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Focusing on collaborative augmented reality (AR) systems, where latency
reduction is crucial for user experience and system performance, this study
uniquely contributes by simulating real-world network traffic conditions
using existing datasets. This research investigates the impact of network
configuration parameters on end-to-end (E2E) latency in collaborative AR
systems through detailed network simulation using the 5G RAN Emulator
FikoRE. Our findings indicate that bandwidth, packet size, and the number of
background users significantly affect E2E latency, with bandwidth emerging
as the most critical factor. Future research directions include exploring the
interplay of additional network variables and extending this work to more
complex multi-user environments.
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1 INTRODUCTION
Augmented Reality (AR) technologies merge virtual elements with
physical space, creating immersive experiences [1]. Collaborative
AR systems, where multiple users interact within a shared AR envi-
ronment, have the potential to transform many sectors by allowing
for more natural and intuitive interactions among users. Collabo-
rative AR systems are beneficial because they support teamwork,
decision-making, and interactive learning [2]. By 2025, over 200
million people are expected to use extended reality services for
immersive gaming and 95 million for live events [3].
Many companies have demonstrated significant interest in this

technology by investing in AR. Microsoft, Meta, Google, and Nreal
have significantly contributed to promoting AR glasses at the con-
sumer level [2]. Vodafone has implemented an AR-based support
system to enhance worker safety and operational efficiency by pro-
viding real-time data and guidance [4]. ETSI’s ARCloud showcases
the practical applications of collaborative AR in improving industrial
processes by facilitating collaborative design reviews and factory
inspections [5].

A significant challenge faced by these systems is end-to-end (E2E)
latency, defined as the total time delay from the moment an action
is initiated (e.g., a user moves their phone) to the perception of
the corresponding response (e.g., the updated image) by the user.
Latencies exceeding 20 milliseconds in collaborative AR systems
can significantly increase the risk of cybersickness, characterized by
symptoms such as nausea and dizziness [6]. Ensuring low latency
is imperative for all immersive systems to provide a seamless and
responsive user experience. Current AR systems aim for an end-
to-end latency of approximately 10 to 15 milliseconds, depending
on the required level of interactivity of the system [2]. The latency
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requirements become more stringent as AR systems become more
dynamic and complex. For instance, running the YoloV4 Object
Detection Model on a mobile device such as XiaoMi 9 requires a
processing overhead of 286 milliseconds [7]. This leads to an E2E
latency beyond the delay tolerable by the average user. Thus, mini-
mizing latency is crucial to maintaining a seamless user experience
[4].
Various studies have proposed practical solutions to mitigate

latency in collaborative AR systems through offloading, utilizing
mobile edge computing, and network slicing [4]. For example, the
study in [3] provides an open framework for analyzing and model-
ing extended reality (XR) traffic by capturing packets transmitted
by several virtual reality (VR) applications. Another significant con-
tribution is the 5G RAN Emulator proposed in [8], designed to
facilitate application-level testing for researchers. Additionally, [9]
have provided a dataset derived from an offloading scenario for VR
applications, which includes a model for generating synthetic data,
and validated their results and tested several network parameters
using the 5G RAN Emulator proposed in [8]. However, these frame-
works have not been explicitly utilized to model the network traffic
for collaborative AR or multi-user VR applications. The downside
of not modeling the network traffic for these applications is that it
can lead to unpredictable performance and scalability issues. The
lack of modeling hinders the ability to optimize network resources
effectively.

This research addresses a critical gap, given that collaborative AR
systems involve unique interaction dynamics. Unlike traditional AR
systems, where a single user communicates with a server, collabo-
rative AR systems encompass multiple users. Making the network
susceptible to issues such as interference. This study aims to fill
the gap in the research by investigating the impact of network
configuration parameters on the E2E latency of a collaborative AR
application scenario. By utilizing the 5G RAN Emulator [8] with
real traffic traces provided by [9], we can simulate the network
traffic of a collaborative AR environment and assess the E2E latency
under varying network configurations. This approach allows for the
visualization of the impacts of the chosen network parameters on
E2E latency and the identification of the parameter with the most
substantial effect on latency. The parameter with the largest impact
on latency is then investigated to determine the trade-offs regard-
ing network quality, as the parameter is used to reduce the E2E
latency. Therefore, we can frame the research around the following
objectives:

• Understanding the root causes of E2E latency: Identifying the
primary factors contributing to E2E latency in collaborative
AR systems.

