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Manual grading of programming exams can take a significant amount of
time and funding, and may additionally be subject to human variances in
grading. Autograders can solve the aforementioned problems. However,
there are currently no autograders available that utilise both a combination
of dynamic and static analysis and that link test criteria to the Intended
Learning Outcomes of a module. Therefore, we propose a theoretical au-
tograding model that utilises the aforementioned analysis techniques and
links test criteria to Intended Learning Outcomes. Additionally, we offer
guidance for creating grading criteria based on Intended Learning Outcomes,
and we demonstrate a proof-of-concept implementation of the aforemen-
tioned model, called Thoth. We verify Thoth by comparing the grading of a
selection of exercises from an introductory programming exam. With this
verification, we demonstrate the potential for autograders to aid in (partially)
grading introductory programming exams.

Additional Key Words and Phrases: automated programming exam grading,
autograder, static program analysis, dynamic program analysis, intended
learning outcomes

1 INTRODUCTION
The manual grading of programming exams can take a significant
amount of time and funds, and may additionally be subject to vari-
ances in grading. These variances in grading can result in students
getting different grades, while their solutions should get the same
grade, which is undesirable. This can occur due to implicit biases
when grading students with a personal connection to the grader
[13] or the varying interpretations, methodologies, and levels of
competence between graders.

An autograder might solve some of the problems described above.
However, there are some concerns surrounding autograders. This
can include the possibility that autograders incorrectly grade exams
due to improper test sets, or that autograders can potentially unfairly
automatically correct submissions of students, in case platforms
offer this functionality [2, 7, 20]1.

Aside from the aforementioned downsides, there can be tremendous
benefit in using autograders, as they can reduce the required man-
hours needed for grading and personal biases present in human
grading [13]. Additionally, autograders can improve the accuracy
of grading with respect to the Intended Learning Outcomes (ILOs)
of the module, which is a set of sentences describing the skills "an
instructor desires for students to gain from a course" [25]. This is
1The results of Bhatia & Signh (2016) in particular seem to unfairly overcorrect some-
times, particularly for the bottom two examples of Figure 1c [7, p.4]
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of course only possible if the test criteria are properly linked to the
ILOs of a module, which may not always be the case [5].

1.1 ResearchQuestions
In order to be able to provide evidence of the effectiveness of au-
tograders in introductory programming exams, a main research
question (RQ) has been established:

To what extent can autograders replace human grading
in the context of grading introductory programming
exams?

We aim to answer this research question by answering the following
sub-research questions:

RQ 1: Which (combination of) program analysis methods is/are
most effective for the grading of introductory programming ex-
ams?

RQ 2: To what extent can ILOs be translated into test criteria for
autograders?

RQ 3: Which existing autograders (if any) are likely to be a good
fit for grading introductory programming exams in terms of
analysis methods, availability of source code, method of linking
ILOs to test criteria, and ease of adoption by institutions?

RQ 4: How does an autograder that fits the criteria in RQ3
compare to human grading in terms of consistency and fairness
in the context of an introductory programming exam?

In section 2, we answer RQ1 and RQ3 by providing more informa-
tion on the theory behind autograding, as well as explaining the
techniques and limitations of a selection of autograders. In section 3,
we discuss what steps were taken to complete this research. In order
to answer RQ2, we provide guidance for the translation of ILOs into
grading criteria in section 4.1, after which we present our autograder
model in section 4.2, describe this model in section 4.3, and answer
RQ4 by verifying the implementation of the model in section 4.4.
Afterwards, in section 5, we discuss how these results can be in-
terpreted, after which we hypothesise what still needs to happen
to make Thoth suitable for real exam grading in section 6. Finally,
we conclude the research by answering the research questions in
section 7.

2 RELATED WORKS
Automatic grading is based on the fundamental principles of pro-
gram verification, which can be divided into static and dynamic
analysis [6]. Dynamic analysis is the practise of running code against
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test cases in order to verify whether the program produces the cor-
rect output, while static analysis observes the structure of the code
(without executing it) [6].

