
Web Scraping as a Data Source for Machine Learning Models and the
Importance of Preprocessing Web Scraped Data

MAXIM FRAŇO, University of Twente, The Netherlands

The general concept of machine learning (ML) cannot work without large

amounts of data. There are many methods of data gathering, ranging from

writing down data manually to using complex algorithms. This research

speci�cally focuses on web scraping as a method for data extraction, and its

e�ect on ML models. The approach in this research is split into two parts,

theoretical and practical. First, the connection between web scraping and

ML is observed through literature analysis. Later an experiment focused on

using non-preprocessed web scraped data in a dataset for training an ML

model is carried out using a tool made in Python. The results of the literature

review show that web-scraped data can be greatly varied, gathered through

a wide range of tools, and used in a large number of di�erent ML models,

while the experiment shows the importance of preprocessing web-scraped

data to achieve high performance in these models.

Additional Key Words and Phrases: Machine Learning, Web Scraping, Arti�-

cial Intelligence, Python, Sentiment Analysis

1 INTRODUCTION

Machine learning (ML) is more and more at the forefront of innova-

tions within the �eld of arti�cial intelligence (AI), for example, due

to the popular resurgence of large language models, such as Chat-

GPT1. To go more in-depth, ML is a �eld of study within the �eld of

AI that aims to create algorithms to emulate human intelligence by

learning from its environment [9]. Machine learning can be applied

in almost any �eld, as long as the work in that �eld generates data.

Finance, engineering, or more speci�c use cases such as pattern

recognition or computer vision are all use cases for ML [31, 37].

The previously mentioned environment that ML models learn from

is in this case the data the algorithm is provided. This data can be

"labeled" or "unlabeled", depending on whether the model utilizes

supervised or unsupervised learning, and can be in the form of text,

numbers, images, videos, etc [36]. The question is how this data can

be obtained. There are many possible approaches to obtaining data

for ML models, for example utilizing public databases or pre-made

datasets. However, if the data that one is looking for cannot be easily

found, other methods have to be employed to obtain such data. For

example, relevant scans from magnetic resonance imaging (MRI)

for a speci�c disease might be di�cult to �nd, so to train an ML

model, a su�cient number of MRI scans have to be made of both

healthy individuals and individuals su�ering from the disease that

the ML models want to predict [27].

In this research, the focus is on a method of data acquisition called

1ChatGPT is a natural language processing model that generates human-like responses
to user prompts [2]

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior speci�c permission and/or a fee.

web scraping. Web scraping or web crawling is a form of data extrac-

tion that utilizes querying public websites and extracting the HTML

(HyperText Markup Language) code of which these websites consist

[17]. Then, only necessary parts from this HTML code are extracted,

in a process called preprocessing, and lastly, the data is stored in a

proprietary system, such as Excel [10, 17]. The aim of this research

is to look into the use of web-scraped data in the �eld of ML through

the means of a literature review, in order to �nd common practices

and a deeper understanding of combining web-scraped data and ML

models. The �ndings from the literature review then supplement an

experiment that is carried out using a tool programmed in Python

which is used to get technical insight into the use of web-scraped

data for training ML models. Through the combination of both of

these approaches, conclusions are drawn to answer the research

question at hand.

2 PROBLEM STATEMENT

Currently, there are a number of papers that look at the concept

of web scraping as a whole, including its applications, or papers

solely focused on the applications of web scraping [17, 38]. A closely

related paper [39] already touches on some high-level aspects of

web-scraping as a data source for machine learning (ML) models in

the form of a review. However, there is a lack of papers that focus

speci�cally on the application of web scraping in the domain of

ML from both a theoretical and technical perspective. This paper

consequently aims to �ll this gap in research and examine the con-

nection between web-scraping and ML from both perspectives. To

�ll the gap, research papers that combine web scraping and ML as

a methodology to achieve research objectives are examined in the

way of an unsystematic literature review. This research outlines

di�erent �elds of application mentioned in the examined papers,

the type of data extracted, the software used, and the choice of ML

models. Consequently, after the results of the literature review, an

experiment is carried out that puts the combination of web scraping

and ML into practice to provide a technical perspective.

2.1 Research�estion

The main research question is as follows:

To what extent can web scraped data be used as a complete or comple-

mentary data source for machine learning models?

The following sub-questions have been derived to help answer the

main research question:

(1) How has the combination of web-scraping and ML been utilized

in a selection of other research papers?

(2) To what extent is the performance of ML models a�ected when

using non-preprocessed web-scraped data in a dataset used for

training an ML model?

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Maxim Fraňo

To answer the �rst sub-question we make use of a literature review

to explore di�erent applications of the combination of web scraping

and ML and focus on the extracted data, software, and ML models

in each paper. To answer the second sub-question we make use of

use of a web scraping tool to test how non-preprocessed data a�ects

the performance of ML models.

3 PRACTICAL CONTRIBUTION

The takeaway from this paper should be a deeper understanding of

how web-scraped data interacts with ML models. While a multitude

of papers provide a high-level description of either the applications

of web scraping or its technical aspects, to the author’s best knowl-

edge, none provide a more in-depth look into how the theoretical

information applies to practice. This research consequently allows

for the outlining of a more technical approach to the high-level

theoretical step-by-step process of using web-scraped data to train

an ML model. By applying a more technical approach, it is also

possible to outline the hurdles and examine the consequences of not

adhering to proper practice through the results of an experiment.

This paper should serve to some extent as a guideline for practition-

ers or researchers who are considering using web-scraped data as a

data source for ML models.

4 METHODOLOGY

For easier navigation, this paper is split into two parts. In the �rst

part, a literature review is carried out. In the second part, an ex-

periment is carried out, where a web scraping tool is developed

alongside a machine learning (ML) model. The methodology for the

experiment follows the CRISP-ML (Cross-Industry Standard Process

for Machine Learning) approach [18]. The CRISP-ML methodology

consists of seven stages: Project initiation and planning (1), data

exploration and cleansing (2), data predictive potential evaluation

(3), data enrichment (4), model building and evaluation (5), deriving

business insights (6), model deployment and reporting (7). From

this approach, only stages (1), (2), (3), and (5) are followed. Stage

(4) is omitted because it is concerned with identifying sources for

improving the quality of the data, which is not the concern of this

experiment. Stages (6) and (7) are excluded because the experiment

does not provide business insight and the ML model is not deployed

for practical use.

The conclusions from both of these parts are combined to form a

discussion where the research question can be answered. In the

following subsections, a more elaborate explanation of both of the

structural parts can be found.