• Identify the largest contributor to latency: Determiningwhich
network configuration parameter has the most significant
impact on latency.
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• Analyze the impacts of the largest contributor: Exploring how
the most significant contributor to E2E latency affects overall
system performance.

To facilitate achieving these objectives, we structure the research
around the following research questions:

(1) What are the primary network configuration parameters con-
tributing to E2E latency in collaborative AR systems?

(2) Which network configuration parameter is the largest contribu-
tor to E2E latency in collaborative AR systems?

(3) How does the largest contributing network parameter to E2E
latency affect network channel quality metrics?

The subsequent sections of this report review existing literature
and studies that address E2E latency and network traffic simula-
tion frameworks for collaborative AR systems. Furthermore, the
methodology and the experimental setup used to answer the re-
search questions are explained, an analysis of the gathered results is
provided, and the findings are interpreted in the context of existing
literature and their implications for developing collaborative AR
systems.

2 RELATED WORKS

2.1 End-to-end Latency
End-to-end (E2E) latency is defined as the total time delay from
the initiation of an action to the perception of the response. The
impacts of E2E latency on quality of experience (QoE) is analysed
in [6], highlighting that latencies exceeding 20 milliseconds causes
symptoms such as nausea and dizziness for the users. Stepwise
latencies in interactive mobile video applications pipelines were
dissected in [10], emphasizing the need to optimize network delays
to achieve seamless user experiences.

2.2 Offloading
Offloading is a promising solution to reduce latency in collabora-
tive AR systems as it decreases the hardware requirements of the
equipment used through decreasing the computational load of the
device [11]. Latency-aware computation offloading in 5G networks
can significantly improve the performance of edge computing. The
study in [12] outlines a framework for latency-aware offloading,
aiming to minimize the end-to-end latency by optimizing the of-
floading process, considering factors such as network conditions
and the computational demands of the tasks.

2.3 Network Simulation
The field of network latency in AR systems has seen significant ad-
vancements, with several studies providing frameworks and models
crucial for understanding the latency dynamics of these networks.
Multi-access edge computing (MEC) provides computing capabil-
ity at the network’s edge, which allows for offloading part of the
computation from the utilized device to reduce network latency.
An efficient and comprehensive deployment simulation framework
is presented in [13] to test MEC deployments. However, the study
focuses on vehicle-to-grid networks and does not address collabora-
tive AR network requirements.

Realizing the lack of network simulation tools for XR traffic, [14]
presents a novel traffic model for Virtual Reality (VR) applications
based on real traffic traces from commercial VR streaming software.
In [3], they extend the model to a framework for analyzing and
modeling extended reality (XR) network traffic. They address the
need to characterize and emulate all the information sub-flows to
increase the fidelity of the traffic model.
To allow application-level experimentation and prototyping for

5G networks, [8] introduces FikoRE, a real-time Radio Access Net-
work. Providing a tool to study the behavior of these networks
under different network configurations to optimize the performance
of specific applications. The real-time operation capabilities and
the modular design make it an essential tool for testing and im-
proving network configurations in real-world scenarios. Advanced
XR applications rely on high-end hardware and next-generation
wireless systems such as 5G and 6G. A detailed dataset and XR
offloading IP traffic models have been provided in [9]. The dataset
includes comprehensive traffic traces to enhance understanding of
XR traffic dynamics. However, the study only considers one user
generating the traffic acquired from real traffic traces and does not
model a multi-user scenario required by collaborative AR systems.
This dataset can provide realistic traffic patterns for simulation to
model a collaborative AR system.