While dynamic analysis has several downsides, including (1) not
terminating on programs that never finish executing, (2) possibly
having to run it in a containerised or other virtual environment in
the case of running unknown, possibly malicious programs, and
(3) being unable to provide absolute truths about a program if it
relies on external state (as it may therefore not produce the same
result for subsequent executions). However, despite the downsides,
dynamic analysis can provide a strong link between the inputs and
outputs of a program [6].

In comparison, static analysis can provide true invariants of a pro-
gram, but may (1) may suffer from abstraction issues2 [6], and (2)
may not finish executing within reasonable time for larger pro-
grams3 [6]. Combining dynamic and static analysis can bring out
the positives of both strategies, providing the best compromise in
terms of speed and accuracy for the verification of programs.

Unfortunately, while there is a large body of knowledge concerning
autograders, there seems to be quite a small number of papers
regarding the translation of ILOs into testing criteria. In our search,
we found exactly one paper, one from King & Duke-Williams [2001]
that talks about verifying ILOs with automated tools, which sadly
did not provide a methodology for translating ILOs [16].

2.1 Existing autograders and their limitations
Several solutions for automatically grading exercises or exams al-
ready exist. Some are closed-source [11, 20], while other platforms
are open-source [10, 21, 29], and some are even in active use by
universities [24]. There was also an autograder developed by a Mas-
ter student at the University of Twente named APOLLO++ [22].
However, this solution was developed as a tool for grading program-
ming projects, which have a far more loosely defined structure than
exams4, making this tool not easily adaptable to exam grading.

Roughly half of the discovered papers and GitHub repositories used
purely dynamic analysis [10, 20, 21, 29]. However, a decent number
of autograders opted for a combination of dynamic and static anal-
ysis [12, 17, 26, 27]: some use linting5 to check for code quality or
style [17], while others expand upon the concept and evaluate the
control structures of functions, either for comparing it to a reference
implementation [18] or for partitioning the code into sections in
order to more effectively verify submissions [27].

However, there turned out to be very little papers on autograders
that also have published their solutions online (see appendix B).
Notably, of all the solutions, only ArTEMiS [17] had both a pub-
lished paper and source code available on GitHub [24], and of all
publicly available autograders (not necessarily with a corresponding
2Some parsers may leave out some of the details of the language, as a consequence
abstracting away details that could have been useful for spotting certain issues in code.
3The definition of ’reasonable time’ or ’larger programs’ depends on the speed of the
static analyser and the desired maximum run time.
4The author described their tool as being "flexible and supporting".
5Linting is the practise of enforcing coding standards, finding unused variables and
spotting common bugs in code [1]

paper), only ArTEMiS and CodeGrade [11, 17] utilised dynamic and
static analysis. See appendix B for more information on the found
autograders.

Because the autograder is intended to be used for grading exams,
we believe it is vital to know the inner workings of the software in
order to ensure that the product uses the proper analysis techniques
(see section 2) and that the product behaves exactly as intended.
With this restriction, the selection of available platforms becomes
quite small: only ArTEMiS and CodeGrade have the desired analysis
methods, and CodeGrade is closed-source, leaving only ArTEMiS as
a potentially usable solution. Unfortunately, ArTEMiS is primarily a
Learning Management System (LMS), containing much more func-
tionality than needed, which would force the UT to transfer over all
student accounts, which does not aid in the ease of adoption. The
aforementioned issues, along with having some unfortunate techni-
cal issues6 make ArTEMiS unattractive to adopt for autograding.

In conclusion, every existing platform discovered (appendix B) has
some number of (technical) issues or shortcomings that make it
unattractive for our use case. Additionally, none of the systems
showed any functionality to connect test criteria to ILOs, and there
were no papers found that explicitly discussed the translation of
ILOs into test criteria.

3 METHODOLOGY
In order to answer the main research question, we performed a
limited-scope literature study in order to obtain information on the
current state of the art in terms of program analysis methods and
autograders, with terms such as "dynamic analysis program verifica-
tion", "static analysis program verification", and "automatic grading
programming university", "autograder programming", "automated
grading programming" respectively. Searches for papers and/or au-
tograders were performed on Google Scholar, Inciteful.xyz,
essay.utwente.nl, and GitHub.