4.1 Part 1: Literature Review

In the literature review part, �ve papers are chosen as a representa-

tive sample. This number of papers is chosen primarily due to the

scope of this research. Each of these papers should be concerned

with di�erent application areas, such as medicine or �nance, how-

ever, the methodology that was used to carry out the research in

these papers should remain the same. More speci�cally, the method-

ology in these papers should include the combination of the use

of web-scraped data for training ML models. Using these papers,

information regarding which software or other tools were used for

web scraping, which ML models were utilized, and how the combi-

nation of web scraping and ML bene�ted the research carried out

within the individual papers is extracted. To search for the papers,

the database Web of Science is to be utilized, with the search terms

"web scraping" and "machine learning". Papers with higher citation

counts are prioritized.

4.2 Part 2: Web scraping tool and Dataset used

The web scraping tool should provide a deeper insight into the

technical side of the combination of web scraping and ML. In the

experiment carried out using this tool, both preprocessed and non-

preprocessed web-scraped data are used in a dataset for training an

MLmodel. Preprocessed data can be imagined as data that is ready to

be analyzed either by a human or a computer [10]. Non-preprocessed

data on the other hand contains problems that could interfere with

an analysis such as gaps in data or incorrect format [10]. In practice,

ML models are trained on a dataset that is split into two parts, the

�rst being called the training data, and the second testing data [42].

The testing data is always part of the original dataset, given that the

ML model should be tested on similar, yet unfamiliar data. In the

experiment to be carried out, both the training and testing portion

of the original dataset are replaced, both partially and completely, by

non-preprocessed web-scraped data, which does not bear complete

similarity to the original preprocessed dataset. Through this, it is

intended to �nd the e�ect of introducing web-scraped data into the

dataset, primarily on the accuracy of the model. The tool consists

of two parts. A web scraping and data cleaning tool that is used

to gather data from the web for the ML model, and the ML model

itself. The ML algorithm that is used belongs to the category of

"classi�ers", which are part of the "supervised learning" category

of algorithms. The Python library that facilitates the model is Sci-

Kit Learn. The dataset used for the ML model is concerned with

sentiment analysis of articles about sustainability and sustainable

practices. This means that the ML model tries to classify whether

the article written about this topic falls into two categories, i.e. a

positive stance toward sustainability, or a negative. The main idea of

the dataset is to contain as sanitized data as possible, so when non-

preprocessedweb-scraped data is introduced, the di�erence between

using preprocessed data and non-preprocessed web-scraped data

can be observed.

5 RELATED WORK AND ADDITIONAL KNOWLEDGE

As mentioned in Section 2, there are multiple articles concerned

with applications of web scraping. In [17], alongside methods of

web scraping using di�erent libraries, the authors also outline appli-

cations of web scraping in �elds such as cybersecurity, data science,

business intelligence, and more. Another article [38] similarly to the

previous article outlines some common practices when it comes to

web scraping however, it also goes more in-depth into the technical

aspects of the practice. The article also lists yet more applications,

such as for research or marketing. As mentioned in Section 2, these

articles were deemed insu�cient when it comes to outlining both

theoretical and technical details of the use of web-scraped data in

the �eld of ML, however, they are still invaluable in getting insight

2



Web Scraping as a Data Source for Machine Learning Models and the Importance of Preprocessing Web Scraped Data TScIT 41, July 5, 2024, Enschede, The Netherlands

into applications of web scraping in general as well as some tech-

nical properties of it. The article [39] provides comparatively the

most relevant information on the combination of web scraping and

machine learning for this research, however, it does not go into

technical details of the practice. To guide the search for literature

and the literature review itself, [20] is used as a guideline. Similar

to the guidelines on literature review, for the part of the research

in which the web scraping tool is developed, technical literature

about both web scraping and ML needs to be utilized. Starting with

web scraping, for the choice of web scraping software and approach,

alongside all examined articles in the literature review part, the

article [17] is used. Consequently, for further guidance with the

chosen software, in this case, Python, [29] is used. For applying ML

techniques and creating an ML model, a more general literature is

chosen [42] and [41], as well as a more speci�c one about Sci-Kit

Learn [32], which is the library that is used in the web scraping tool.

6 FINDINGS

This section encompasses the �ndings from both parts outlined in

Section 4. The steps taken in each part are explained in more detail

as well as the �ndings per each part. Lastly, a discussion follows to

relate the output from both parts.

6.1 Literature Review

As mentioned in subsection 4.1, �ve papers were chosen as a repre-

sentative sample. These papers are a representative sample because

they to a su�cient degree explain how both web scraping and ma-

chine learning (ML) were utilized in the research carried out by the

authors of the papers. When the desired number of articles was

reached, no other articles beyond that point for this search query

were examined. The following are short descriptions of each article

(summary in Table 1). [8] is concerned with skills required for Big

Data professions. These skills are extracted from online job postings

and classi�ed using ML. [3] focuses on fake review detection on

the website Yelp and the authors utilize Python and multiple di�er-

ent ML algorithms. [25] looks into identifying illicit drug trade on

the social media platform Instagram with the help of web scraping

and four supervised ML algorithms. [28] introduces a tool called

SEOpinion that uses web scraping and deep learning to summarize

aspects of products in e-commerce stores and identify opinions

about them from customer reviews. Lastly, [13] concerns evaluating

di�erent ML techniques and their suitability for detecting Ponzi

schemes within Ethereum smart contracts. For context, a Ponzi

scheme in the world of smart contracts works the same as it would

with other investments, i.e. early investors are paid with the money

of new investors, or in this case using the cryptocurrency Ethereum

[5]. The following subsections will �rst examine the di�erent use

cases, the software and libraries used, and the ML models used for

the combination of web scraping and ML, per article. The informa-

tion gathered in each of these subsections will be later used in the

discussion to answer the �rst research sub-question.

6.1.1 Web Scrapped Data. From the analyzed articles, as well as

from the principle of web scraping itself [17], we know that web

scraping is used to gather data from publicly available websites. The

examined articles show that the data that can be gathered is varied

Table 1. Summary of examined research papers during literature review

Reference Description

[8] Skills for Big Data professions

[3] Fake review detection on Yelp

[25] Identi�cation of illicit drug dealers on

Instagram

[28] Framework for summarizing aspects of

products in e-commerce

[13] Detection of Ponzi schemes in smart con-

tracts

in theme as well as type. The theme, in this case, would refer to

the area of concern of the data, such as reviews from e-commerce

websites [3, 28], or required skills for job positions from online job

posting websites [8]. When it comes to the type of data, all examined

articles scrape textual information, or in other words plain text in a

string format. However, web scraping also allows for the scraping of

images, forms, or tables [29]. Web-scrapped data, however, also has

its limitations. While publicly accessible websites on the web can be

web scraped, some websites or organizations prohibit the extraction

of data through their "Terms and Conditions" [22]. These conditions

should always be adhered to when extracting data. This means that

some data, for example, the scraping of academic articles, might not

always be possible to extract.