3 METHODOLOGY
This research utilizes the XR offloading dataset provided in [9] with
the 5G RAN emulator FikoRE [8] set up as a simulator to use the real
traffic traces captured from an offloading scenario. The simulation
is configured to mimic the network traffic of a two-person collabo-
rative AR system. We investigate the impacts of various network
parameters on the E2E latency of a collaborative AR system using
real network traces with a reliable 5G emulator. After calculating
the E2E latency for all investigated parameter configurations, we
determine the most significant contributor through linear regression
analysis and analyze the associated network quality trade-offs.

3.1 Simulation Framework
The network simulation framework used in this study integrates
FikoRE, a real-time 5G RAN emulator [8], with traffic models de-
rived from the dataset provided in [9]. Utilizing real traffic traces
allows for accurate modeling of network conditions and traffic pat-
terns specific to collaborative AR systems. FikoRE was selected
because its architecture aligns with the 3GPP specifications. Ensur-
ing the framework accurately represents key procedures such as
resource allocation and channel quality information metrics estima-
tion. Adhering to 3GPP standards allows the simulation results to be
comparable with real-world 5G deployments. Utilizing real traffic
traces from an XR offloading scenario enables accurate modeling
of traffic patterns specific to collaborative AR systems using an
offloading solution.
FikoRE is a 5G RAN emulator that facilitates application-level

experimentation and prototyping. The framework emphasizes us-
ability and flexibility, allowing researchers to test their applications
under various network configurations. Furthermore, the framework
includes logging functionality to capture detailed information about
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network performance. The logs include data on packet transmission,
reception, resource allocation, and channel conditions.
The flow of data described in the FikoRE framework starts with

simulated IP traffic being generated by the traffic generation module,
generating virtual traffic based on user-specified parameters, such
as target uplink (UL) and downlink (DL) throughputs and packet
size. These packets are then forwarded to the PDC/RLC layer and
queued in the IP buffer. These IP packets are then segmented into
smaller blocks based on the Transport Block Size determined by
the MAC layer. The MAC layer processes these segmented packets,
performing resource allocation. Finally, the PHY layer receives the
allocated resource blocks, estimates channel quality metrics such
as SINR and RSRP using 3GPP 38.901 models and simulates trans-
mission latency. An overview of the data flow is shown in Figure
1.

Fig. 1. General Architecture of the FikoRE 5G RAN Emulator show-
casing the data flow: The flow starts with simulated IP traffic generated
by the Traffic Generation module, processed through the PDC/RLC layer
for queuing and segmentation, managed by the MAC layer for resource
allocation, and evaluated by the PHY layer for channel quality and trans-
mission parameters.

3.2 Data Collection and Analysis
3.2.1 Data Collection. After the simulation is run in any setting,
FikoRE generates a log file for the user equipment (UE) module if
the logging is enabled for the UE in the configuration file [8]. The
generated log file is in text format. Some lines contain information
about the data generated and received by the UE (a). Other lines
include details about channel quality metrics (b). Each line includes
the timestamp of when the log was taken, as shown in Figure 2.
The framework is designed to be compiled and run on Ubuntu,

which is not the native OS of the host machine used for the experi-
mentation. Therefore, a virtual machine running on Ubuntu runs
the simulations and collects the log files. The network configuration
parameters can be edited through the framework’s configuration
file. Collecting for each parameter setting involves editing the con-
figuration file in the virtual machine and compiling and running
the simulation. Then, the contents of the generated log files are
copied and pasted into text files in the host machine. Finally, the
E2E latency is analyzed, and the results are stored.