The translation of ILOs has been researched separately, using search
terms such as "ILO translation to test cases", "intended learning
outcomes program verification", and specifically "Anderson and
Krathwohl 2001", as they revised Bloom’s taxonomy, which resulted
in the King & Duke-Williams source [16]. Searches were performed
on the same platforms as the searches for autograders and program
analysis techniques, excluding GitHub.

For developing the autograding model, the dataset was inspected to
form a general idea of the structure and format of the exam, which
formed the basis of the model (see section 4.2).

For developing the proof-of-concept implementation (Thoth, sec-
tion 4.3), the autograding model was taken as a basis, and extended
and refined to support additional features such as importing datasets.

6The repository fails to compile natively on Windows due to some of the file path
names being longer than the Windows path character limit, therefore limiting ease of
development and maintainability
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4 RESULTS

4.1 ILO translation into grading criteria
As mentioned in section 1, Intended Learning Outcomes (ILOs) are
a set of sentences describing the skills "an instructor desires for
students to gain from a course" [25]. There are a few methods of
generating ILOs, including (1) deriving them based on the verbs in
questions, (2) extrapolating them from existing exam questions, and
(3) by using examples. These methods, however, all have various
downsides, which can result in "misleading" and "unclear" ILOs [16,
p.4]. Therefore, a structural approach for designing ILOs is key to
generating clear, specific ILOs.

There exist a few popular methods to do this, most prominently the
Structure of Observed Learning Outcomes (SOLO) [8] and Bloom’s
Revised Taxonomy [4, 28]. For this paper, we will focus on Bloom’s
Revised Taxonomy, as it, unlike SOLO, concentrates on the depth
of knowledge [3, p.158], and because it seems to offer more gran-
ular levels of understanding compared to SOLO: SOLO offers the
levels "Unistructural", "Multistructural", "Relational", and "Extended
Abstract" while Bloom’s Revised Taxonomy offers the levels "Re-
membering", "Understanding", "Applying", "Analysing", "Evaluating",
and "Creating" [9, p.6-7].

Next to offering information about which levels of knowledge they
address, ILOs should also indicate which kind of knowledge they
relate to. Biggs [2011] claims there are two kinds of knowledge:
Declarative and Functioning knowledge [9]. Other sources, such as
King & Duke-Williams [2001], split the kinds of knowledge up into
four categories: Factual, Conceptual, Procedural, and Metacognitive
[16]. An extensive list of examples of Intended Learning Outcomes
can be found in Kennedy [2006] [15, p.32]7. For the purposes of this
research, we will be using the four kinds of knowledge from King
& Duke-Williams [2001].

4.1.1 Relation to introductory programming exams.
Introductory programming exams, however, often do not test all
levels and kinds of knowledge. Simon et al. [2012] states that in
the observed programming exams, the five code-related skills they
defined (writing, tracing, explaining, debugging, and modifying
code) covered 81% of exam questions, "the remainder being taken
by knowledge recall (10%), design (7%) and (...) testing [(2%)]" (see
figure 3a and 3b) [23, p.66]. For ILOs, this suggests that the vast
majority of introductory programming questions are focused on the
levels of knowledge related to "Analysing" (tracing), "Evaluating"
(debugging), and "Creating" (modifying, writing) (see appendix C)
[4], and on the kinds of knowledge related to "Functioning" knowl-
edge [9] or "Procedural" knowledge (knowing how and where to
utilise algorithms, techniques and methods) [16]. Therefore, we will
only offer advice for translating ILOs for this subset of levels and
kinds of knowledge.

4.1.2 Guidance on translating ILOs.

7Do keep in mind that these learning outcomes have been written with Bloom’s original
taxonomy, and not the revised version from Anderson & Krahtwohl [2001] [4]

public static ArrayList <Integer > getDiff(
int[] arr1 , int[] arr2) {
//TO-DO: implement here.