6.1.2 So�ware and Libraries for Web Scraping. In this subsection,

the software or programming languages and their libraries will be

examined. Firstly, from the articles, we can see that Python was the

most popular solution used by the authors [3, 13, 25, 28], while the

authors of article [8] used Portia, a web-based solution. Python is

a well-known language and is widely utilized for purposes of ML,

primarily due to its simplicity [33]. However, other solutions, such

as Portia, o�er easier access to web scraping, potentially without

the users being required to have any programming knowledge [16].

However, upon closer inspection, it is possible to �nd that the so-

lution Portia provides has been programmed using Python using

a popular library called Scrapy. This means that currently there

are solutions on the market that o�er easy-to-use interfaces and

abstract what would normally need to be programmed manually,

such as Portia, however, these solutions are still often based on

Python [38]. Python is, however, not the only language that can

be used for web scraping, and other notable languages include for

example Java [38].

Given that Python was the most popular programming language

used in the examined articles, it is also necessary to look at the li-

braries that the authors utilized. Out of the four papers that utilized

Python, two papers used Scrapy [3, 28], one paper used Beautiful

Soup [13], and paper [25] does not specify which library was used.

Given that Scrapy and Beautiful Soup are among the most popular

libraries [16], it is important to mention that these libraries are fun-

damentally di�erent. Scrapy, being a full web scraping framework

library, contains most tools a user needs to scrape without installing

other libraries or packages [19]. On one hand, This means that

Scrapy is focused more on large-scale web scraping, however, some

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Maxim Fraňo

downsides include slower execution compared to other libraries as

well as functions a user might never utilize [19]. On the other hand,

Beautiful Soup is only an HTML or XML (eXtensible Markup Lan-

guage) parser, which means that other libraries are required to allow

for other necessary steps such as retrieving websites, for example,

the Requests library [17]. This means that the choice between these

two libraries depends on the use case, as well as the pro�ciency of a

person’s programming knowledge. Similarly, other libraries follow

the same path, whereas they are either a full-scale solution, with

another example being Selenium, or a library more specialized for

facilitating only certain parts of the web scraping process, such as

Urllib3 which is an alternative to the Requests library or Lxml, an

alternative to Beautiful Soup [4].

6.1.3 Use of Machine Learning Models. The use of ML models in

the analyzed articles varies greatly. Firstly, given that some articles

used deep learning [25, 28], which is a subset of ML, we need to

di�erentiate between these two concepts. ML as we currently know

it comprises many di�erent algorithms, some simple and some more

complex, which fall into certain categories, such as supervised, semi-

supervised, or unsupervised, depending on how data is provided

to the algorithm [36]. Deep learning is a relatively new trend and

tries to go a step further and emulate how the human brain learns

using a model called Arti�cial Neural Network (ANN). In short, the

main di�erence between these concepts is that deep learning is just

a small subset of models out of the relatively large collection of ML

models, however, it has become exceedingly more relevant in recent

times. [24, 37, 41, 42]

Table 2 summarizes which models were used per examined paper

as well as lists which model performed the best. The following is

a more in-depth description of each model used. In [13], three al-

gorithms were used, namely Decision Tree (DT), Support Vector

Machine (SVM), and Multinomial Naive Bayes (MNB). A Decision

Tree is based on deciding an outcome on the basis of a tree structure,

for example, several yes or no questions are posed, and based on the

answers to these questions, the algorithm ends at a di�erent root of

the tree, which in other words is the outcome [42]. An SVM tries

to �nd the best boundary between di�erent classes in data. This

can be imagined as a linear line on a graph that separates points of

class A and class B (if the classi�cation is binary, otherwise more

classes are possible)[42]. The Multinomial Naive Bayes algorithm

utilizes the frequency of features, for example, words in a text, to

make classi�cations based on learned probabilities [42]. [28] utilized

SVM and Deep Learning (DL) using Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN), both of which are

explained in more detail in [24]. [25] used a Decision Tree (DT), Ran-

dom Forest (RF), SVM, and a custom deep learning model (DL). The

Random Forest algorithm combines the output of multiple Decision

Tree algorithms which are trained on randomly sampled subsets of

the original training data [41]. In [3] Logistic Regression (LR), Deci-

sion Tree (DT), Random Forest (RF), Gaussian Naive Bayes (GNB),

and AdaBoost (AB) were utilized. Logistic Regression is used for

binary classi�cation problems and uses a sigmoid function which

is a function that maps a number in the range between 0 and 1. It

is possible to also set a decision boundary, for example, 0.5, where

anything above 0.5 is classi�ed as positive and vice-versa. Gauss-

ian Naive Bayes di�ers from Multinomial Naive Bayes only by the

use of a Gaussian distribution instead of a multinomial distribution

[42]. A Gaussian distribution uses continuous features rather than

discrete as used in multinomial distribution. AdaBoost (Adaptive

Boosting) is an ensemble learning algorithm that creates multiple

weak learners to create a strong learner. This means that a strong

classi�er is created on the basis of the results of a number of weak

classi�ers, such as decision trees with only one level [11]. [8] used

Latent Dirichlet Allocation (LDA) which works on the basis of a

"bag-of-words" where the words are then allocated to a topic, which

is a concept represented by a series of related words [42].

In a number of articles, the article authors utilized multiple algo-

rithms to create machine-learning models. This is a common prac-

tice, called the "Ensemble Method", which trains multiple learners

to solve the same problem [41]. For instance, the random forest

algorithm is a good example of an ensemble method, given that

it combines the output of multiple decision tree algorithms. The

authors of the examined articles also used primarily supervised

models since the data the authors worked with had clear labels.

Next, it is important to observe which metrics the authors used to

measure the e�ectiveness of their models. In [13], the most common

metrics associated with ML were used, namely accuracy, precision,

recall, and F-Score. In the case of [13], these metrics were above

95% in most cases, which should be the aim when training an ML

model. However, it is important to mention, that when it comes to

recall and precision, in all but simple problems, these metrics are

contradictory, as in that if one is high the other one should be low

[42]. Similarly, [25] scored high on both precision and recall metrics

of all models, with the custom-made deep learning model scoring

the highest. The reasons for high precision and recall at the same

time can be many, however, in the case of [13] and [25] they are

most likely caused by a selection of complex models, such as the

deep learning model in [25], alongside a thoroughly preprocessed

dataset. [8] utilized LDA for clustering instead of classi�cation and

provided no relevant metrics. Next, F-Score is a metric that also in-

dicates whether more importance is placed upon recall or precision

[42]. Given that recall and precision in the articles [13] and [25]

were similar, it made sense to use the Fÿ-Score where ÿ is equal

to 1, which indicates that recall and precision have the same level

of importance [42]. Lastly, a confusion matrix is a useful tool to

visualize how each label (in the case of this research positive or

negative) is classi�ed or misclassi�ed as the other label [36] which

was for example utilized in [28].