3.2.2 Data Analysis. To estimate the E2E latency, each instance
of data generation by the user is timestamped, and the amounts
of uplink and downlink data are recorded. The process starts by
checking if there is any generated uplink (GUL) or downlink (GDL)
data. If such data exists, a ‘Generated Data’ object is created and
stored with its timestamp. When received uplink (RUL) or downlink
(RDL) is detected, it is subtracted from the oldest ‘Generated Data’

Fig. 2. Contents of Log Files: Section (a) features the information present
in a data line (gul stands for Generated Uplink, gdl stands for Generated
Downlink, rul stands for Received Uplink, rdl stands for Received Downlink,
ts stands for Timestamp), and section (b) features information present in
qualitymetrics line (SINR and RSRP values, ts stands for Timestamp) present
in a log file collected from the simulations

object. Once the remaining data for an object is depleted, the latency
is calculated as the time difference between data generation and
reception, and the object is removed from the dictionary. The aver-
age latency is calculated from the list of latencies generated from
the log file. If a line does not contain relevant data, it is skipped to
ensure efficient processing. By timestamping each data generation
event and tracking the uplink and downlink amounts, we can calcu-
late the delay experienced during data transmission. The described
approach accounts for processing delays and network latency and
can be used to estimate the E2E latency.

Each run of the simulation results in slight deviations in the cal-
culated latency. Therefore, the average of the latency measurements
for ten runs is considered the average E2E latency for a specific
parameter configuration. This approach ensures that outliers do not
disproportionately affect the average E2E latency for any setting.

Experiments were conducted under five different settings for each
parameter to measure their impact on average E2E latency. The
relationship between the parameter and the average E2E latency is
plotted to visualize the parameter’s effect on latency. The parameter
values are presented on the x-axis, while the average E2E latency
is on the y-axis. Using line charts allows for the analysis of the
consistency of the trends.

Linear regression analysis is used to identify the parameter that
has the most significant impact on latency. This statistical method
provides a list of coefficients that indicate the strength and the direc-
tion of the impact of each parameter on latency [15]. This method
allows for a clear comparison of their relative importance. The lin-
ear regression equation used in this research is given in Equation 1.
𝛾 is the dependent variable, representing the average E2E latency.
𝑥1, 𝑥2, 𝑥3, 𝑥4 are the independent variables representing the differ-
ent network parameters (bandwidth, packet size, UE transmission
power, and the number of background users). 𝛽1, 𝛽2, 𝛽3, 𝛽4 are the
coefficients representing the impact of each network parameter on
the average E2E latency. By performing linear regression analy-
sis, the parameter with the highest absolute coefficient value (𝛽)
is identified as having the most significant impact on average E2E
latency. Normalization is performed on the input parameters to
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ensure values between 0 and 1. This allows for maintaining a con-
sistent scale across different units and magnitudes of parameters.
This approach is typically used in regression analyses to avoid bias
toward larger-scale variables.

𝛾 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 (1)
To analyze the trade-offs associated with utilizing the parameter

with the most impact on average E2E latency, we also examine
channel quality metrics SINR and RSRP. The SINR and RSRP values
per configuration are determined by calculating the average of the
values present in the log files. The data calculations are done for 10
runs per parameter configuration, and the average of the 10 runs is
considered. This approach accurately measures the corresponding
values for each configuration to visualize its impact on these metrics
better.

4 EXPERIMENT SETUP
This section provides a detailed description of the experiment setup
used to investigate the impact of various network configuration
parameters on end-to-end (E2E) latency in collaborative augmented
reality (AR) systems. The collaborative AR system we model in this
research contains two users, which utilize the offloading XR traffic
dataset to generate the network traffic. The scenario, depicted in
Figure 3, mimics the network traffic of interacting within a collabo-
rative AR application with another person using mobile phones.

Fig. 3. Modelled Scenario Connection Overview: The figure illustrates
the setup where two users interact in a collaborative AR application via
mobile phones, with data offloaded to a central server for processing.

The FikoRE framework is utilized to model the specified scenario.
The framework has been designed to be compiled and run onUbuntu.
Therefore, the simulations are run by a virtual machine (VM). The
following section describes the specifications of the VM used to
compile and run the simulations.

