testing

in VPR by creating and evaluating the performance of VPR systems

under GaN generated long-term corruptions. In this final section,

we will discuss about the limitations of our testing, the choices of

corruptions and future work that could be applied to further expand

upon this study.

6.1 Limitations
As Berton et al. acknowledge in their deep visual geo-localization

benchmark paper, despite the benchmark’s modularity, the frame-

work is clearly focused on VG methods used in outdoor urban en-

vironments. However, we believe that the framework’s versatility

offers a good ground for expansion, especially for robustness test-

ing where the focus is placed on the corruption-generation aspect.

For our experiments, this framework offered a standardized testing

ground to ensure reproducible results.

All the experiments were conducted on one Nvidia A16 GPU; there-

fore, due to the lack of time and the number of tests needed to gather

the required data, we only tested using a subset of the queries avail-

able in the MSLS validation dataset. Out of 11084 suitable queries,

we sampled a random shuffle of 1000 queries which we used to

create all the testing datasets. We agree that the choice of a random

sample instead of the full validation set can introduce bias, such

as consistently favouring some models against others. To account

for the statistical fluctuations of the results, we analyzed in Fig. 2

the maximum deviation of the long-term corruption results based

on five different shuffles of 1000 images. The chart shows how for

each model, the possible error rate is between 1-3%. Moreover, it

highlights the effects of random dataset sampling over the absolute

retrieval performance of each model.

6.2 Corruption choices
Our framework purposefully omits some of the ImageNet-C corrup-

tions. In this subsection, we will discuss why each corruption type

was excluded, and what kinds of alternatives our framework offers.

Firstly, gaussian, shot and impulse noises were removed since the

chances of one query image being corrupted with a very severe case

of such noise are relatively rare. The snow, frost and fog corruptions

were not used due to our long-term corruption inclusion. We argue

that the effects applied by ImageNet-C do not affect the domain of

the image, but it merely applies several filters and perturbations

which do not portray realistic weather and seasonal changes. To

address this issue, we proposed the usage of long-term corruptions

generated using GaN architectures, which allow for more realistic

domain changes that portray more plausible query images. Time

limitations restricted our ability to train and test a CycleGAN-Turbo

model using summer-to-winter domain change to replace the snow

and frost corruptions completely. Therefore, we encourage future

researchers to approach this challenge in the next section. The last

two corruptions, brightness and contrast were not included since

they portray a very specific change instead of a combination of

variables that can affect one image. However, our framework can be

extended to include these types of short-term corruptions if needed.

The short-term corruptions included in the framework were chosen

because we focused on testing the various blurs commonly present

in query images captured bymoving subjects, as well as elastic trans-

formations caused by the usage of different camera lenses. JPEG

compression was chosen since realistically, some VPR pipelines

could run on a separate server, and lossy compression is one of the

most common ways to reduce network latency.

6.3 Future Work
Long-term corruptions. Our long-term corruption generation is

based on two pre-trained CycleGAN-Turbo models. The results con-

sistently show how transformer-based VPR pipelines consistently

outperform their CNN counterparts, while handling the two long-

term corruptions, rainy and nighttime, equally well. As future work,

we propose an extension on our corruptions set, mainly summer to

winter domain translation using datasets such as Oxford RobotCar

[21] which includes various weather and seasonal changes, includ-

ing heavy snowy weather, or Extended CMU seasons which depicts

urban, suburban and park scenes from the city of Pittsburgh under

varying seasonal conditions [28].

Model testing. Our testing methodology unavoidably affects some

models such as ResNeXt101 with GCL due to our choice of not us-

ing PCA during testing. Due to time and hardware constraints, we

decided to keep our methodology strict, therefore to test each model

using only one descriptor size, at the resolution suggested by their

authors. Moreover, this study focuses on the overall robustness of

each model without taking into consideration the differences in in-

ference times, FLOPs and overall efficiency of each VPR system. We

propose a clearer separation based on each model’s descriptor size,

inference speed and model size in future robustness frameworks in

order to avoid unfair comparisons.

Pre-training effects. One argument used in this paper is that

DINOv2-based pipelines are inherently more robust to all types of

corruptions due to the extensive amount of data used in the pre-

training process of the foundation model. We suggest an extensive

overview on how the amount of data and diversity in the training

dataset used by the foundation model correlates with the robustness

of VPR pipelines.
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Figure 6. VPR Pipeline benchmark proposed by Berton et al [6]. Each framework component can be interchanged to allow consistent testing and evaluation
procedures.

Defocus Blur Motion Blur Zoom Blur Elastic Transformation JPEG Compression

Figure 7. Short-term corruptions with severities. Each column contains a short-term corruption category. Severity increases top to bottom, from level 1 to
5.
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