6.2 Web Scraping Experiment

Subsection 4.2 outlined the high-level approach for the experiment

in this paper. In this subsection, the approach is outlined in more

detail. This includes how the experiment is carried out, how the

dataset is constructed, how the web scraping process works, which

models are used and their development, and lastly the results of

the experiment. The purpose of this experiment is to examine how

non-preprocessed web-scraped data a�ects ML models in terms

of performance metrics. Consequently, three di�erent models are

4



Web Scraping as a Data Source for Machine Learning Models and the Importance of Preprocessing Web Scraped Data TScIT 41, July 5, 2024, Enschede, The Netherlands

Table 2. Summary of used ML models per article and which model achieved
the highest accuracy ([8] does not provide metrics, [3]) uses F-score instead
of accuracy

Reference Models Highest Accuracy(%) +

Model

[8] LDA Not Applicable

[3] LR, DT, RF, GNB, AB 82% - RF, AB (Used F-Score

Instead)

[25] DT, RF, SVM, DL 99% - DL

[28] SVM, DL 83% - DL

[13] DT, SVM, MNB 99% - MNB & SVM

trained to examine the e�ect of non-preprocessed data on the per-

formance metrics of each model. Lastly, a comparison is drawn

between the three di�erent models and similarly to Subsection 6.1,

the �ndings from this part, primarily from Subsection 6.2.4, are used

in a discussion at the end of Section 6 to answer the second research

sub-question.

6.2.1 Approach. To facilitate the experiment, several steps need to

be taken. Firstly, data needs to be collected out of which a dataset

can be created. This data is collected using an API (Application Pro-

gramming Interface), which provides a quick way of gathering news

articles in a JavaScript Object Notation (JSON) format. The use of an

API is still considered web scraping in the context of this research.

Then, this data needs to be preprocessed. This means that the text

needs to be cleaned from any special characters and potential stop

words, tokenized, which means split into phrases or words, normal-

ized, such as all words being lowercased, and lastly labeled, which in

our case would be the stance of the article on sustainable practices

(i.e. positive or negative) [10]. For labeling, the TextBlob library is

used, which uses an already pre-trained algorithm for sentiment

analysis [26]. The ML model is developed using the Scikit-learn

Python library and utilizes the Naive Bayes classi�er which is an

appropriate choice of algorithm for text classi�cation [42]. When

the ML model is prepared, training and testing take place, where

the split between training and testing data is 70% training and 30%

testing [42]. To put this into perspective, Fig 1 shows a framework

that outlines all the required steps in this experiment.

When it comes to the experiment itself, �rst, a model is trained

only using preprocessed data in the dataset, called the preprocessed

model. After the preprocessed model, a mixed model is created,

where the dataset consists of half non-preprocessed data and half

preprocessed data. Non-preprocessed data in the context of this

research means data in a raw HTML format, which is textual in-

formation that includes everything present on the website, such as

advertisements, image text, headers and footers, navigation menus,

and HTML tags such as <div> which de�nes a section within an

HTML document [21]. Lastly, a non-preprocessed model is trained

and tested, which includes only non-preprocessed data. The pur-

pose of each of the models is to classify whether an article can

be considered positive or negative, and consequently, the aim is

to track how each model performed at this task. For each of the

three models, performance metrics are recorded, including accuracy,

recall, precision, and F1-score. A confusion matrix is also provided.

For the experiment, Python version 3.12 is used. The IDE (Inte-

grated Development Environment), an environment that provides

developers with the tools required for programming, is PyCharm by

JetBrains [23]. The libraries that are used to facilitate the solution

are: "requests" used for accessing websites through Python. "json"

allows the reading and writing of JSON �les. "re" or regular expres-

sions, used for text cleaning using patterns. "nltk" for its stop words

package, which already includes prede�ned English stop words.

"TextBlob" to assign sentiment to an article. "pandas" can convert

JSON data into DataFrame objects which are used for the training of

the ML model. "sklearn" facilitates the necessary tools to train the

MLmodel as well as provides performancemetrics and the values for

the confusion matrix. "matplotlib" provides a visual representation

for the confusion matrix based on values from sklearn.

6.2.2 Web Scraping and Dataset. The initial API used for creating

a dataset of articles works on the basis of inputting a theme, which

in this case would be "sustainability" or "sustainable practices", the

language of the articles, in this case, English, and lastly the polarity

of the articles, either positive, negative, or neutral. After inputting

all parameters, a Python code is generated, which can be input into

a Python �le. The dataset size for this experiment is 2000 samples,

with 1000 positive and 1000 negative articles. The choice of this

sample size was inspired by the use of two datasets with the same

sample size to also train a Naive Bayes model in chapter three of

[1], as well as by other papers [14, 15].

As already mentioned, the API itself allows picking whether re-

trieved articles should be positive or negative. This was initially

considered to be used instead of the TextBlob library for sentiment

labeling, however, after manual inspection and processing of 1000

negative samples (as labeled by the API) through TextBlob which

deemed only 30% to be actually negative, it was decided that this

feature of the API would not be used and instead, TextBlob would

relabel each article.

The output from the API was already in a sanitized form in a JSON

format, which means that, unlike regular web scraping, there were

no HTML elements to remove. The API provided large amounts

of metadata about each article, however for the purpose of this

experiment, only the title, body, and link to the article are relevant.

The title primarily served as an identi�er for articles. The body

of the article was the main input for training the ML model. The

body of an article consists in this case of an excerpt of the whole

article with a length of around two short paragraphs. Lastly, the

link to the article has been used to retrieve the article again, yet

this time manually using the Requests library. This second retrieval

was necessary to retrieve the same article in a non-preprocessed

form, given that the API already does most of the preprocessing.

This means that for both the positive and the negative labels, there

are 1000 preprocessed and 1000 non-preprocessed articles, which

are saved in four di�erent JSON �les. Examples of preprocessed and

non-preprocessed article lines can be found in Figures 3 and 4 respec-

tively. Lastly, it is important to mention the hurdles encountered

during the web-scraping process. Web scraping works on the same

principle as when a person accesses a website through their browser

[38], which means that web scraping software can encounter the

same problems. A common problem is a 404 error, which means

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Maxim Fraňo

Fig. 1. The framework includes a high-level overview of the steps of the experiment, starting with data gathering, data preprocessing, model training and
testing, and interpretation of the results. First articles are gathered through an API. 2000 of these articles are preprocessed and labeled as either positive or
negative. The API also provides links to these articles, which are then accessed by the web scraping tool, and 2000 of the same articles are retrieved in a
non-preprocessed form and only labeled either positive or negative. Then three experiments are carried out with preprocessed and non-preprocessed data
taking up either a full or partial portion of the dataset used to train and test the model at hand. Lastly, the results are recorded in the form of metrics (accuracy,
recall, precision, F1-score) and a confusion matrix.