4.1 Simulation Environment
The network simulation was conducted using a virtual machine
(VM), as the FikoRE simulator is designed to be compiled on Ubuntu.
The use of a VM is necessary as the simulator is designed to be
compiled on Ubuntu, which is not the native operating system

of the host machine. The operating system deployed on the VM is
Ubuntu version 24.04. The VM is allocated 8 GB of RAM, 6 processor
cores, and 50 GB of storage.
The VM is hosted on a laptop running Windows 10. The host

machine has 16 GB of RAM, 16 CPU cores, and 1 TB HDD. Half of
the available RAM is given to the VM to ensure enough memory to
run the simulations.

The following section provides a detailed description of the sim-
ulation parameters used to conduct the experiments.

4.2 Simulation Parameters
The simulation is executed with specific parameters kept constant,
except for the parameter being tested, to ensure a controlled and
systematic investigation. These values have been chosen to mimic
the real-world conditions of a collaborative augmented reality (AR)
system in which two users use their phones to interact within an
AR application.

Collaborative AR systems require large data volumes and high
data rates [2]. For example, interactions such as placing virtual ob-
jects or drawing virtual graffiti can result in high data transmission
bursts, averaging around 2.5 MB per interaction. Continued user
interactions can cause smaller data bursts, averaging 447 Bytes per
interaction. These data patterns highlight the need for robust net-
work infrastructure to efficiently handle large, unpredictable spikes
in data transmission [16].

The bandwidth determines the data transmission capacity of the
network. The chosen value for the bandwidth is 100 MHz, typical
for high-performance 5G networks [5]. The packet size affects the
transmission and processing time of data packets. Large packets can
reduce the overhead but also increase transmission time due to the
processing required to segment and reconstruct the packets [17]. A
packet size of 12000 bytes is selected for the simulation to balance
the trade-off between overhead and efficient data transmission.

The chosen modulation scheme is 256-QAM, which is appropriate
for scenarios where high data rates are needed, such as in collabora-
tive AR systems [9]. The frequency band is set to 26.5 GHz, typically
used in 5G networks to provide ample bandwidth to support high
data rates. The simulation duration affects the amount of data col-
lected and the ability to observe the system’s behavior. A duration
of 30 seconds is sufficient to capture a representative sample of
network performance metrics while ensuring that the simulation re-
mains manageable and can be repeated multiple times for reliability.
The transmission power available to the user equipment influences
the signal strength and the coverage area. The selected transmission
power of 23 dBm is typical for mobile devices [11].
Two UEs are simulated to reflect the typical use case for col-

laborative AR applications, where two users interact in real-time.
The traffic file dictates the data patterns used in the simulation,
which must reflect realistic usage scenarios. The selected traffic file
for uplink and downlink transmissions for both UEs is the "960-
offloading-real.txt" file provided by [9]. Although captured from
an offloading scenario for VR applications, the traffic patterns are
similar to the necessary transmissions for AR applications. Both
cases require the video feed captured by the device to be sent to the
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server, where computationally intensive algorithms such as local-
ization and tracking can be performed, after which the results are
transmitted back to the device.

4.3 E2E Latency Factors
The experiments are designed to analyze the impact of network pa-
rameters on end-to-end (E2E) latency in a collaborative AR scenario.
The parameters were chosen after thoroughly reviewing the FikoRE
framework’s configuration options and carefully considering their
impacts on E2E latency [4, 5, 6, 18, 17, 19], particularly in the context
of collaborative AR systems [2, 4, 5]. The selected parameters for
analysis are bandwidth, packet size, number of background users,
and transmission power available to the user equipment.
In collaborative AR applications, high bandwidth is necessary

to ensure a seamless and immersive experience [2, 4, 5, 6]. The
bandwidth configurations (60, 80, 100, 120, 140 MHz) were selected
to demonstrate the relationship between bandwidth and E2E latency.
Varying these values significantly impacts latency and allows a more
straightforward visualization of this relationship.
Data packets for collaborative AR systems carry complex and

high-resolution information, which requires careful management to
avoid latency spikes [18]. By examining various packet size configu-
rations (8000, 10000, 12000, 14000, 16000 bytes), we can assess how
packet size affects the E2E latency in a collaborative AR system.
The number of background users in a network can significantly