}

Fig. 1. An example question from the dataset.
"This method receives two int[] as argument and calculates the differences
between each position of both arrays, i.e., arr1[0] - arr2[0]. (...) The method
returns an ArrayList with the differences between each position of both
arrays. (...) In case the two arrays are not of the same length, this method
throws an llegalArgumentException (...)". ILOs tested: 1,2,3,4,6 (see appen-
dix F).

In order to translate the ILOs of an introductory programming exam
into testable criteria, it can help to first imagine situations where
this ILO is being applied. For example, one of the ILOs of the dataset
states that a student should be able to "Express algorithmic solutions
that use repetition structures", i.e., a student should be able to use
for and/or while loops (ILO 4 in appendix F).

After having established the situation where this ILO is applicable,
one can start thinking of example questions that require the student
to create a program that works within this situation.
For the aforementioned ILO, an exercise can be used such as the ex-
ample in figure 1. Additional hints or requirements may be given to
ensure that a student uses the intended data structures or language
concepts ("Use one for-loop", "Do not make use of the Set class",
or "Throw an IllegalArgumentException when (...)").

After an exercise has been made, one should verify if other ILOs are
(indirectly) being tested by this exercise. In the case of the second
example, primitive datatypes could also be tested (if the student
uses an index-based for-loop), complex datatypes are tested (arrays
are manipulated) and basic arithmetic is tested (addition, for the
for-loop and the counter). The final list of ILOs of this example
exercise can be found in the description of figure 1.

After all the ILOs in an exercise have been identified, one can start to
make criteria that test these ILOs. In the example of the ’repetition’
ILO, one can make dynamic tests that test that the output of a
submission matches for some inputs. Additionally, one can generate
static tests that verify whether a student in fact used a for or while
loop to perform this task. Ideally, each criterion should be tested
by means of a combination of dynamic and static criteria, to ensure
that the behaviour and internals of the function are sound in terms
of completeness, scope and precision [6, p.217].

With this guidance, we aim to improve the quality of the questions
asked and the grading criteria used in exams, in order to increase
the potential effectiveness of automatic grading.

4.2 Autograding model
We have developed a simplified model for autograding introductory
programming exams, which can be viewed in figure 4.

4.2.1 Explanation of model.
The model is split into various blocks: the Submission model, the
Correction model, the Grading model and the Result model.
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The Submission model determines in which format an exercise is
presented. TheCorrectionmodel represents the grading criteria to
use for a particular exercise, which contains the dynamic and static
test suites used for grading. Each dynamic test suite is a collection
of tests to run for a particular method, whereas each static test suite
is a collection of static criteria the submission code must reach, such
as having certain function calls or using certain data structures. We
enforce the structure of 𝐼𝐿𝑂 → 𝑇𝑒𝑠𝑡𝑆𝑢𝑖𝑡𝑒𝑠 → 𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 because
we believe this forces teachers to think explicitly about which ILO
their tests relate to. Furthermore, the aforementioned structure
requires test cases to be in test suites. This allows for linking a test
suite to a particular (piece of a) grading criterion, which can be
verified with the test cases in that test suite.

The Grader model should take in the aforementioned Correction
and Submission model and grade the Submission based on the Cor-
rection model. After the grader has finished grading, it should pro-
duce a Result model. This model contains the necessary informa-
tion to convey which grade was achieved, along with which scores
were achieved for which ILO, for which specific test suite within
that ILO and for each test case within that test suite.

4.3 Implementation of model: Thoth
The autograding model (discussed in section 4.2) has been imple-
mented in a command-line utility called Thoth [19], which spe-
cialises in grading single-function Java questions.

4.3.1 Architecture.
For testing and evaluation, we implemented the described model,
adding features for importing/exporting the dataset and serialising
configurations. Additionally, we decided that, for Thoth, both dy-
namic and static test suites only award full points if all test cases
pass, and no points otherwise. This was chosen to force a test suite
to test only one concept, and only award points if all the desired
behaviour is achieved. If partial points are desired, one can split
up the test suite, with each fragmented test suite awarding partial
points.