Attendees can learn about sustainable living from central

Minnesota businesses and organizations

Fig. 2. Original line from an article. It is missing some preprocessing steps,
such as the removal of capitalization and stop words

attendees learn sustainable living central minnesota

businesses organizations

Fig. 3. Article line as seen in Fig 2 in a preprocessed form. Contains no
capitalization, special characters, or stop words

<p class="paragraph">Attendees can learn about sustainable

living from central Minnesota businesses and

organizations<p>

Fig. 4. Web scraped version of the article line as seen in Fig 2. Apart from
the features of the original, it also includes HTML tags. In this case, the <p>
HTML tag signifies the start of a paragraph

that the website for the given URL (Uniform Resource Locator) does

not exist [7]. This error occurred during the experiment, given that

the API retrieved articles up to 90 days from the past, which means

that in the meantime, the article could have gotten deleted. Another

common error is a 403 error, which most of the time does not happen

to a regular user, however, a web scraping software might experi-

ence this given that a website might �ag its connection attempt as

automated, denying it access [7, 29]. A possible way to avoid 403

errors is the inclusion of proper headers in an HTTP (HyperText

Transfer Protocol) request, where headers are metadata that con-

tains more information about the sender of the request, making

the request seem more human [7]. Next, if websites from di�erent

countries are scraped, which happened during this experiment with

some websites being hosted in for example Asia, a 451 error may

occur, which states that the access has been denied due to legal

reasons [35]. It is important to mention that during web scraping,

the IP (Internet Protocol) address of the person running the web

scraping software is used by default [16]. Through an IP address,

it is possible to obtain the geographical location of a person, or at

minimum its internet provider [30]. This means that if a website in

Asia uses geoblocking for European countries, which is a practice

of limiting access based on geographical location, and is accessed

through a European IP address, the access will be denied [40]. A

solution to this is the use of a VPN (Virtual Private Network) to

route the connection through a server located in a di�erent country,

e�ectively changing the IP address of the user [35]. Lastly, a very

common error is a 429 error, where the server hosting the website

has received too many requests from the same source, e�ectively

blocking access for some period of time [34].

6.2.3 Model development. The Naive Bayes algorithm is chosen as

a basis for the model in this experiment. This algorithm works on

the principle of independence between variables [36, 42]. In the case

of this experiment, where text classi�cation is the main concern,

the variables are words. However, according to [36], complete word

independence is rarely the case, with an example being the phrase

"�rst quarter" which has more occurrences in business articles than

multiplying the probabilities of words "�rst" and "quarter" would

suggest.

The Naive Bayes algorithm works on the basis of the Bayes The-

orem. This theorem is useful for computing the probability of an

event based on probabilities of events related to it. For example,

in text classi�cation, it is known that articles about sports include

words such as "football", however, what is the probability of an

article containing the word "football" to be actually about sports? In

mathematical terms, this would mean deriving P(topic|words) using

6



Web Scraping as a Data Source for Machine Learning Models and the Importance of Preprocessing Web Scraped Data TScIT 41, July 5, 2024, Enschede, The Netherlands

P(words|topic), where P is a conditional probability. In simpler terms,

�rst, what is the probability of an article being of a certain topic

given the observed words, and second what is the probability of

certain words being observed given the topic. [36, 42]

The Bayes Theorem formula computes the conditional probability

of class y given the feature vector X (P(y|X)) by multiplying the

conditional probability of feature vector X given class y (P(X|y)) by

the probability of occurrence of class y (P(y)) and dividing by the

marginal likelihood of feature vector X (P(X)) [36, 42]. Returning

to the example of text classi�cation of articles about sports, the for-

mula would be as follows. To calculate the probability of an article

being about sports based on a set of words, we need to multiply

the probability of a set of words belonging to the topic of sports

by the probability of the topic of sports occurring and divide by

the probability of the set of words (Fig 5). It is also important to

mention that the Bayes Theorem can be adjusted to di�erent types

of attributes, such as nominal (as used in this experiment), discrete,

or continuous [42].

Č (ĩĦĥĨĪĩ | ”Ĝ ĥĥĪĘėĢĢ”) =
Č (”Ĝ ĥĥĪĘėĢĢ” | ĩĦĥĨĪĩ) · Č (ĩĦĥĨĪĩ)

Č (”Ĝ ĥĥĪĘėĢĢ”)
(1)

Fig. 5. The Bayes Theorem adjusted to the sports example

Several steps had to be taken in the Python implementation of

the Naive Bayes algorithm. First, JSON data is normalized into

a DataFrame object. Then, the "test_train_split" function is used,

where the body of the articles and the label (after normalization

either 0 for negative and 1 for positive) are the input arrays, and the

parameter "test_size" is set to 0.3 so the test subset would be 30%

of the dataset. Lastly the parameter "random_state" is set to 1, this

parameter randomizes data distribution before data is split between

training and testing, and the use of an arbitrary integer ensures

that the results are always the same, in other words, the results are

reproducible. Next, both the training and testing datasets are vector-

ized [32]. Vectorization means converting text data into numerical

features. The vectorization method used is TF-IDF (Term Frequency

- Inverse Document Frequency) which evaluates the importance of

words by giving words with higher importance a higher weight and

a lower weight to common words [6]. Next, a Multinomial Naive

Bayes classi�er is initialized and trained using the vectorized train-

ing data and its accompanying labels, by calling the "�t" method.

Lastly, predictions are made by calling the "predict" function and

inputting the vectorized testing data. These predictions are stored

in a variable, which can be used to print the metrics, such as the

accuracy of these predictions, as well as the confusion matrices.

6.2.4 Results. After all three models (preprocessed, mixed, and

non-preprocessed) are trained and tested, it is possible to observe

the resulting metrics and the confusion matrices. Metrics from all

models can be found in Table 3. From the metrics of the prepro-

cessed model (Table 3) and the associated confusion matrix (Fig 6),

it is possible to observe that the model did well at classifying the

articles into negative and positive classes, with an accuracy of 89%.

[15] and [14] are a good reference point given a similar use of the

Naive Bayes algorithm for sentiment analysis of posts on the social

Table 3. Metrics of the preprocessed, mixed, and non-preprocessed model
with random_state = 1. The accuracy of a model is approximated by taking
the average of the F1-score of the positive and the negative label

Precision Recall F1-Score Support

Preprocessed

Negative 0.98 0.79 0.87 301

Positive 0.82 0.99 0.90 299

Accuracy 0.89 600

Mixed

Negative 0.85 0.69 0.76 301

Positive 0.74 0.88 0.80 299

Accuracy 0.78 600

Non-

Preprocessed

Negative 0.72 0.72 0.72 301

Positive 0.72 0.72 0.72 299

Accuracy 0.72 600

Fig. 6. Confusion matrix of the preprocessed model (random_state = 1)

media site X (formerly Twitter) and product reviews respectively.