impact latency due to increased competition for available bandwidth.
Collaborative AR applications involve multiple users interacting
simultaneously, leading to network congestion and potential delays
[4]. The effect of the number of background users (1, 2, 3, 4, 5)
present in the network is analyzed to understand their impact on
E2E latency in collaborative AR systems.
Higher transmission powers can enhance the signal quality and

reduce latency by improving the robustness of the data link. How-
ever, it also increases power consumption and potential interference
with other devices [18]. By simulating various transmission power
levels available to the user equipment (20, 30, 40, 50, 60 dBm), we
can understand how it affects the E2E latency in a collaborative AR
system. The chosen parameters and their respective configurations
are presented in Table 1.

Table 1. The selected parameters (left column) and the corresponding con-
figurations (right column)

Parameter Configurations
Bandwidth 60, 80, 100, 120, 140 MHz
Packet Size 8000, 10000, 12000, 14000, 16000 Bytes
Amount of Background
Users

1, 2, 3, 4, 5

Transmission Power of
User Equipment

20, 30, 40, 50, 60 dBm

4.4 Software and Tools Overview
VirtualBox is used to host the virtual machine (VM), chosen for
its ease of use and ability to configure the resources available to
the VM. Visual Studio Code (VSCode) is used to connect to the

VM through SSH to make changes in the configuration file. This
approach also allows for copying and pasting the contents of the
log files generated by the simulator onto the Python environment
with relative ease. PyCharm, a popular IDE for Python, is used to
analyze the contents of the log files. The contents of the log files can
be copied onto text files directly from one IDE to another with the
specified approach. Once all the necessary data is collected, linear
regression analysis can be performed in the same directory used
to analyze the log files. The Scikit-learn module for Python is used
to perform the linear regression analysis. This module integrates
machine-learning algorithms and linear regression analysis [20].
The Matplotlib module for Python is used to generate all the graphs
presented in this research [21].

5 RESULTS
This section presents the data collected from the experiments through
line charts and tables, aiming to visualize the impact of the parame-
ters on average E2E latency. A table containing the coefficient values
resulting from linear regression analysis for each parameter per user
is given. The channel quality metrics are plotted with line charts to
visualize the effect of the highest impact variable on overall system
performance.

5.1 Visualization of Parameter Impact on E2E Latency
5.1.1 Bandwidth. Higher bandwidths provide more data trans-
mission capacity, which reduces the time required for data packets
to travel from the source to the destination [18, 17, 19]. The graph in
Figure 4 visualizes the relationship between the available bandwidth
and the average E2E latency in a collaborative AR system. The x-
axis shows the bandwidth configurations and the y-axis shows the
average E2E latency in seconds. The blue line corresponds to the
first user’s measurements, and the yellow line corresponds to the
second user’s measurements. As bandwidth increases from 60 to
140 MHz, the average E2E latency decreases.

Fig. 4. Bandwidth (MHz) vs. Average E2E Latency (s): x-axis represents
the bandwidth in MHz; y-axis represents the average end-to-end latency in
seconds. The blue line shows the measurements for the first user, and the
yellow line shows the measurements for the second user.
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5.1.2 Packet Size. The impact of packet size on average E2E la-
tency is visualized through a line chart graph in Figure 5. The x-axis
represents the packet size in bytes, and the y-axis represents the av-
erage E2E latency in seconds. The blue line shows the measurements
for the first user, and the yellow line shows the measurements for
the second user. As packet sizes increase from 8000 bytes to 16000
bytes, there is a noticeable increase in average E2E latency.

Fig. 5. Packet Size (Bytes) vs. Average E2E Latency (s): x-axis represents
the packet size in bytes; y-axis represents the average end-to-end latency in
seconds. The blue line shows the measurements for the first user, and the
yellow line shows the measurements for the second user

5.1.3 UE Transmission Power. The effect of the transmission
power available to the user equipment on average E2E latency is
shown in Figure 6. The x-axis represents the transmission power in
dBm, and the y-axis represents the average E2E latency in seconds.
The blue line shows the measurements for the first user, and the
second line shows the measurements for the second user. As the
transmission power increases from 20 to 60 dBm, the average E2E
latency decreases.