4.3.2 Dynamic Analysis.
Before any dynamic analysis is performed, the submissions are
parsed by the JavaParser library into an Abstract Syntax Tree
(AST) format. This AST is then formatted to suit dynamic testing8.
After the solution is formatted, it is converted back into a String,
after which they are compiled into memory using a custom In-
MemoryJavaCompiler. After the submission is compiled, its class is
loaded into the program, the method to test is looked up, and test
cases are ran on this method.

4.3.3 Static Analysis.
Static analysis takes the parsed ASTs of the students (as described
in section 4.3.2) before they are formatted. It runs these submis-
sion ASTs through several "Criteria Verifiers", which internally tra-
verse the AST to assert whether the solution uses certain control
structures, or whether a solution uses certain (argument or object-
specific) function calls.

8If the submission contains only a function it is placed in a class, class names are
changed to be a constant name, and imports are reduced to an allowed selection.

4.4 Verification
For verifying our autograding solution, we use an anonymised
dataset from a first-year Business and IT exam given at the Univer-
sity of Twente.

4.4.1 Format of exam.
The dataset we use is similar to exam papers 15, 17, and 19 from
figure 3a, as it only expects answers containing code fragments.
The exam is divided into three distinct sections, each related to a
level of competence: "Entry level", "Intermediate Level", and "Target
level". The Entry Level section tests basic concepts such as primitive
datatype transformations, "sequence and selective structures" (e.g.,
if and switch structures), and exceptions. The Intermediate Level
section builds on these fundamentals, introducing loops (for/while)
and linear data structures (e.g. Lists). The Target Level section ex-
pands upon this by testing more complex, non-linear data structures
(e.g. nested Lists, Maps, or multiple types of data structures in the
same exercise).

4.4.2 ILOs and grading rubrics.
Luckily, the ILOs of the module were constructed with Bloom’s
revised taxonomy in mind, which was apparent from the "Bloom’s
level" tags above each question’s ILOs. Additionally, each question
had a list of ILOs that question aimed to test, which made it much
easier to connect the grading criteria with an ILO.

In the end, the original grading criteria was split up and connected
to ILOs, which formed the basis of the testing criteria for the verifi-
cation.

4.4.3 Verification of model.

In order to verify the model, we compared the manual grading
of a selection of questions from the dataset with the automatic
grading done by Thoth. For the verification, we decided to focus
on questions asking individual functions (questions 1-7), instead of
Object-Oriented Programming (OOP)-related questions (questions 8-
10), as testing OOP concepts requires more advanced static analysis,
which would have put the already strict time constraints under even
more stress.

For the Beginner Level, we evaluated the grading of exercise 2
(notString). We did not evaluate exercise 1 (countDigits) as we
believe it has a more limited set of possible answers than question
2, and we want to test out the autograder for a more wide range
of possible answers. Additionally, if we successfully grade ques-
tion 2, this means that question 1 would probably also show good
results. We also did not evaluate exercise 3 (weekDayName), as it
aims to test conditionals9, but can also be solved by other methods
(e.g. array indexing), which does not test all ILOs (see appendix F).
For the Intermediate Level, we evaluated the grading of exercise 5
(countCommonWords). This is partly due to the poor compile rate of
exercise 4, which would not yield statistically robust results (only 17
submissions compiled out of 109, see appendix F), and because this
9This aim is demonstrated by the grading rubric "1.5 - points: for correctly travers[ing]
through each “case” in [the] Switch statement (if sta[te]ment[s] [are] also possible).".
Taken from the official grading rubric, edited with brackets ([]) to ensure coherent
English.
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exercise involves a bit more complexity than exercise 6 (which was
about subtracting integers in arrays). For the Target Level, there
is only one question (number 7, "Reverse Map"), which we will be
evaluating in addition to the two previous exercises.

In order to set up the grading configurations for Thoth, we followed
the official grading rubric of the exam quite closely. We either copied
over the example tests in the exercise, and the points in the rubric
directly, or we split up rubric points into multiple smaller test suites,
in order to give partial points.

We manually corrected some function names and access modifiers
of submissions that incorrectly spelled the names of functions to test
(e.g. "countWords" instead of "countCommonWords") or inputted
the wrong function modifiers ("private static String not-
String" instead of "public static String notString"). Apart
from this, no other modifications were made to the dataset.