The Naive Bayes model in the case of [15] achieved an accuracy of

around 85%, while [14] averaged an accuracy of roughly 92%. Even

though it might seem that the model in this experiment performs

better than in [15] and worse than in [14], this is not entirely the

case. In Table 3, the "Support" column represents howmany samples

from each category have been used for testing. In this case, out of

the total 600 samples provided for testing, 301 of themwere negative

and 299 positive. This distribution is caused by the "random_state"

parameter in the Python implementation. The results in Table 3 are

the outcome of setting "random_state" to the value of 1. If the value

is changed to 4, the distribution becomes 310 negative and 290 posi-

tive samples, which yields an accuracy of 92% for the preprocessed

model. On the opposite side of the spectrum, setting the value of

"random_state" to 2 yields an accuracy of 86% for the preprocessed

model with a distribution of 318 negative and 282 positive samples.

It is then possible to conclude, that depending on the distribution

of the data, the variance of this model can be +/-3%. Consequently,

using papers [15] and [14] as a reference we can conclude that the

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Maxim Fraňo

accuracy of the preprocessed model including its possible deviations

�ts within the spectrum of possible results of using the Naive Bayes

algorithm for sentiment analysis.

The confusion matrix (Fig 6) shows two axes. The X-axis is the

predicted label, which is a label the model thinks the article is. The

Y-axis is the true label, which is the actual label of the article. From

this matrix, it is possible to see that the misclassi�cation of positive

articles as negative (bottom left of Fig 6) is a rare occurrence. The

recall of the positive label of 99% and the precision of the negative

label of 98% also con�rm this. Consequently, most misclassi�cations

happened with negative articles being classi�ed as positive (top

right of Fig 6). Even though the number of positive and negative

samples was equivalent, the dataset was still imbalanced. This can

be for example caused by positive words being more common than

negative, however, there are other possibilities that are not discussed

in this research due to them not being the area of concern. For fur-

ther research, [12] outlines some of these possibilities.

The mixed model, as outlined in Section 6.2.1, contains 1000 pre-

processed and 1000 non-preprocessed samples (500 positive and

500 negative articles per each). Table 3 and Fig 7 show the results

of this model. As can be observed from the metrics in Table 3, the

Fig. 7. Confusion matrix of the mixed model (random_state = 1)

accuracy decreased drastically by more than 10% compared to the

preprocessed model. This shows that introducing web-scraped data

into a dataset of preprocessed data has a negative impact on the

performance of the model. From the confusion matrix (Fig 7), it

is also possible to observe that the number of misclassi�cations

both in false negatives and false positives rose by approximately the

same amount, in this case, 30 samples. Another interesting obser-

vation is when the "random_state" variable is set to 2. This, in the

preprocessed model, caused a drop in accuracy of approximately 3%.

In the mixed model, the value of "random_state" of 2 again causes

the distribution of the samples in the testing subset to be 318 nega-

tive and 282 positive, which compared to the preprocessed model

has a signi�cantly larger impact, lowering the accuracy to 70%. A

confusion matrix for this case (Fig 8) has also been provided and

shows that the inclusion of more negative samples than positive

ones almost completely removes the model’s ability to distinguish

whether a negative article is positive or negative. Lastly, the non-

Fig. 8. Confusion matrix of the mixed model (random_state = 2)

preprocessed model is examined using the metrics in Table 3 and

Fig 9. This model includes 1000 non-preprocessed positive and 1000

non-preprocessed negative articles. It is possible to observe from

Fig. 9. Confusion matrix of the non-preprocessed model (random_state = 1)

Table 3 that the accuracy is 72% which is lower than both the pre-

processed and mixed model. An interesting observation, however, is

that the amount of false negatives and false positives is equivalent,

at roughly 85. Given that in the preprocessed model, the number of

false positives was overwhelmingly higher than false negatives, it

is possible to conclude that apart from low accuracy, the model also

cannot re�ect imbalances correctly. An assumption can be made

that this is caused primarily by raw HTML data sharing similarities,

such as each HTML document starting with <!DOCTYPE HTML>

tag, however, a further investigation is outside of the scope of this

research.

6.3 Discussion

The objective of this research has been to investigate the use of web-

scraped data in the domain of ML models. This has been achieved

to a satisfactory degree, both through the �ndings in the literature

review part, as well as through the experiment. In the literature

8



Web Scraping as a Data Source for Machine Learning Models and the Importance of Preprocessing Web Scraped Data TScIT 41, July 5, 2024, Enschede, The Netherlands

review, it was possible to �nd that web-scraped data can be used

for many di�erent use cases, with the only limitation being the

presence of the data on the web in a su�cient amount and quality,

as well as the content not being restricted either by law or terms and

conditions or, as observed in the experiment, through geoblocking

as discussed in Subsection 6.2.2. The data that can be extracted can

also be varied, even though mostly textual, the context behind it

often varies, and because of this, di�erent forms of preprocessing

could also be necessary. For instance, using [13] and [25] as an ex-

ample, [13] extracted among other things the source code of smart

Ethereum contracts, while [25] extracted hashtags from Instagram

captions. While both of these, the source code and the hashtags, are

textual information, they had to be preprocessed in a di�erent way,

for example, [13] mentioned replacing logic operators such as "="

with the word "equals", while [25] mentioned that simply removing

the hashtag (#) symbol increased the performance of the model. To

facilitate web-scraping, it has been found in the literature review

that Python is a popular choice, however, it is certainly not the only

choice, and the choice of software available for the purposes of web-

scraping is varied and catered to both more and less technologically

skilled users. The literature review also shows the variety of mod-

els that can be used alongside web-scraped data. It is important to

acknowledge however that the choice of ML models is not directly

linked to web-scraped data. Given that web-scraped data in most

cases provides textual data, it is not di�erent from retrieving textual

data through other ways such as surveys or interview transcripts.

This means that the choice of ML models depends signi�cantly on

the format of the data, though the source of the data can also in-

�uence the model selection and preprocessing requirements. This

collection of information answers the �rst research sub-question

(1).

The experiment provided a more technical and concrete perspective

on the use of web-scraped data for training ML models. It helped

outline the step-by-step process of training an ML model using web-

scraped data, the tools necessary, and an example implementation in

Python. Primarily, however, the experiment brought to attention the

importance of preprocessing web-scraped data. As could have been

observed, the accuracy of the model decreased with the introduc-

tion of non-preprocessed web-scraped data. This could have been

observed best from the results of the mixed model, which delivered

results consistent with the imbalance of the original dataset. The

non-preprocessed model delivered the worst results that were both

inaccurate as well as did not re�ect the imbalance of the original

dataset. Thus, to answer the second research sub-question (2), the

introduction of non-preprocessed web-scraped data into a dataset

used for training an ML model has a negative impact on the perfor-

mance of the model.