Fig. 6. UE Transmission Power (dBm) vs. Average E2E Latency (s): The
x-axis represents the transmission power available to the user equipment
in dBm; the y-axis represents the average end-to-end latency in seconds.
The blue line shows the measurements for the first user, and the yellow line
shows the measurements for the second user.

5.1.4 Amount of Background Users. The effect of the number
of background users on average E2E latency is visualized in Figure
7. The x-axis represents the number of background users, and the
y-axis represents the average E2E latency in seconds. The blue line
shows the measurements for the first user, and the yellow line shows
the measurements for the second user. The average E2E latency
increases as the number of background users increases.

Fig. 7. Amount of Background Users vs. Average E2E Latency (s): x-
axis represents number of background users; y-axis represents the average
end-to-end latency in seconds. The blue line shows the measurements for
the first user, and the yellow line shows the measurements for the second
user.

5.2 Linear Regression Analysis
The coefficients of the linear regression analysis quantify the sensi-
tivity of E2E latency to changes in each network parameter for both
users. Negative coefficient values indicate a negative relationship
between the parameter and the average E2E latency. The absolute
value of the coefficient is considered when deciding on the biggest
contributor to ensure that the parameters with negative coefficients
are not ignored. The coefficients resulting from linear regression
analysis are presented in Table 2. The values are shown for both
users per parameter. The results indicate the bandwidth has the
highest absolute value for both users, making it the parameter with
the most significant impact on E2E latency.

Table 2. Coefficient values for both users per network parameter: the
left-most column presents the parameters, the middle column presents the
calculated coefficient values for the first user, and the right-most column
presents the calculated coefficient values for the second user.

Parameter User 1 User 2
Bandwidth -0.84 -0.91
Packet Size 0.42 0.30

UE Transmission Power -0.15 -0.17
Amount of Background Users 0.32 0.22

5.3 Analysis of NetworkQuality Trade-Offs
In this section, we explore the observed relationship between the
bandwidth and the network quality metrics present in the log files,
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specifically, the Signal to Interference plus Noise Ratio (SINR) and
Reference Signal Received Power (RSRP).
According to theoretical principles, increasing the bandwidth

should decrease SINR. Higher bandwidth values introduce more
noise power into the system. In contrast, RSRP, which indicates the
power level of the reference signals received by the user equipment,
should improve or remain stable with increased bandwidth, as it
benefits from the broader transmission power distribution over a
wider spectral range [22].

The RSRP values positively correlate with increasing bandwidth,
indicating better signal strength and coverage. This aligns with
our expectations. The relationship between bandwidth and RSRP is
visualized in Fig. 8. Only one line is shown, as both users’ measured
RSRP values are the same. The x-axis represents the bandwidth in
MHz, and the y-axis represents the RSRP values in dBm.

Fig. 8. Average RSRP (dBm) vs. Bandwidth (MHz): The x-axis represents
the bandwidth in MHz, and the y-axis represents the RSRP values in dBm.

However, the SINR values for both users remain at approximately
28.525 dB, disregarding bandwidth variations. This anomaly sug-
gests that the FikoRE framework’s model for SINR calculation may
prioritize frequency band characteristics over bandwidth. Typically,
SINR should degrade with increased bandwidth values due to the
increased noise floor. However, the constant SINR implies a possible
model limitation or an assumption within the framework that iso-
lates SINR from bandwidth-induced noise effects. The relationship
between the bandwidth and SINR is visualized in Fig. 9. The x-axis
represents the bandwidth in MHz, and the y-axis represents the
average SINR values in dB.
The implication of such behavior is critical for network plan-

ning and performance optimization. If SINR does not degrade with
increased bandwidth, it may suggest that systems could leverage
higher bandwidths without the expected compromise on signal qual-
ity, contrary to standard network theory. This could be beneficial
in high-demand scenarios where high data rates (requiring large
bandwidths) and robust signal quality (high SINR) are essential,
such as collaborative AR systems.