5 DISCUSSION

5.1 General Discussion
After running the autograder for each exercise with some corrected
submissions (section 4.4) with a grading configuration constructed
according to section 4.4.3, we can see in figure 2 that the config-
urations made for exercise 2 and 7 resemble the human grading
fairly accurately. Unfortunately, the configuration made for exercise
5 fails to resemble human grading, either awarding full points for
correct solutions or ’pity points’10, possibly even for solutions that
would be worth more than 0.5 points. This is likely due to the fact
that the grading configuration contained quite a bit of dynamic
testing suites, which tend to fail in large numbers for small mis-
takes in the solution. We could have improved the configuration of
exercise 5, however, we believe that showing the effects of a less-
than-ideal grading configuration is just as important as highlighting
the benefits of a good grading configuration.

In general, though, these results should be taken with a grain of
salt because, as long as the autograder is working as intended, its
grading performance is entirely dependent on the configuration put
into it. Additionally, the manual grading in this dataset seems to
differ slightly from the grading rubrics, meaning that some liberties
were taken by graders in grading the submissions. On top of that,
the graphs for autograding are slightly skewed to the negative side
figure 2, as autograded solutions that parse but fail to compile are
also included11.

In conclusion, while the performance of the autograder is highly
dependent on the configuration (as demonstrated in figure 2c and
figure 2d), and the efficiency gains entirely depend on how many
parsing and compiling solutions are handed in by students, an auto-
grader such as Thoth can have the potential to grade faster12 and
more consistently than human grading.

10The static analysis for this exercise is configured to award 0.5 points for using a for
or while loop.
11This includes submissions such as one from exercise 5 that received 5 points by a TA,
but that used a HashSet, which at the time of writing the autograder was not included
in the ’add import’ list, which triggered a compile failure.
12The observed grading times were in the order of seconds for questions 2 and 5, and
roughly 1.5 minutes for question 7.

(a) Manual grading distr. ex. 2 (b) Autograder grading distr. ex. 2

(c) Manual grading distr. ex. 5 (d) Autograder grading distr. ex. 5

(e) Manual grading distr. ex. 7 (f) Autograder grading distr. ex. 7

Fig. 2. Grade distributions for manual grading (left) and automatic grading
(right) of exercises 2, 5, and 7, for all parsing solutions of candidates. Solutions
that did not parse were filtered out for the manual grading graphs, and
empty solutions were not considered in grading.

5.2 Need for training
Ideally for autograding, questions of the exam should be made by
translating the ILOs into questions, which then can receive grad-
ing criteria (section 4.1). Additionally, implementing autograding
requires filling in detailed configurations in order to make it accu-
rately award points based on the rubric (with partial points in mind),
both of which are non-trivial tasks13.

Therefore, we firmly believe there should be required training for
teachers to, firstly, know about how to translate ILOs into grading

13Translating the ILOs is hard as demonstrated by section 4.1. The level of difficulty of
entering grading configurations comes from personal experience
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criteria and, secondly, know what features the autograder has, so
that they can create criteria effectively, and configure the grading
in such a way that the autograder grades in a nuanced and for-
giving way. Unfortunately, existing methodology is (as far as was
discovered) non-existent, and our own methodology for this (see
section 4.1) is far from complete, meaning that effort should also
be spent in this area, in order to develop more robust strategies for
creating the rubrics.

5.3 Caveats while implementing Thoth

During development, a number of issues popped up:

• Not every student submission parsed successfully, and compile
rates were even lower (see appendix F). This was surprising to
see, as students were provided with an IDE while taking the
exam. Unfortunately, these solutions will have to be corrected
manually, as no automatic (syntax) correction is implemented.
Parse and compile rates could be improved in future exams by
emphasising that student submissions must contain valid Java
code.

• Not every submissions was purely a function: some students
wrapped their functions in classes (with varying names). This
issue was resolved by including a ClassFormatter that wraps
function definitions in classes and renames classes to a known
name. Clearer instructions in the exam could be provided about
handing in only a function or class definition, however, we
believe this also places an additional unnecessary cognitive
load on the student, as formatting is automatically performed
anyway.