To answer the research question at hand, we combine the knowledge

gained from both parts of the research. From the literature review

part, it was possible to observe that the authors successfully utilized

web-scraped data as a complete data source for training their respec-

tive ML models. The authors did not outline whether there have

been issues with web-scraped data, however, each article outlined

some necessary preprocessing steps to achieve desired results. Thus,

it is possible to conclude from the literature review that web-scraped

data can be used as a data source for training ML models, and in

some application cases such as user reviews on e-commerce web-

sites, web scraping might be a requirement [3, 28], however, the

literature also indicates that a more important aspect is how the

data is handled after web scraping. The experiment utilized solely

web-scraped data, both preprocessed and non-preprocessed, and

it showed not only that web-scraped data is adequate for training

an ML model but also exacerbated the importance of data prepro-

cessing when it comes to web-scraped data. From these �ndings,

the answer to the research question is that web-scraped data can be

used as a complete or complementary source of data for training

ML models, however, web-scraping-speci�c data preprocessing is

required to achieve high performance in these models.

7 CONCLUSION

In conclusion, this paper provides a deeper look into the use of

web-scraped data to train ML models. The paper outlines that web-

scraped data is a su�cient data source for ML models, provided that

the data is preprocessed properly. Through a literature review, web

scraping is found to be able to extract data from the web that is

rich in variety, using many di�erent tools such as Python, and be

used to train a wide range of models, whether the data is textual

or visual. More importantly, through an experiment carried out in

this research, the necessity for proper preprocessing of web-scraped

data has been identi�ed. This necessity is also supported by the

examined articles in the literature review, where the authors carried

out some form of preprocessing before the data was ready to be

used for training. Overall, web scraping, as well as web-scraped

data, bring unique challenges into the world of data gathering and

training of ML models, however, a deeper understanding of this

combination can enhance one’s ability to rapidly gather quality data

from the web.

7.1 Limitations and Future Research

Due to the scope, both parts of this research experienced some limi-

tations. In the literature review, the number of articles examined is

low compared to traditional literature reviews. Currently, the liter-

ature review serves more as a brief look into the practice of using

web-scraped data as a source for ML models. Future research into

this topic, if a literature review is to be part of it, should examine

a larger number of articles to add more information to the main

points of the literature review carried out in this research, namely

the type of data, use of web-scraping software, and use of ML mod-

els. Alternatively, a more bene�cial addition to this topic would be

examining the approaches to preprocessing data in a larger number

of papers with a focus on di�erent �elds. It has already been men-

tioned that data had to be preprocessed in its own unique way in

each paper examined in this research. What further research in this

direction could yield is a systematic overview of how web-scraped

data needs to be preprocessed per its source of origin, i.e. online

reviews, comments on videos, news articles, images from social

media posts, etc.

When it comes to the limitations of the experiment, a clear lim-

itation is the use of only one ML algorithm. As discussed in the

literature review, practitioners often use the ensemble method to

combine output from di�erent ML algorithms. This has not been

9



TScIT 41, July 5, 2024, Enschede, The Netherlands Maxim Fraňo

utilized in this research. For further research, a solution would be to

examine other papers conducting sentiment analysis using ML for

inspiration regarding other suitable ML algorithms, such as in [15]

where a decision tree algorithm has been used or [14] where SVM

was utilized. The e�ect of introducing non-preprocessed data on the

speed of training and testing the model has also not been recorded

in this research. Recording the speed could serve as another metric

to compare the e�ect of non-preprocessed and preprocessed data.

Lastly, this research should inspire further research into prepro-

cessing techniques for web-scraped data. The experiment in this

research showed the impact of non-preprocessed web-scraped data

on the performance of ML models as being negative, and the articles

examined in this research also showed unique ways of preprocess-

ing web-scraped data depending on the source. This means that the

area of preprocessing web-scraped data could be a potential topic

for further examination, and could also serve a practical purpose for

practitioners looking to utilize web-scraped data. This examination

could include running experiments where individual steps of pre-

processing web-scraped data are applied to observe their individual

impact on the performance of di�erent ML models and track which

preprocessing steps carry the largest e�ect on the performance.

8 APPENDIX

8.1 AI Notice

During the preparation of this work, the author used:

- Grammarly in order to �x spelling mistakes and sentence formation

- ChatGPT to fact-check simpli�ed explanations of complex topics

written by the author

After using this tool/service, the author reviewed and edited the content

as needed and takes full responsibility for the content of the work.

REFERENCES
[1] Basant Agarwal and Namita Mittal. 2016. Prominent Feature Extraction for

Sentiment Analysis. Prominent Feature Extraction for Sentiment Analysis i (2016).
[2] Jiafu An, Wenzhi Ding, and Chen Lin. 2023. ChatGPT: tackle the growing carbon

footprint of generative AI. , 586 pages. https://doi.org/10.1038/d41586-023-00843-
2

[3] Rodrigo Barbado, Oscar Araque, and Carlos A. Iglesias. 2019. A framework for fake
review detection in online consumer electronics retailers. Information Processing
and Management 56, 4 (2019). https://doi.org/10.1016/j.ipm.2019.03.002

[4] Anish. Chapagain. 2019. Hands-on web scraping with Python perform advanced
scraping operations using various Python libraries and tools such as Selenium, Regex,
and others.

[5] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou.
2018. Detecting ponzi schemes on ethereum: Towards healthier blockchain tech-
nology. In TheWeb Conference 2018 - Proceedings of theWorldWideWeb Conference,
WWW 2018. https://doi.org/10.1145/3178876.3186046

[6] Hans Christian, Mikhael Pramodana Agus, and Derwin Suhartono. 2016. Single
Document Automatic Text Summarization using Term Frequency-Inverse Doc-
ument Frequency (TF-IDF). ComTech: Computer, Mathematics and Engineering
Applications 7, 4 (2016). https://doi.org/10.21512/comtech.v7i4.3746

[7] David Gourley and Brian Totty. 2002. HTTP: The De�nitive Guide.
[8] Andrea DeMauro, Marco Greco, Michele Grimaldi, and Paavo Ritala. 2018. Human

resources for Big Data professions: A systematic classi�cation of job roles and
required skill sets. Information Processing and Management 54, 5 (2018). https:
//doi.org/10.1016/j.ipm.2017.05.004

[9] Wolfgang Ertel. 2017. Introduction to Arti�cial Intelligence (Undergraduate Topics
in Computer Science).