Nevertheless, it is crucial to consider that this observation might
be specific to the simulation environment and the assumptions
embedded in the utilized framework. Real-world applications might

Fig. 9. Average SINR (dB) vs. Bandwidth (MHz): The x-axis represents
the bandwidth in MHz, and the y-axis represents the SINR values in dB.

still exhibit traditional behavior where SINR decreases as bandwidth
increases.

6 DISCUSSION
This research provides concrete evidence of the varying impacts of
network parameters on the average E2E latency for collaborative AR
systems by leveraging a detailed network simulation environment.
Bandwidth was identified as the most significant contributor to

average E2E latency. Higher bandwidths reduce latency by providing
more data transmission capacity, which in turn facilitates faster data
transfer between the user equipment and the server. This finding
aligns with previous research indicating that sufficient bandwidth
is critical for maintaining a seamless and immersive collaborative
AR experience [2, 4, 5, 6].

Packet size also significantly impacted E2E latency, with larger
packets increasing latency. This relationship can be explained by
the longer processing and transmission times required for larger
packets. While larger packets can reduce overhead by decreasing
the number of packets that need to be processed, they also increase
the chance of delays. Optimizing packet size is crucial to balance
overhead and transmission efficiency.
The transmission power available to the user equipment influ-

enced the E2E latency, with higher transmission power reducing the
latency. Increased transmission power improves signal strength and
transmission speed, reducing latency. However, this comes at the
cost of higher power consumption and potential interference with
other devices [23]. Therefore, while increasing transmission power
can be a viable strategy for reducing latency, it must be balanced
against the trade-offs to ensure efficient power usage and minimal
interference.

The number of background users significantly impacted latency.
This can be explained by the increased competition for available
bandwidth. As the number of background users increased, the E2E
latency also increased. This highlights the challenge of network
congestion in collaborative AR systems. Emphasizing the need for
efficient network management strategies to mitigate the effects of
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congestion and maintain low latency in multi-user environments
[4].

Analyzing the trade-offs associated with bandwidth revealed that
while increased bandwidth improved signal strength (as indicated
by RSRP values), the SINR values remained stable, which is unex-
pected. Typically, SINR values would be expected to decrease with
increasing bandwidth due to higher noise power [22]. However, the
stable SINR values suggest that the simulation environment may
isolate SINR from bandwidth-induced noise effects, or it could be
a limitation within the FikoRE framework. This finding is critical
for network planning. It may indicate that higher bandwidth can
reduce latency, but it might not always compromise signal quality.

Understanding the primary contributors to E2E latency allows for
more targeted interventions to reduce latency. For instance, priori-
tizing bandwidth allocation and optimizing packet size can enhance
system performance. Additionally, managing transmission power
and mitigating network congestion are crucial for maintaining low
latency in multi-user AR systems.

7 CONCLUSION
This research has demonstrated the substantial impact of network
configuration parameters on end-to-end latency in collaborative AR
systems. Through rigorous simulations using a 5G RAN Emulator
and real-world traffic datasets, the primary factors contributing to
E2E latency in collaborative AR systems are identified as bandwidth,
packet size, transmission power, and the number of background
users. It was determined that bandwidth is themost influential factor
in minimizing latency., Increasing bandwidth reduced E2E latency
by enhancing data transmission capacity. However, an unexpected
finding was that SINR values remained stable despite the increase
in bandwidth. This indicates that under the simulated conditions,
higher bandwidth did not degrade signal quality, contrary to tradi-
tional expectations where increased bandwidth typically introduces
more noise.
Future research directions can include exploring the interplay

of additional network variables such as network slicing, quality of
service (QoS) parameters, and more complex multi-user environ-
ments. Another direction could explore applying machine learning
techniques to predict and mitigate latency in real-time. Extending
this research to include various AR application scenarios, such as
industrial AR and remote assistance, would provide a more compre-
hensive understanding of latency dynamics in different contexts.
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