• Some solutions used Java data structures without importing
them. This was remedied (but not completely resolved) by im-
plementing an ImportFormatter which removes all imports
and adds a limited set of allowed imports to each submission14.
While one could argue that students should have put these im-
ports into the code themselves, we believe that it is be beneficial
for security to not allow arbitrary student imports, and instead
override the students imports with a known set of imports.

5.4 Limitations of Thoth
While Thoth works well as a proof-of-concept, it is missing some
features required to make it ready for real exams. In particular, the
following items could use some work:

(1) OOP concepts are currently not able to be dynamically tested
by Thoth, as the dynamic analyser is fixed to only accept one
class or function definition. This could be fixed by adjusting the
dynamic analyser to compile multiple classes for OOP questions.

(2) Inputting exam configurations is currently done by manually
editing a JSON file, which scales horribly15 for more than a

14The imports are currently limited to Java native libraries.
15The configuration file grew to roughly 500 lines for the verification of exercises 2, 5,
and 7.

couple of questions. Therefore, developing a visual tool would
aid in being able to test more exercises or larger test sets.

(3) Thoth does not containerise dynamic analysis in any way. This
means that Thoth compiles and runs student code directly on the
host machine. This allows students to write malicious code that
would execute on the grader’s machine16 and potentially cause
harm. For real exams, dynamic analysis should be containerised
or virtualised.

(4) Thoth currently only adds a few predefined imports to submis-
sions. This list is incomplete and should be extended with the
most common Java data structures (HashMap, LinkedList, etc.).

6 FUTURE WORK
For future research, the following two items could be of interest:

(1) Improve Thoth with help of the limitations defined in section 5.4,
and test it ’in the field’ in an introductory programming exam,
or a practice exam.

(2) Improve upon the methodology defined in section 4.1 for trans-
lating ILOs into testable criteria, in order to help improve the
quality of ILOs in modules and the effort needed to switch from
human grading to autograding.

7 CONCLUSION
In this research, we discussed some theory behind program analysis
in order to determine the most effective combination of analysis
methods, which turned out to be a combination of dynamic and
static analysis (RQ1). We then inspected a selection of autograders,
and discovered that most autograders either only exist in theory,
or exist in practise but either (1) do not utilise the combination
of analysis techniques we desire, (2) are closed-source, (3) are not
well-documented and/or not actively maintained, or (4) are part of
bigger systems (RQ3). Additionally, none of the solutions contained
features to help link ILOs to test cases (RQ2). We therefore decided
to make our own model for autograding, along with a proof-of-
concept implementation called Thoth. After additionally discovering
that there was no literature available for writing ILO-based test
criteria, we created a set of guidelines for translating ILOs into test
criteria based on Bloom’s (Revised) Taxonomy and related works.
We found that with questions that are tightly linked to ILOs and
a properly made grading configuration, there is real potential for
autograders to help in grading exams, thereby reducing the time
it takes to grade exams and reducing human biases and mistakes
made by manual grading (RQ4).
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16Given that the student code does not import libraries that Thoth removes.
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APPENDICES

A AI STATEMENT
During the preparation of this work, the author used no Artificial Intelligence tools.

B AUTOGRADER OVERVIEW
Name Has paper (Y/N) Available (Y/N) Open-Source (Y/N) Technique (D/S)

ArTEMiS [17] Y Y Y D S
GradeIT [20] Y N ? D

Wang et al. [27] Y N ? D S
Liu et al. [18] Y N ? S
Helmick [12] Y N ? D

Vujošević-Janičić et al. [26] Y N ? D S
Github Teacher Toolbox* [14] N Y N D

Zmiev Autograder [29] N Y Y D
EECS Autograder [21] N Y Y D

CodeIO CodeBoard** [10] N Y Y D
CodeGrade*** [11] N Y N D S

Table 1. An overview of all found autograders and their details: Do they have a paper? Can they be found online? Are they open-source? Which techniques do
they utilise (dynamic analysis (D), static analysis (S), both (DS))?
* = Requires GitHub Teacher
** = Not well-maintained (>1 year inactive)
*** = Requires subscription