[10] A. Famili, Wei Min Shen, Richard Weber, and Evangelos Simoudis. 1997. Data
preprocessing and intelligent data analysis. Intelligent Data Analysis 1, 1 (1997).
https://doi.org/10.3233/IDA-1997-1102

[11] Yoav Freund and Robert E. Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997). https://doi.org/10.1006/jcss.1997.1504

[12] Doaa Mohey El Din Mohamed Hussein. 2018. A survey on sentiment analysis
challenges. Journal of King Saud University - Engineering Sciences 30, 4 (2018).
https://doi.org/10.1016/j.jksues.2016.04.002

[13] Giacomo Ibba, Giuseppe Antonio Pierro, andMarco Di Francesco. 2021. Evaluating
Machine-Learning Techniques for Detecting Smart Ponzi Schemes. In Proceedings
- 2021 IEEE/ACM 4th International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB 2021. https://doi.org/10.1109/WETSEB52558.
2021.00012

[14] Rajkumar S. Jagdale, Vishal S. Shirsat, and Sachin N. Deshmukh. 2019. Sentiment
analysis on product reviews using machine learning techniques. In Advances in
Intelligent Systems and Computing, Vol. 768. https://doi.org/10.1007/978-981-13-
0617-4{_}61

[15] Anuja P. Jain and Padma Dandannavar. 2017. Application of machine learning
techniques to sentiment analysis. In Proceedings of the 2016 2nd International
Conference on Applied and Theoretical Computing and Communication Technology,
iCATccT 2016. https://doi.org/10.1109/ICATCCT.2016.7912076

[16] Jarmul Katharine and Lawson Richard. 2017. Python Web Scraping (2 ed.). Packt
Publishing Ltd.

[17] Moaiad Ahmad Khder. 2021. Web scraping or web crawling: State of art, tech-
niques, approaches and application. International Journal of Advances in Soft Com-
puting and its Applications 13, 3 (2021). https://doi.org/10.15849/ijasca.211128.11

[18] Inna Kolyshkina and Simeon Simo�. 2019. Interpretability of machine learning
solutions in industrial decision engineering. In Communications in Computer and
Information Science, Vol. 1127 CCIS. https://doi.org/10.1007/978-981-15-1699-
3{_}13

[19] Dimitrios Kouzis-Loukas. 2016. Learning Scrapy. Vol. 1.
[20] Sascha Kraus, Matthias Breier, Weng Marc Lim, Marina Dabić, Satish Kumar,

Dominik Kanbach, DebmalyaMukherjee, Vincenzo Corvello, Juan Piñeiro-Chousa,
Eric Liguori, Daniel Palacios-Marqués, Francesco Schiavone, Alberto Ferraris,
Cristina Fernandes, and João J. Ferreira. 2022. Literature reviews as independent
studies: guidelines for academic practice. Review of Managerial Science 16, 8 (2022).
https://doi.org/10.1007/s11846-022-00588-8

[21] Jörg Krause. 2016. Introducing Web Development. https://doi.org/10.1007/978-1-
4842-2499-1

[22] Vlad Krotov, Leigh Johnson, and Leiser Silva. 2020. Tutorial: Legality and ethics
of web scraping. Communications of the Association for Information Systems 47, 1
(2020). https://doi.org/10.17705/1CAIS.04724

[23] Kati Kuusinen. 2015. Software developers as users: Developer experience of a
cross-platform integrated development environment. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics), Vol. 9459. https://doi.org/10.1007/978-3-319-26844-6{_}40

[24] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (5 2015),
436–444.

[25] Jiawei Li, Qing Xu, Neal Shah, and Tim K. Mackey. 2019. A machine learning
approach for the detection and characterization of illicit drug dealers on instagram:
Model evaluation study. Journal of Medical Internet Research 21, 6 (2019). https:
//doi.org/10.2196/13803

[26] Steven Lorla. 2020. TextBlob Documentation. TextBlob (2020).
[27] Alexander Selvikvåg Lundervold and Arvid Lundervold. 2019. An overview of

deep learning in medical imaging focusing on MRI. https://doi.org/10.1016/j.
zemedi.2018.11.002

[28] Alhassan Mabrouk, Rebeca P.Díaz Redondo, and Mohammed Kayed. 2021. Seopin-
ion: Summarization and exploration of opinion from e-commerce websites. Sensors
(Switzerland) 21, 2 (2021). https://doi.org/10.3390/s21020636

[29] Ryan Mitchell. 2015. Web Scraping with Python: Collecting Data from the Modern
Web. Vol. 53.

[30] James A. Muir and Paul C. Van Oorschot. 2009. Internet geolocation: Evasion and
counterevasion. Comput. Surveys 42, 1 (2009). https://doi.org/10.1145/1592451.
1592455

[31] Issam El Naqa andMartin J. Murphy. 2022. What AreMachine and Deep Learning?
In Machine and Deep Learning in Oncology, Medical Physics and Radiology, Second
Edition. https://doi.org/10.1007/978-3-030-83047-2{_}1

[32] Fabio Nelli. 2023. Machine Learning with scikit-learn. In Python Data Analytics:
With Pandas, NumPy, and Matplotlib. Apress, Berkeley, CA, 259–287. https:
//doi.org/10.1007/978-1-4842-9532-8{_}8

[33] Sebastian Raschka and Vahid Mirjalili. 2019. Python Machine Learning. Machine
Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. Number
January 2010.

[34] RFC-6585. 2012. HTTP – Additional HTTP Status Codes. IETF (2012).
[35] RFC-7725. 2016. An HTTP status code to report legal obstacles.
[36] Stuart Russell and Peter Norivg. 2021. Arti�cial Intelligence: A Modern Approach

(Global Edition). Arti�cial Intelligence: A Modern Approach (2021).
[37] Pramila P. Shinde and Seema Shah. 2018. A Review of Machine Learning and

Deep Learning Applications. In Proceedings - 2018 4th International Conference
on Computing, Communication Control and Automation, ICCUBEA 2018. https:
//doi.org/10.1109/ICCUBEA.2018.8697857

10



Web Scraping as a Data Source for Machine Learning Models and the Importance of Preprocessing Web Scraped Data TScIT 41, July 5, 2024, Enschede, The Netherlands

[38] Vidhi Singrodia, Anirban Mitra, and Subrata Paul. 2019. A Review on Web
Scrapping and its Applications. In 2019 International Conference on Computer
Communication and Informatics, ICCCI 2019. https://doi.org/10.1109/ICCCI.2019.
8821809

[39] Scm C.M.D.S. Sirisuriya. 2023. Importance of Web Scraping as a Data Source for
Machine Learning Algorithms - Review. In 2023 IEEE 17th International Conference
on Industrial and Information Systems, ICIIS 2023 - Proceedings. https://doi.org/10.

1109/ICIIS58898.2023.10253502
[40] Marketa Trimble. 2016. Geoblocking, Technical Standards and the Law. Scholarly

Works (2016).
[41] Zhi Hua Zhou. 2012. Ensemble methods: Foundations and algorithms. https:

//doi.org/10.1201/b12207
[42] Zhi Hua Zhou. 2021. Machine Learning. https://doi.org/10.1007/978-981-15-1967-

3

11


	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Question

	3 Practical Contribution
	4 Methodology
	4.1 Part 1: Literature Review
	4.2 Part 2: Web scraping tool and Dataset used

	5 Related Work And Additional Knowledge
	6 Findings
	6.1 Literature Review
	6.2 Web Scraping Experiment
	6.3 Discussion

	7 Conclusion
	7.1 Limitations and Future Research

	8 Appendix
	8.1 AI Notice

	References