C BLOOM’S REVISED TAXONOMY
Cognitive Level Verbs
Remembering define, describe, draw, find, identify, label, list, match, name, quote, recall, recite, tell, write
Understanding classify, compare, exemplify, conclude, demonstrate, discuss, explain, identify, illustrate, interpret, paraphrase, predict, report

Applying apply, change, choose, compute, dramatize, implement, interview, prepare, produce, role-play, select, show, transfer, use

Analyzing analyze, characterize, classify, compare, contrast, debate, deconstruct, deduce, differentiate, discriminate, distinguish, examine, outline,
relate, research, separate, organize, structure

Evaluating appraise, argue, assess, choose, conclude, criticize, decide, evaluate, judge, justify, predict, prioritize, prove, rank, rate, select, monitor
Creating construct, design, generate, hypothesize, invent, plan, produce, compose, create, invent, make, perform, plan, produce, design, develop

Table 2. Bloom’s Revised Taxonomy for ILOs [9, p.7]

D SKILLS REQUIRED IN PROGRAMMING EXAMS

(a) "Skills required in each exam" [23, p.67]
(b) "Skills required to answer questions" [23,
p.66]

Fig. 3. Skills required for programming exams, according to a study by Simon et al. [2012] [23, p.66-67].
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E MODEL DIAGRAM

Fig. 4. Abstract model of the autograding model

F DATASET EXERCISES

ILO Number ILO Description Knowledge Level Knowledge Kind
1 Select and use primitive datatypes Applying Procedural
2 Develop data transformation statements for primitive datatypes using appropriate operators Applying Procedural
3 Express sequence and selection structures (conditionals) Applying Procedural
4 Express repetition structures (loops) Applying Procedural
5 Express unexpected circumstances in execution flow such as exceptions Applying Procedural
6 Select and use linear data structures Applying Procedural
7 Select and use non-linear data structures Applying Procedural

Table 3. Levels, submissions counts, parse rates and compilation rates for the non-OOP exercises of the data set (1-7). The percentage behind the parse and
compilation metrics refer to the fraction of the total submission count (e.g., Total Compiled = 75% means that three quarters of all submissions compiled
successfully).

Level Ex.
Num.

Submis-
sions*

Total
Parsed

Total
Compiled Explanation ILOs tested

ENTRY 1 111 84 (∼76%) 69 (∼62%) int countDigits(int number): returns number of digits of a
number 1,2

ENTRY 2 114 65 (∼57%) 57 (∼50%) String notString(String s): Returns s if s begins with "not
" (case-insensitively), otherwise "not " + s

1,2,3

ENTRY 3 188 63 (∼34%) 47 (∼25%) String weekDayName(int weekDay): Returns day of the week
(1: Sunday, 2: Monday, ...) 1,2,3,5

INTERMEDIATE 4 109 26 (∼24%) 17 (∼16%) double similarityIndex(String s1, String s2): returns
percentage of matching Chars of Strings at the same index 1,2,3,4,6

INTERMEDIATE 5 111 77 (∼69%) 47 (∼42%) int countCommonWords(String s1, String s2): counts
matching words in two Strings (case-insensitively). 1,2,3,4,6

INTERMEDIATE 6 109 84 (∼77%) 80 (∼73%) List<Integer> getDiff(int[] arr1, int[] arr2):
calculates arr1[i] - arr2[i] for each array index. 1,2,3,4,6

TARGET 7 107 80 (∼75%) 72 (∼67%) Map<String, String> reverseMap(Map<String, String>
map): Swaps around the keys and values of a map. 1,2,3,4,5,6,7

Table 4. Levels, submissions counts, parse rates and compilation rates for the non-OOP exercises of the data set (1-7). The percentage behind the parse and
compilation metrics refer to the fraction of the total submission count (e.g., Total Compiled = 75% means that three quarters of all submissions compiled
successfully).
* = only counting non-empty submissions
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